laywerrobot/lib/python3.6/site-packages/pandas/tests/plotting/test_series.py

903 lines
33 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# coding: utf-8
""" Test cases for Series.plot """
from itertools import chain
import pytest
from datetime import datetime
import pandas as pd
from pandas import Series, DataFrame, date_range
from pandas.compat import range, lrange
import pandas.util.testing as tm
import pandas.util._test_decorators as td
import numpy as np
from numpy.random import randn
import pandas.plotting as plotting
from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works,
_skip_if_no_scipy_gaussian_kde,
_ok_for_gaussian_kde)
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = 'ts'
self.series = tm.makeStringSeries()
self.series.name = 'series'
self.iseries = tm.makePeriodSeries()
self.iseries.name = 'iseries'
@pytest.mark.slow
def test_plot(self):
_check_plot_works(self.ts.plot, label='foo')
_check_plot_works(self.ts.plot, use_index=False)
axes = _check_plot_works(self.ts.plot, rot=0)
self._check_ticks_props(axes, xrot=0)
ax = _check_plot_works(self.ts.plot, style='.', logy=True)
self._check_ax_scales(ax, yaxis='log')
ax = _check_plot_works(self.ts.plot, style='.', logx=True)
self._check_ax_scales(ax, xaxis='log')
ax = _check_plot_works(self.ts.plot, style='.', loglog=True)
self._check_ax_scales(ax, xaxis='log', yaxis='log')
_check_plot_works(self.ts[:10].plot.bar)
_check_plot_works(self.ts.plot.area, stacked=False)
_check_plot_works(self.iseries.plot)
for kind in ['line', 'bar', 'barh', 'kde', 'hist', 'box']:
if not _ok_for_gaussian_kde(kind):
continue
_check_plot_works(self.series[:5].plot, kind=kind)
_check_plot_works(self.series[:10].plot.barh)
ax = _check_plot_works(Series(randn(10)).plot.bar, color='black')
self._check_colors([ax.patches[0]], facecolors=['black'])
# GH 6951
ax = _check_plot_works(self.ts.plot, subplots=True)
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
@pytest.mark.slow
def test_plot_figsize_and_title(self):
# figsize and title
_, ax = self.plt.subplots()
ax = self.series.plot(title='Test', figsize=(16, 8), ax=ax)
self._check_text_labels(ax.title, 'Test')
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
def test_dont_modify_rcParams(self):
# GH 8242
if self.mpl_ge_1_5_0:
key = 'axes.prop_cycle'
else:
key = 'axes.color_cycle'
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
ax = self.ts.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data(orig=False)[0][0]
assert xmax >= lines[0].get_data(orig=False)[0][-1]
tm.close()
ax = self.ts.plot(secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data(orig=False)[0][0]
assert xmax >= lines[0].get_data(orig=False)[0][-1]
def test_ts_area_lim(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
# GH 7471
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
tz_ts = self.ts.copy()
tz_ts.index = tz_ts.tz_localize('GMT').tz_convert('CET')
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
tm.close()
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
def test_label(self):
s = Series([1, 2])
_, ax = self.plt.subplots()
ax = s.plot(label='LABEL', legend=True, ax=ax)
self._check_legend_labels(ax, labels=['LABEL'])
self.plt.close()
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=['None'])
self.plt.close()
# get name from index
s.name = 'NAME'
_, ax = self.plt.subplots()
ax = s.plot(legend=True, ax=ax)
self._check_legend_labels(ax, labels=['NAME'])
self.plt.close()
# override the default
_, ax = self.plt.subplots()
ax = s.plot(legend=True, label='LABEL', ax=ax)
self._check_legend_labels(ax, labels=['LABEL'])
self.plt.close()
# Add lebel info, but don't draw
_, ax = self.plt.subplots()
ax = s.plot(legend=False, label='LABEL', ax=ax)
assert ax.get_legend() is None # Hasn't been drawn
ax.legend() # draw it
self._check_legend_labels(ax, labels=['LABEL'])
def test_line_area_nan_series(self):
values = [1, 2, np.nan, 3]
s = Series(values)
ts = Series(values, index=tm.makeDateIndex(k=4))
for d in [s, ts]:
ax = _check_plot_works(d.plot)
masked = ax.lines[0].get_ydata()
# remove nan for comparison purpose
exp = np.array([1, 2, 3], dtype=np.float64)
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
tm.assert_numpy_array_equal(
masked.mask, np.array([False, False, True, False]))
expected = np.array([1, 2, 0, 3], dtype=np.float64)
ax = _check_plot_works(d.plot, stacked=True)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
ax = _check_plot_works(d.plot.area, stacked=False)
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
def test_line_use_index_false(self):
s = Series([1, 2, 3], index=['a', 'b', 'c'])
s.index.name = 'The Index'
_, ax = self.plt.subplots()
ax = s.plot(use_index=False, ax=ax)
label = ax.get_xlabel()
assert label == ''
_, ax = self.plt.subplots()
ax2 = s.plot.bar(use_index=False, ax=ax)
label2 = ax2.get_xlabel()
assert label2 == ''
@pytest.mark.slow
def test_bar_log(self):
expected = np.array([1., 10., 100., 1000.])
