605 lines
22 KiB
Python
605 lines
22 KiB
Python
|
""" test the scalar Timedelta """
|
||
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
from datetime import timedelta
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas.util.testing as tm
|
||
|
from pandas.core.tools.timedeltas import _coerce_scalar_to_timedelta_type as ct
|
||
|
from pandas import (Timedelta, TimedeltaIndex, timedelta_range, Series,
|
||
|
to_timedelta, compat)
|
||
|
from pandas._libs.tslib import iNaT, NaT
|
||
|
|
||
|
|
||
|
class TestTimedeltaArithmetic(object):
|
||
|
|
||
|
def test_arithmetic_overflow(self):
|
||
|
with pytest.raises(OverflowError):
|
||
|
pd.Timestamp('1700-01-01') + pd.Timedelta(13 * 19999, unit='D')
|
||
|
|
||
|
with pytest.raises(OverflowError):
|
||
|
pd.Timestamp('1700-01-01') + timedelta(days=13 * 19999)
|
||
|
|
||
|
def test_array_timedelta_floordiv(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/19761
|
||
|
ints = pd.date_range('2012-10-08', periods=4, freq='D').view('i8')
|
||
|
msg = r"Use 'array // timedelta.value'"
|
||
|
with tm.assert_produces_warning(FutureWarning) as m:
|
||
|
result = ints // pd.Timedelta(1, unit='s')
|
||
|
|
||
|
assert msg in str(m[0].message)
|
||
|
expected = np.array([1349654400, 1349740800, 1349827200, 1349913600],
|
||
|
dtype='i8')
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_ops_error_str(self):
|
||
|
# GH 13624
|
||
|
td = Timedelta('1 day')
|
||
|
|
||
|
for left, right in [(td, 'a'), ('a', td)]:
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
left + right
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
left > right
|
||
|
|
||
|
assert not left == right
|
||
|
assert left != right
|
||
|
|
||
|
def test_ops_notimplemented(self):
|
||
|
class Other(object):
|
||
|
pass
|
||
|
|
||
|
other = Other()
|
||
|
|
||
|
td = Timedelta('1 day')
|
||
|
assert td.__add__(other) is NotImplemented
|
||
|
assert td.__sub__(other) is NotImplemented
|
||
|
assert td.__truediv__(other) is NotImplemented
|
||
|
assert td.__mul__(other) is NotImplemented
|
||
|
assert td.__floordiv__(other) is NotImplemented
|
||
|
|
||
|
def test_unary_ops(self):
|
||
|
td = Timedelta(10, unit='d')
|
||
|
|
||
|
# __neg__, __pos__
|
||
|
assert -td == Timedelta(-10, unit='d')
|
||
|
assert -td == Timedelta('-10d')
|
||
|
assert +td == Timedelta(10, unit='d')
|
||
|
|
||
|
# __abs__, __abs__(__neg__)
|
||
|
assert abs(td) == td
|
||
|
assert abs(-td) == td
|
||
|
assert abs(-td) == Timedelta('10d')
|
||
|
|
||
|
|
||
|
class TestTimedeltaComparison(object):
|
||
|
def test_comparison_object_array(self):
|
||
|
# analogous to GH#15183
|
||
|
td = Timedelta('2 days')
|
||
|
other = Timedelta('3 hours')
|
||
|
|
||
|
arr = np.array([other, td], dtype=object)
|
||
|
res = arr == td
|
||
|
expected = np.array([False, True], dtype=bool)
|
||
|
assert (res == expected).all()
|
||
|
|
||
|
# 2D case
|
||
|
arr = np.array([[other, td],
|
||
|
[td, other]],
|
||
|
dtype=object)
|
||
|
res = arr != td
|
||
|
expected = np.array([[True, False], [False, True]], dtype=bool)
|
||
|
assert res.shape == expected.shape
|
||
|
assert (res == expected).all()
|
||
|
|
||
|
def test_compare_timedelta_ndarray(self):
|
||
|
# GH11835
|
||
|
periods = [Timedelta('0 days 01:00:00'), Timedelta('0 days 01:00:00')]
|
||
|
arr = np.array(periods)
|
||
|
result = arr[0] > arr
|
||
|
expected = np.array([False, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestTimedeltas(object):
|
||
|
|
||
|
@pytest.mark.parametrize("unit, value, expected", [
|
||
|
('us', 9.999, 9999), ('ms', 9.999999, 9999999),
|
||
|
('s', 9.999999999, 9999999999)])
|
||
|
def test_rounding_on_int_unit_construction(self, unit, value, expected):
|
||
|
# GH 12690
|
||
|
result = Timedelta(value, unit=unit)
|
||
|
assert result.value == expected
|
||
|
result = Timedelta(str(value) + unit)
|
||
|
assert result.value == expected
|
||
|
|
||
|
def test_total_seconds_scalar(self):
|
||
|
# see gh-10939
|
||
|
rng = Timedelta('1 days, 10:11:12.100123456')
|
||
|
expt = 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9
|
||
|
tm.assert_almost_equal(rng.total_seconds(), expt)
|
||
|
|
||
|
rng = Timedelta(np.nan)
|
||
|
assert np.isnan(rng.total_seconds())
|
||
|
|
||
|
def test_conversion(self):
|
||
|
|
||
|
for td in [Timedelta(10, unit='d'),
|
||
|
Timedelta('1 days, 10:11:12.012345')]:
|
||
|
pydt = td.to_pytimedelta()
|
||
|
assert td == Timedelta(pydt)
|
||
|
assert td == pydt
|
||
|
assert (isinstance(pydt, timedelta) and not isinstance(
|
||
|
pydt, Timedelta))
|
||
|
|
||
|
assert td == np.timedelta64(td.value, 'ns')
|
||
|
td64 = td.to_timedelta64()
|
||
|
|
||
|
assert td64 == np.timedelta64(td.value, 'ns')
|
||
|
assert td == td64
|
||
|
|
||
|
assert isinstance(td64, np.timedelta64)
|
||
|
|
||
|
# this is NOT equal and cannot be roundtriped (because of the nanos)
|
||
|
td = Timedelta('1 days, 10:11:12.012345678')
|
||
|
assert td != td.to_pytimedelta()
|
||
|
|
||
|
def test_freq_conversion(self):
|
||
|
|
||
|
# truediv
|
||
|
td = Timedelta('1 days 2 hours 3 ns')
|
||
|
result = td / np.timedelta64(1, 'D')
|
||
|
assert result == td.value / float(86400 * 1e9)
|
||
|
result = td / np.timedelta64(1, 's')
|
||
|
assert result == td.value / float(1e9)
|
||
|
result = td / np.timedelta64(1, 'ns')
|
||
|
assert result == td.value
|
||
|
|
||
|
# floordiv
|
||
|
td = Timedelta('1 days 2 hours 3 ns')
|
||
|
result = td // np.timedelta64(1, 'D')
|
||
|
assert result == 1
|
||
|
result = td // np.timedelta64(1, 's')
|
||
|
assert result == 93600
|
||
|
result = td // np.timedelta64(1, 'ns')
|
||
|
assert result == td.value
|
||
|
|
||
|
def test_fields(self):
|
||
|
def check(value):
|
||
|
# that we are int/long like
|
||
|
assert isinstance(value, (int, compat.long))
|
||
|
|
||
|
# compat to datetime.timedelta
|
||
|
rng = to_timedelta('1 days, 10:11:12')
|
||
|
assert rng.days == 1
|
||
|
assert rng.seconds == 10 * 3600 + 11 * 60 + 12
|
||
|
assert rng.microseconds == 0
|
||
|
assert rng.nanoseconds == 0
|
||
|
|
||
|
pytest.raises(AttributeError, lambda: rng.hours)