if not self.mpl_le_1_2_1:
expected = np.hstack((.1, expected, 1e4))
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
tm.close()
# GH 9905
expected = np.array([1.0e-03, 1.0e-02, 1.0e-01, 1.0e+00])
if not self.mpl_le_1_2_1:
expected = np.hstack((1.0e-04, expected, 1.0e+01))
if self.mpl_ge_2_0_0:
expected = np.hstack((1.0e-05, expected))
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='bar', ax=ax)
ymin = 0.0007943282347242822 if self.mpl_ge_2_0_0 else 0.001
ymax = 0.12589254117941673 if self.mpl_ge_2_0_0 else .10000000000000001
res = ax.get_ylim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
tm.close()
_, ax = self.plt.subplots()
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='barh', ax=ax)
res = ax.get_xlim()
tm.assert_almost_equal(res[0], ymin)
tm.assert_almost_equal(res[1], ymax)
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
@pytest.mark.slow
def test_bar_ignore_index(self):
df = Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
_, ax = self.plt.subplots()
ax = df.plot.bar(use_index=False, ax=ax)
self._check_text_labels(ax.get_xticklabels(), ['0', '1', '2', '3'])
def test_bar_user_colors(self):
s = Series([1, 2, 3, 4])
ax = s.plot.bar(color=['red', 'blue', 'blue', 'red'])
result = [p.get_facecolor() for p in ax.patches]
expected = [(1., 0., 0., 1.),
(0., 0., 1., 1.),
(0., 0., 1., 1.),
(1., 0., 0., 1.)]
assert result == expected
def test_rotation(self):
df = DataFrame(randn(5, 5))
# Default rot 0
_, ax = self.plt.subplots()
axes = df.plot(ax=ax)
self._check_ticks_props(axes, xrot=0)
_, ax = self.plt.subplots()
axes = df.plot(rot=30, ax=ax)
self._check_ticks_props(axes, xrot=30)
def test_irregular_datetime(self):
rng = date_range('1/1/2000', '3/1/2000')
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
ser = Series(randn(len(rng)), rng)
_, ax = self.plt.subplots()
ax = ser.plot(ax=ax)
xp = datetime(1999, 1, 1).toordinal()
ax.set_xlim('1/1/1999', '1/1/2001')
assert xp == ax.get_xlim()[0]
def test_unsorted_index_xlim(self):
ser = Series([0., 1., np.nan, 3., 4., 5., 6.],
index=[1., 0., 3., 2., np.nan, 3., 2.])
_, ax = self.plt.subplots()
ax = ser.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0])
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
@pytest.mark.slow
def test_pie_series(self):
# if sum of values is less than 1.0, pie handle them as rate and draw
# semicircle.
series = Series(np.random.randint(1, 5),
index=['a', 'b', 'c', 'd', 'e'], name='YLABEL')
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, series.index)
assert ax.get_ylabel() == 'YLABEL'
# without wedge labels
ax = _check_plot_works(series.plot.pie, labels=None)
self._check_text_labels(ax.texts, [''] * 5)
# with less colors than elements
color_args = ['r', 'g', 'b']
ax = _check_plot_works(series.plot.pie, colors=color_args)
color_expected = ['r', 'g', 'b', 'r', 'g']
self._check_colors(ax.patches, facecolors=color_expected)
# with labels and colors
labels = ['A', 'B', 'C', 'D', 'E']
color_args = ['r', 'g', 'b', 'c', 'm']
ax = _check_plot_works(series.plot.pie, labels=labels,
colors=color_args)
self._check_text_labels(ax.texts, labels)
self._check_colors(ax.patches, facecolors=color_args)
# with autopct and fontsize
ax = _check_plot_works(series.plot.pie, colors=color_args,
autopct='%.2f', fontsize=7)
pcts = ['{0:.2f}'.format(s * 100)
for s in series.values / float(series.sum())]
expected_texts = list(chain.from_iterable(zip(series.index, pcts)))
self._check_text_labels(ax.texts, expected_texts)
for t in ax.texts:
assert t.get_fontsize() == 7
# includes negative value
with pytest.raises(ValueError):
series = Series([1, 2, 0, 4, -1], index=['a', 'b', 'c', 'd', 'e'])
series.plot.pie()
# includes nan
series = Series([1, 2, np.nan, 4], index=['a', 'b', 'c', 'd'],
name='YLABEL')
ax = _check_plot_works(series.plot.pie)
self._check_text_labels(ax.texts, ['a', 'b', '', 'd'])
def test_pie_nan(self):
s = Series([1, np.nan, 1, 1])
_, ax = self.plt.subplots()
ax = s.plot.pie(legend=True, ax=ax)
expected = ['0', '', '2', '3']
result = [x.get_text() for x in ax.texts]
assert result == expected
@pytest.mark.slow
def test_hist_df_kwargs(self):
df = DataFrame(np.random.randn(10, 2))
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 10
@pytest.mark.slow
def test_hist_df_with_nonnumerics(self):
# GH 9853
with tm.RNGContext(1):
df = DataFrame(
np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
df['E'] = ['x', 'y'] * 5
_, ax = self.plt.subplots()
ax = df.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 20
_, ax = self.plt.subplots()
ax = df.plot.hist(ax=ax) # bins=10
assert len(ax.patches) == 40
@pytest.mark.slow
def test_hist_legacy(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist,
by=self.ts.index.month)
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist,
by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
with pytest.raises(ValueError):
self.ts.hist(by=self.ts.index, figure=fig)
@pytest.mark.slow
def test_hist_bins_legacy(self):
df = DataFrame(np.random.randn(10, 2))
ax = df.hist(bins=2)[0][0]
assert len(ax.patches) == 2
@pytest.mark.slow
def test_hist_layout(self):
df = self.hist_df
with pytest.raises(ValueError):
df.height.hist(layout=(1, 1))
with pytest.raises(ValueError):
df.height.hist(layout=[1, 1])
@pytest.mark.slow
def test_hist_layout_with_by(self):
df = self.hist_df
# _check_plot_works adds an ax so catch warning. see GH #13188
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.gender, layout=(2, 1))
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.gender, layout=(3, -1))
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(4, 1))
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(2, -1))
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(3, -1))
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.category, layout=(-1, 4))
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(df.height.hist,
by=df.classroom, layout=(2, 2))
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
self._check_axes_shape(axes, axes_num=4, layout=(4, 2),
figsize=(12, 7))
@pytest.mark.slow
def test_hist_no_overlap(self):
from matplotlib.pyplot import subplot, gcf
x = Series(randn(2))
y = Series(randn(2))
subplot(121)
x.hist()
subplot(122)
y.hist()
fig = gcf()
axes = fig.axes if self.mpl_ge_1_5_0 else fig.get_axes()
assert len(axes) == 2
@pytest.mark.slow
def test_hist_secondary_legend(self):
# GH 9610
df = DataFrame(np.random.randn(30, 4), columns=list('abcd'))
# primary -> secondary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, ax=ax)
df['b'].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax)
df['b'].plot.hist(ax=ax, legend=True, secondary_y=True)
# both legends are draw on left ax
# left axis must be invisible, right axis must be visible
self._check_legend_labels(ax.left_ax,
labels=['a (right)', 'b (right)'])
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> primary
_, ax = self.plt.subplots()
ax = df['a'].plot.hist(legend=True, secondary_y=True, ax=ax)