|
||
|
pytest.raises(AttributeError, lambda: rng.minutes)
|
||
|
pytest.raises(AttributeError, lambda: rng.milliseconds)
|
||
|
|
||
|
# GH 10050
|
||
|
check(rng.days)
|
||
|
check(rng.seconds)
|
||
|
check(rng.microseconds)
|
||
|
check(rng.nanoseconds)
|
||
|
|
||
|
td = Timedelta('-1 days, 10:11:12')
|
||
|
assert abs(td) == Timedelta('13:48:48')
|
||
|
assert str(td) == "-1 days +10:11:12"
|
||
|
assert -td == Timedelta('0 days 13:48:48')
|
||
|
assert -Timedelta('-1 days, 10:11:12').value == 49728000000000
|
||
|
assert Timedelta('-1 days, 10:11:12').value == -49728000000000
|
||
|
|
||
|
rng = to_timedelta('-1 days, 10:11:12.100123456')
|
||
|
assert rng.days == -1
|
||
|
assert rng.seconds == 10 * 3600 + 11 * 60 + 12
|
||
|
assert rng.microseconds == 100 * 1000 + 123
|
||
|
assert rng.nanoseconds == 456
|
||
|
pytest.raises(AttributeError, lambda: rng.hours)
|
||
|
pytest.raises(AttributeError, lambda: rng.minutes)
|
||
|
pytest.raises(AttributeError, lambda: rng.milliseconds)
|
||
|
|
||
|
# components
|
||
|
tup = pd.to_timedelta(-1, 'us').components
|
||
|
assert tup.days == -1
|
||
|
assert tup.hours == 23
|
||
|
assert tup.minutes == 59
|
||
|
assert tup.seconds == 59
|
||
|
assert tup.milliseconds == 999
|
||
|
assert tup.microseconds == 999
|
||
|
assert tup.nanoseconds == 0
|
||
|
|
||
|
# GH 10050
|
||
|
check(tup.days)
|
||
|
check(tup.hours)
|
||
|
check(tup.minutes)
|
||
|
check(tup.seconds)
|
||
|
check(tup.milliseconds)
|
||
|
check(tup.microseconds)
|
||
|
check(tup.nanoseconds)
|
||
|
|
||
|
tup = Timedelta('-1 days 1 us').components
|
||
|
assert tup.days == -2
|
||
|
assert tup.hours == 23
|
||
|
assert tup.minutes == 59
|
||
|
assert tup.seconds == 59
|
||
|
assert tup.milliseconds == 999
|
||
|
assert tup.microseconds == 999
|
||
|
assert tup.nanoseconds == 0
|
||
|
|
||
|
def test_nat_converters(self):
|
||
|
assert to_timedelta('nat', box=False).astype('int64') == iNaT
|
||
|
assert to_timedelta('nan', box=False).astype('int64') == iNaT
|
||
|
|
||
|
def testit(unit, transform):
|
||
|
|
||
|
# array
|
||
|
result = to_timedelta(np.arange(5), unit=unit)
|
||
|
expected = TimedeltaIndex([np.timedelta64(i, transform(unit))
|
||
|
for i in np.arange(5).tolist()])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
# scalar
|
||
|
result = to_timedelta(2, unit=unit)
|
||
|
expected = Timedelta(np.timedelta64(2, transform(unit)).astype(
|
||
|
'timedelta64[ns]'))
|
||
|
assert result == expected
|
||
|
|
||
|
# validate all units
|
||
|
# GH 6855
|
||
|
for unit in ['Y', 'M', 'W', 'D', 'y', 'w', 'd']:
|
||
|
testit(unit, lambda x: x.upper())
|
||
|
for unit in ['days', 'day', 'Day', 'Days']:
|
||
|
testit(unit, lambda x: 'D')
|
||
|
for unit in ['h', 'm', 's', 'ms', 'us', 'ns', 'H', 'S', 'MS', 'US',
|
||
|
'NS']:
|
||
|
testit(unit, lambda x: x.lower())
|
||
|
|
||
|
# offsets
|
||
|
|
||
|
# m
|
||
|
testit('T', lambda x: 'm')
|
||
|
|
||
|
# ms
|
||
|
testit('L', lambda x: 'ms')
|
||
|
|
||
|
def test_numeric_conversions(self):