# right axes is returned
df['b'].plot.hist(ax=ax, legend=True)
# both legends are draw on left ax
# left and right axis must be visible
self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b'])
assert ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@pytest.mark.slow
def test_df_series_secondary_legend(self):
# GH 9779
df = DataFrame(np.random.randn(30, 3), columns=list('abc'))
s = Series(np.random.randn(30), name='x')
# primary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# primary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left and right axis must be visible
self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)'])
assert ax.get_yaxis().get_visible()
assert ax.right_ax.get_yaxis().get_visible()
tm.close()
# seconcary -> secondary (without passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(legend=True, secondary_y=True, ax=ax)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)']
self._check_legend_labels(ax.left_ax, labels=expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)']
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
# secondary -> secondary (with passing ax)
_, ax = self.plt.subplots()
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
s.plot(ax=ax, legend=True, secondary_y=True)
# both legends are dran on left ax
# left axis must be invisible and right axis must be visible
expected = ['a', 'b', 'c', 'x (right)']
self._check_legend_labels(ax.left_ax, expected)
assert not ax.left_ax.get_yaxis().get_visible()
assert ax.get_yaxis().get_visible()
tm.close()
@pytest.mark.slow
def test_plot_fails_with_dupe_color_and_style(self):
x = Series(randn(2))
with pytest.raises(ValueError):
_, ax = self.plt.subplots()
x.plot(style='k--', color='k', ax=ax)
@pytest.mark.slow
@td.skip_if_no_scipy
def test_hist_kde(self):
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
_skip_if_no_scipy_gaussian_kde()
_check_plot_works(self.ts.plot.kde)
_check_plot_works(self.ts.plot.density)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [''] * len(xlabels))
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
@pytest.mark.slow
@td.skip_if_no_scipy
def test_kde_kwargs(self):
_skip_if_no_scipy_gaussian_kde()
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
sample_points = np.linspace(-100, 100, 20)
_check_plot_works(self.ts.plot.kde, bw_method='scott', ind=20)
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=20)
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=np.int(20))
_check_plot_works(self.ts.plot.kde, bw_method=.5, ind=sample_points)
_check_plot_works(self.ts.plot.density, bw_method=.5,
ind=sample_points)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, bw_method=.5, ind=sample_points,
ax=ax)
self._check_ax_scales(ax, yaxis='log')
self._check_text_labels(ax.yaxis.get_label(), 'Density')
@pytest.mark.slow
@td.skip_if_no_scipy
def test_kde_missing_vals(self):
_skip_if_no_scipy_gaussian_kde()
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
s = Series(np.random.uniform(size=50))
s[0] = np.nan
axes = _check_plot_works(s.plot.kde)
# gh-14821: check if the values have any missing values
assert any(~np.isnan(axes.lines[0].get_xdata()))
@pytest.mark.slow
def test_hist_kwargs(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), 'Frequency')
tm.close()
if self.mpl_ge_1_3_1:
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(orientation='horizontal', ax=ax)
self._check_text_labels(ax.xaxis.get_label(), 'Frequency')
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(align='left', stacked=True, ax=ax)
tm.close()
@pytest.mark.slow
@td.skip_if_no_scipy
def test_hist_kde_color(self):
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, bins=10, color='b', ax=ax)
self._check_ax_scales(ax, yaxis='log')
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=['b'] * 10)
_skip_if_no_scipy_gaussian_kde()
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, color='r', ax=ax)
self._check_ax_scales(ax, yaxis='log')
lines = ax.get_lines()
assert len(lines) == 1
self._check_colors(lines, ['r'])
@pytest.mark.slow
def test_boxplot_series(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.box(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis='log')
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [self.ts.name])
ylabels = ax.get_yticklabels()
self._check_text_labels(ylabels, [''] * len(ylabels))
@pytest.mark.slow
def test_kind_both_ways(self):
s = Series(range(3))
kinds = (plotting._core._common_kinds +
plotting._core._series_kinds)
_, ax = self.plt.subplots()
for kind in kinds:
if not _ok_for_gaussian_kde(kind):
continue
s.plot(kind=kind, ax=ax)
getattr(s.plot, kind)()
@pytest.mark.slow
def test_invalid_plot_data(self):
s = Series(list('abcd'))
_, ax = self.plt.subplots()