|
||
|
assert ct(0) == np.timedelta64(0, 'ns')
|
||
|
assert ct(10) == np.timedelta64(10, 'ns')
|
||
|
assert ct(10, unit='ns') == np.timedelta64(10, 'ns').astype('m8[ns]')
|
||
|
|
||
|
assert ct(10, unit='us') == np.timedelta64(10, 'us').astype('m8[ns]')
|
||
|
assert ct(10, unit='ms') == np.timedelta64(10, 'ms').astype('m8[ns]')
|
||
|
assert ct(10, unit='s') == np.timedelta64(10, 's').astype('m8[ns]')
|
||
|
assert ct(10, unit='d') == np.timedelta64(10, 'D').astype('m8[ns]')
|
||
|
|
||
|
def test_timedelta_conversions(self):
|
||
|
assert (ct(timedelta(seconds=1)) ==
|
||
|
np.timedelta64(1, 's').astype('m8[ns]'))
|
||
|
assert (ct(timedelta(microseconds=1)) ==
|
||
|
np.timedelta64(1, 'us').astype('m8[ns]'))
|
||
|
assert (ct(timedelta(days=1)) ==
|
||
|
np.timedelta64(1, 'D').astype('m8[ns]'))
|
||
|
|
||
|
def test_round(self):
|
||
|
|
||
|
t1 = Timedelta('1 days 02:34:56.789123456')
|
||
|
t2 = Timedelta('-1 days 02:34:56.789123456')
|
||
|
|
||
|
for (freq, s1, s2) in [('N', t1, t2),
|
||
|
('U', Timedelta('1 days 02:34:56.789123000'),
|
||
|
Timedelta('-1 days 02:34:56.789123000')),
|
||
|
('L', Timedelta('1 days 02:34:56.789000000'),
|
||
|
Timedelta('-1 days 02:34:56.789000000')),
|
||
|
('S', Timedelta('1 days 02:34:57'),
|
||
|
Timedelta('-1 days 02:34:57')),
|
||
|
('2S', Timedelta('1 days 02:34:56'),
|
||
|
Timedelta('-1 days 02:34:56')),
|
||
|
('5S', Timedelta('1 days 02:34:55'),
|
||
|
Timedelta('-1 days 02:34:55')),
|
||
|
('T', Timedelta('1 days 02:35:00'),
|
||
|
Timedelta('-1 days 02:35:00')),
|
||
|
('12T', Timedelta('1 days 02:36:00'),
|
||
|
Timedelta('-1 days 02:36:00')),
|
||
|
('H', Timedelta('1 days 03:00:00'),
|
||
|
Timedelta('-1 days 03:00:00')),
|
||
|
('d', Timedelta('1 days'),
|
||
|
Timedelta('-1 days'))]:
|
||
|
r1 = t1.round(freq)
|
||
|
assert r1 == s1
|
||
|
r2 = t2.round(freq)
|
||
|
assert r2 == s2
|
||
|
|
||
|
# invalid
|
||
|
for freq in ['Y', 'M', 'foobar']:
|
||
|
pytest.raises(ValueError, lambda: t1.round(freq))
|
||
|
|
||
|
t1 = timedelta_range('1 days', periods=3, freq='1 min 2 s 3 us')
|
||
|
t2 = -1 * t1
|
||
|
t1a = timedelta_range('1 days', periods=3, freq='1 min 2 s')
|
||
|
t1c = pd.TimedeltaIndex([1, 1, 1], unit='D')
|
||
|
|
||
|
# note that negative times round DOWN! so don't give whole numbers
|
||
|
for (freq, s1, s2) in [('N', t1, t2),
|
||
|
('U', t1, t2),
|
||
|
('L', t1a,
|
||
|
TimedeltaIndex(['-1 days +00:00:00',
|
||
|
'-2 days +23:58:58',
|
||
|
'-2 days +23:57:56'],
|
||
|
dtype='timedelta64[ns]',
|
||
|
freq=None)
|
||
|
),
|
||
|
('S', t1a,
|
||
|
TimedeltaIndex(['-1 days +00:00:00',
|
||
|
'-2 days +23:58:58',
|
||
|
'-2 days +23:57:56'],
|
||
|
dtype='timedelta64[ns]',
|
||
|
freq=None)
|
||
|
),
|
||
|
('12T', t1c,
|
||
|
TimedeltaIndex(['-1 days',
|
||
|
'-1 days',
|
||
|
'-1 days'],
|
||
|
dtype='timedelta64[ns]',
|
||
|
freq=None)
|
||
|
),
|
||
|
('H', t1c,
|
||
|
TimedeltaIndex(['-1 days',
|
||
|
'-1 days',
|
||
|
'-1 days'],
|
||
|
dtype='timedelta64[ns]',
|
||
|
freq=None)
|
||
|
),
|
||
|
('d', t1c,
|
||
|
pd.TimedeltaIndex([-1, -1, -1], unit='D')
|
||
|
)]:
|
||
|
|
||
|
r1 = t1.round(freq)
|
||
|
tm.assert_index_equal(r1, s1)
|
||
|
r2 = t2.round(freq)
|
||
|
tm.assert_index_equal(r2, s2)
|
||
|
|
||
|
# invalid
|
||
|
for freq in ['Y', 'M', 'foobar']:
|
||
|
pytest.raises(ValueError, lambda: t1.round(freq))
|
||
|
|
||
|
def test_contains(self):
|
||
|
# Checking for any NaT-like objects
|
||
|
# GH 13603
|
||
|
td = to_timedelta(range(5), unit='d') + pd.offsets.Hour(1)
|
||
|
for v in [pd.NaT, None, float('nan'), np.nan]:
|
||
|
assert not (v in td)
|
||
|
|
||
|
td = to_timedelta([pd.NaT])
|
||
|
for v in [pd.NaT, None, float('nan'), np.nan]:
|
||
|
assert (v in td)
|
||
|
|
||
|
def test_identity(self):
|
||
|
|
||
|
td = Timedelta(10, unit='d')
|
||
|
assert isinstance(td, Timedelta)
|
||
|
assert isinstance(td, timedelta)
|
||
|
|
||
|
def test_short_format_converters(self):
|
||
|
def conv(v):
|
||
|
return v.astype('m8[ns]')
|
||
|
|
||
|
assert ct('10') == np.timedelta64(10, 'ns')
|
||
|
assert ct('10ns') == np.timedelta64(10, 'ns')
|
||
|
assert ct('100') == np.timedelta64(100, 'ns')
|
||
|
assert ct('100ns') == np.timedelta64(100, 'ns')
|
||
|
|
||
|
assert ct('1000') == np.timedelta64(1000, 'ns')
|
||
|
assert ct('1000ns') == np.timedelta64(1000, 'ns')
|
||
|
assert ct('1000NS') == np.timedelta64(1000, 'ns')
|
||
|
|
||
|
assert ct('10us') == np.timedelta64(10000, 'ns')
|
||
|
assert ct('100us') == np.timedelta64(100000, 'ns')
|
||
|
assert ct('1000us') == np.timedelta64(1000000, 'ns')
|
||
|
assert ct('1000Us') == np.timedelta64(1000000, 'ns')
|
||
|
assert ct('1000uS') == np.timedelta64(1000000, 'ns')
|
||
|
|
||
|
assert ct('1ms') == np.timedelta64(1000000, 'ns')
|
||
|
assert ct('10ms') == np.timedelta64(10000000, 'ns')
|
||
|
assert ct('100ms') == np.timedelta64(100000000, 'ns')
|
||
|
assert ct('1000ms') == np.timedelta64(1000000000, 'ns')
|
||
|
|
||
|
assert ct('-1s') == -np.timedelta64(1000000000, 'ns')
|
||
|
assert ct('1s') == np.timedelta64(1000000000, 'ns')
|
||
|
assert ct('10s') == np.timedelta64(10000000000, 'ns')
|
||
|
assert ct('100s') == np.timedelta64(100000000000, 'ns')
|
||
|
assert ct('1000s') == np.timedelta64(1000000000000, 'ns')
|
||
|
|
||
|
assert ct('1d') == conv(np.timedelta64(1, 'D'))
|
||
|
assert ct('-1d') == -conv(np.timedelta64(1, 'D'))
|
||
|
assert ct('1D') == conv(np.timedelta64(1, 'D'))
|
||
|
assert ct('10D') == conv(np.timedelta64(10, 'D'))
|
||
|
assert ct('100D') == conv(np.timedelta64(100, 'D'))
|
||
|
assert ct('1000D') == conv(np.timedelta64(1000, 'D'))
|
||
|
assert ct('10000D') == conv(np.timedelta64(10000, 'D'))
|
||
|
|
||
|
# space
|
||
|
assert ct(' 10000D ') == conv(np.timedelta64(10000, 'D'))
|
||
|
assert ct(' - 10000D ') == -conv(np.timedelta64(10000, 'D'))
|
||
|
|
||
|
# invalid
|
||
|
pytest.raises(ValueError, ct, '1foo')
|
||
|
pytest.raises(ValueError, ct, 'foo')
|
||
|
|
||
|
def test_full_format_converters(self):
|
||
|
def conv(v):
|
||
|
return v.astype('m8[ns]')
|
||
|
|