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
s.plot(kind=kind, ax=ax)
@pytest.mark.slow
def test_valid_object_plot(self):
s = Series(lrange(10), dtype=object)
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
_check_plot_works(s.plot, kind=kind)
def test_partially_invalid_plot_data(self):
s = Series(['a', 'b', 1.0, 2])
_, ax = self.plt.subplots()
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
s.plot(kind=kind, ax=ax)
def test_invalid_kind(self):
s = Series([1, 2])
with pytest.raises(ValueError):
s.plot(kind='aasdf')
@pytest.mark.slow
def test_dup_datetime_index_plot(self):
dr1 = date_range('1/1/2009', periods=4)
dr2 = date_range('1/2/2009', periods=4)
index = dr1.append(dr2)
values = randn(index.size)
s = Series(values, index=index)
_check_plot_works(s.plot)
@pytest.mark.slow
def test_errorbar_plot(self):
s = Series(np.arange(10), name='x')
s_err = np.random.randn(10)
d_err = DataFrame(randn(10, 2), index=s.index, columns=['x', 'y'])
# test line and bar plots
kinds = ['line', 'bar']
for kind in kinds:
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
self._check_has_errorbars(ax, xerr=1, yerr=1)
ax = _check_plot_works(s.plot, xerr=s_err)
self._check_has_errorbars(ax, xerr=1, yerr=0)
# test time series plotting
ix = date_range('1/1/2000', '1/1/2001', freq='M')
ts = Series(np.arange(12), index=ix, name='x')
ts_err = Series(np.random.randn(12), index=ix)
td_err = DataFrame(randn(12, 2), index=ix, columns=['x', 'y'])
ax = _check_plot_works(ts.plot, yerr=ts_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
ax = _check_plot_works(ts.plot, yerr=td_err)
self._check_has_errorbars(ax, xerr=0, yerr=1)
# check incorrect lengths and types
with pytest.raises(ValueError):
s.plot(yerr=np.arange(11))
s_err = ['zzz'] * 10
# in mpl 1.5+ this is a TypeError
with pytest.raises((ValueError, TypeError)):
s.plot(yerr=s_err)
@td.xfail_if_mpl_2_2
def test_table(self):
_check_plot_works(self.series.plot, table=True)
_check_plot_works(self.series.plot, table=self.series)
@pytest.mark.slow
def test_series_grid_settings(self):
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
self._check_grid_settings(Series([1, 2, 3]),
plotting._core._series_kinds +
plotting._core._common_kinds)
@pytest.mark.slow
def test_standard_colors(self):
from pandas.plotting._style import _get_standard_colors
for c in ['r', 'red', 'green', '#FF0000']:
result = _get_standard_colors(1, color=c)
assert result == [c]
result = _get_standard_colors(1, color=[c])
assert result == [c]
result = _get_standard_colors(3, color=c)
assert result == [c] * 3
result = _get_standard_colors(3, color=[c])
assert result == [c] * 3
@pytest.mark.slow
def test_standard_colors_all(self):
import matplotlib.colors as colors
from pandas.plotting._style import _get_standard_colors
# multiple colors like mediumaquamarine
for c in colors.cnames:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
# single letter colors like k
for c in colors.ColorConverter.colors:
result = _get_standard_colors(num_colors=1, color=c)
assert result == [c]
result = _get_standard_colors(num_colors=1, color=[c])
assert result == [c]
result = _get_standard_colors(num_colors=3, color=c)
assert result == [c] * 3
result = _get_standard_colors(num_colors=3, color=[c])
assert result == [c] * 3
def test_series_plot_color_kwargs(self):
# GH1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1).plot(color='green', ax=ax)
self._check_colors(ax.get_lines(), linecolors=['green'])
def test_time_series_plot_color_kwargs(self):
# #1890
_, ax = self.plt.subplots()
ax = Series(np.arange(12) + 1, index=date_range(
'1/1/2000', periods=12)).plot(color='green', ax=ax)
self._check_colors(ax.get_lines(), linecolors=['green'])
def test_time_series_plot_color_with_empty_kwargs(self):
import matplotlib as mpl
if self.mpl_ge_1_5_0:
def_colors = self._maybe_unpack_cycler(mpl.rcParams)
else:
def_colors = mpl.rcParams['axes.color_cycle']
index = date_range('1/1/2000', periods=12)
s = Series(np.arange(1, 13), index=index)
ncolors = 3
_, ax = self.plt.subplots()
for i in range(ncolors):
ax = s.plot(ax=ax)
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
def test_xticklabels(self):
# GH11529
s = Series(np.arange(10), index=['P%02d' % i for i in range(10)])
_, ax = self.plt.subplots()
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
exp = ['P%02d' % i for i in [0, 3, 5, 9]]
self._check_text_labels(ax.get_xticklabels(), exp)
def test_custom_business_day_freq(self):
# GH7222
from pandas.tseries.offsets import CustomBusinessDay
s = Series(range(100, 121), index=pd.bdate_range(
start='2014-05-01', end='2014-06-01',
freq=CustomBusinessDay(holidays=['2014-05-26'])))
_check_plot_works(s.plot)