||
|
d1 = np.timedelta64(1, 'D')
|
||
|
|
||
|
assert ct('1days') == conv(d1)
|
||
|
assert ct('1days,') == conv(d1)
|
||
|
assert ct('- 1days,') == -conv(d1)
|
||
|
|
||
|
assert ct('00:00:01') == conv(np.timedelta64(1, 's'))
|
||
|
assert ct('06:00:01') == conv(np.timedelta64(6 * 3600 + 1, 's'))
|
||
|
assert ct('06:00:01.0') == conv(np.timedelta64(6 * 3600 + 1, 's'))
|
||
|
assert ct('06:00:01.01') == conv(np.timedelta64(
|
||
|
1000 * (6 * 3600 + 1) + 10, 'ms'))
|
||
|
|
||
|
assert (ct('- 1days, 00:00:01') ==
|
||
|
conv(-d1 + np.timedelta64(1, 's')))
|
||
|
assert (ct('1days, 06:00:01') ==
|
||
|
conv(d1 + np.timedelta64(6 * 3600 + 1, 's')))
|
||
|
assert (ct('1days, 06:00:01.01') ==
|
||
|
conv(d1 + np.timedelta64(1000 * (6 * 3600 + 1) + 10, 'ms')))
|
||
|
|
||
|
# invalid
|
||
|
pytest.raises(ValueError, ct, '- 1days, 00')
|
||
|
|
||
|
def test_overflow(self):
|
||
|
# GH 9442
|
||
|
s = Series(pd.date_range('20130101', periods=100000, freq='H'))
|
||
|
s[0] += pd.Timedelta('1s 1ms')
|
||
|
|
||
|
# mean
|
||
|
result = (s - s.min()).mean()
|
||
|
expected = pd.Timedelta((pd.DatetimeIndex((s - s.min())).asi8 / len(s)
|
||
|
).sum())
|
||
|
|
||
|
# the computation is converted to float so
|
||
|
# might be some loss of precision
|
||
|
assert np.allclose(result.value / 1000, expected.value / 1000)
|
||
|
|
||
|
# sum
|
||
|
pytest.raises(ValueError, lambda: (s - s.min()).sum())
|
||
|
s1 = s[0:10000]
|
||
|
pytest.raises(ValueError, lambda: (s1 - s1.min()).sum())
|
||
|
s2 = s[0:1000]
|
||
|
result = (s2 - s2.min()).sum()
|
||
|
|
||
|
def test_pickle(self):
|
||
|
|
||
|
v = Timedelta('1 days 10:11:12.0123456')
|
||
|
v_p = tm.round_trip_pickle(v)
|
||
|
assert v == v_p
|
||
|
|
||
|
def test_timedelta_hash_equality(self):
|
||
|
# GH 11129
|
||
|
v = Timedelta(1, 'D')
|
||
|
td = timedelta(days=1)
|
||
|
assert hash(v) == hash(td)
|
||
|
|
||
|
d = {td: 2}
|
||
|
assert d[v] == 2
|
||
|
|
||
|
tds = timedelta_range('1 second', periods=20)
|
||
|
assert all(hash(td) == hash(td.to_pytimedelta()) for td in tds)
|
||
|
|
||
|
# python timedeltas drop ns resolution
|
||
|
ns_td = Timedelta(1, 'ns')
|
||
|
assert hash(ns_td) != hash(ns_td.to_pytimedelta())
|
||
|
|
||
|
def test_implementation_limits(self):
|
||
|
min_td = Timedelta(Timedelta.min)
|
||
|
max_td = Timedelta(Timedelta.max)
|
||
|
|
||
|
# GH 12727
|
||
|
# timedelta limits correspond to int64 boundaries
|
||
|
assert min_td.value == np.iinfo(np.int64).min + 1
|
||
|
assert max_td.value == np.iinfo(np.int64).max
|
||
|
|
||
|
# Beyond lower limit, a NAT before the Overflow
|
||
|
assert (min_td - Timedelta(1, 'ns')) is NaT
|
||
|
|
||
|
with pytest.raises(OverflowError):
|
||
|
min_td - Timedelta(2, 'ns')
|
||
|
|
||
|
with pytest.raises(OverflowError):
|
||
|
max_td + Timedelta(1, 'ns')
|
||
|
|
||
|
# Same tests using the internal nanosecond values
|
||
|
td = Timedelta(min_td.value - 1, 'ns')
|
||
|
assert td is NaT
|
||
|
|
||
|
with pytest.raises(OverflowError):
|
||
|
Timedelta(min_td.value - 2, 'ns')
|
||
|
|
||
|
with pytest.raises(OverflowError):
|
||
|
Timedelta(max_td.value + 1, 'ns')
|
||
|
|
||
|
def test_total_seconds_precision(self):
|
||
|
# GH 19458
|
||
|
assert Timedelta('30S').total_seconds() == 30.0
|
||
|
assert Timedelta('0').total_seconds() == 0.0
|
||
|
assert Timedelta('-2S').total_seconds() == -2.0
|
||
|
assert Timedelta('5.324S').total_seconds() == 5.324
|
||
|
assert (Timedelta('30S').total_seconds() - 30.0) < 1e-20
|
||
|
assert (30.0 - Timedelta('30S').total_seconds()) < 1e-20
|
||
|
|
||
|
def test_timedelta_arithmetic(self):
|
||
|
data = pd.Series(['nat', '32 days'], dtype='timedelta64[ns]')
|
||
|
deltas = [timedelta(days=1), Timedelta(1, unit='D')]
|
||
|
for delta in deltas:
|
||
|
result_method = data.add(delta)
|
||
|
result_operator = data + delta
|
||
|
expected = pd.Series(['nat', '33 days'], dtype='timedelta64[ns]')
|
||
|
tm.assert_series_equal(result_operator, expected)
|
||
|
tm.assert_series_equal(result_method, expected)
|
||
|
|
||
|
result_method = data.sub(delta)
|
||
|
result_operator = data - delta
|
||
|
expected = pd.Series(['nat', '31 days'], dtype='timedelta64[ns]')
|
||
|
tm.assert_series_equal(result_operator, expected)
|
||
|
tm.assert_series_equal(result_method, expected)
|
||
|
# GH 9396
|
||
|
result_method = data.div(delta)
|
||
|
result_operator = data / delta
|
||
|
expected = pd.Series([np.nan, 32.], dtype='float64')
|
||
|
tm.assert_series_equal(result_operator, expected)
|
||
|
tm.assert_series_equal(result_method, expected)
|
||
|
|
||
|
def test_apply_to_timedelta(self):
|
||
|
timedelta_NaT = pd.to_timedelta('NaT')
|
||
|
|
||
|
list_of_valid_strings = ['00:00:01', '00:00:02']
|
||
|
a = pd.to_timedelta(list_of_valid_strings)
|
||
|
b = Series(list_of_valid_strings).apply(pd.to_timedelta)
|
||
|
# Can't compare until apply on a Series gives the correct dtype
|
||
|
# assert_series_equal(a, b)
|
||
|
|
||
|
list_of_strings = ['00:00:01', np.nan, pd.NaT, timedelta_NaT]
|
||
|
|
||
|
# TODO: unused?
|
||
|
a = pd.to_timedelta(list_of_strings) # noqa
|
||
|
b = Series(list_of_strings).apply(pd.to_timedelta) # noqa
|
||
|
# Can't compare until apply on a Series gives the correct dtype
|
||
|
# assert_series_equal(a, b)
|
||
|
|
||
|
def test_components(self):
|
||
|
rng = timedelta_range('1 days, 10:11:12', periods=2, freq='s')
|
||
|
rng.components
|
||
|
|
||
|
# with nat
|
||
|
s = Series(rng)
|
||
|
s[1] = np.nan
|
||
|
|
||
|
result = s.dt.components
|
||
|
assert not result.iloc[0].isna().all()
|
||
|
assert result.iloc[1].isna().all()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('value, expected', [
|
||
|
(Timedelta('10S'), True),
|
||
|
(Timedelta('-10S'), True),
|
||
|
(Timedelta(10, unit='ns'), True),
|
||
|
(Timedelta(0, unit='ns'), False),
|
||
|
(Timedelta(-10, unit='ns'), True),
|
||
|
(Timedelta(None), True),
|
||
|
(pd.NaT, True),
|
||
|
])
|
||
|
def test_truthiness(value, expected):
|
||
|
# https://github.com/pandas-dev/pandas/issues/21484
|
||
|
assert bool(value) is expected
|