laywerrobot/lib/python3.6/site-packages/pandas/tests/io/test_html.py

948 lines
33 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
from __future__ import print_function
import os
import re
import threading
from functools import partial
import pytest
import numpy as np
from numpy.random import rand
from pandas import (DataFrame, MultiIndex, read_csv, Timestamp, Index,
date_range, Series)
from pandas.compat import (map, zip, StringIO, BytesIO,
is_platform_windows, PY3, reload)
from pandas.io.common import URLError, file_path_to_url
import pandas.io.html
from pandas.io.html import read_html
from pandas._libs.parsers import ParserError
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas.util.testing import makeCustomDataframe as mkdf, network
HERE = os.path.dirname(__file__)
@pytest.fixture(params=[
'chinese_utf-16.html',
'chinese_utf-32.html',
'chinese_utf-8.html',
'letz_latin1.html',
])
def html_encoding_file(request, datapath):
"""Parametrized fixture for HTML encoding test filenames."""
return datapath('io', 'data', 'html_encoding', request.param)
def assert_framelist_equal(list1, list2, *args, **kwargs):
assert len(list1) == len(list2), ('lists are not of equal size '
'len(list1) == {0}, '
'len(list2) == {1}'.format(len(list1),
len(list2)))
msg = 'not all list elements are DataFrames'
both_frames = all(map(lambda x, y: isinstance(x, DataFrame) and
isinstance(y, DataFrame), list1, list2))
assert both_frames, msg
for frame_i, frame_j in zip(list1, list2):
tm.assert_frame_equal(frame_i, frame_j, *args, **kwargs)
assert not frame_i.empty, 'frames are both empty'
@td.skip_if_no('bs4')
def test_bs4_version_fails(monkeypatch, datapath):
import bs4
monkeypatch.setattr(bs4, '__version__', '4.2')
with tm.assert_raises_regex(ValueError, "minimum version"):
read_html(datapath("io", "data", "spam.html"), flavor='bs4')
def test_invalid_flavor():
url = 'google.com'
with pytest.raises(ValueError):
read_html(url, 'google', flavor='not a* valid**++ flaver')
@td.skip_if_no('bs4')
@td.skip_if_no('lxml')
def test_same_ordering(datapath):
filename = datapath('io', 'data', 'valid_markup.html')
dfs_lxml = read_html(filename, index_col=0, flavor=['lxml'])
dfs_bs4 = read_html(filename, index_col=0, flavor=['bs4'])
assert_framelist_equal(dfs_lxml, dfs_bs4)
@pytest.mark.parametrize("flavor", [
pytest.param('bs4', marks=pytest.mark.skipif(
not td.safe_import('lxml'), reason='No bs4')),
pytest.param('lxml', marks=pytest.mark.skipif(
not td.safe_import('lxml'), reason='No lxml'))], scope="class")
class TestReadHtml(object):
@pytest.fixture(autouse=True)
def set_files(self, datapath):
self.spam_data = datapath('io', 'data', 'spam.html')
self.spam_data_kwargs = {}
if PY3:
self.spam_data_kwargs['encoding'] = 'UTF-8'
self.banklist_data = datapath("io", "data", "banklist.html")
@pytest.fixture(autouse=True, scope="function")
def set_defaults(self, flavor, request):
self.read_html = partial(read_html, flavor=flavor)
yield
def test_to_html_compat(self):
df = mkdf(4, 3, data_gen_f=lambda *args: rand(), c_idx_names=False,
r_idx_names=False).applymap('{0:.3f}'.format).astype(float)
out = df.to_html()
res = self.read_html(out, attrs={'class': 'dataframe'}, index_col=0)[0]
tm.assert_frame_equal(res, df)
@network
def test_banklist_url(self):
url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'
df1 = self.read_html(url, 'First Federal Bank of Florida',
attrs={"id": 'table'})
df2 = self.read_html(url, 'Metcalf Bank', attrs={'id': 'table'})
assert_framelist_equal(df1, df2)
@network
def test_spam_url(self):
url = ('http://ndb.nal.usda.gov/ndb/foods/show/300772?fg=&man=&'
'lfacet=&format=&count=&max=25&offset=&sort=&qlookup=spam')
df1 = self.read_html(url, '.*Water.*')
df2 = self.read_html(url, 'Unit')
assert_framelist_equal(df1, df2)
@pytest.mark.slow
def test_banklist(self):
df1 = self.read_html(self.banklist_data, '.*Florida.*',
attrs={'id': 'table'})
df2 = self.read_html(self.banklist_data, 'Metcalf Bank',
attrs={'id': 'table'})
assert_framelist_equal(df1, df2)
def test_spam_no_types(self):
# infer_types removed in #10892
df1 = self.read_html(self.spam_data, '.*Water.*')
df2 = self.read_html(self.spam_data, 'Unit')
assert_framelist_equal(df1, df2)
assert df1[0].iloc[0, 0] == 'Proximates'
assert df1[0].columns[0] == 'Nutrient'
def test_spam_with_types(self):
df1 = self.read_html(self.spam_data, '.*Water.*')
df2 = self.read_html(self.spam_data, 'Unit')
assert_framelist_equal(df1, df2)
assert df1[0].iloc[0, 0] == 'Proximates'
assert df1[0].columns[0] == 'Nutrient'
def test_spam_no_match(self):
dfs = self.read_html(self.spam_data)
for df in dfs:
assert isinstance(df, DataFrame)
def test_banklist_no_match(self):
dfs = self.read_html(self.banklist_data, attrs={'id': 'table'})
for df in dfs:
assert isinstance(df, DataFrame)
def test_spam_header(self):
df = self.read_html(self.spam_data, '.*Water.*', header=1)[0]
assert df.columns[0] == 'Proximates'
assert not df.empty
def test_skiprows_int(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=1)
df2 = self.read_html(self.spam_data, 'Unit', skiprows=1)
assert_framelist_equal(df1, df2)
def test_skiprows_xrange(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=range(2))[0]
df2 = self.read_html(self.spam_data, 'Unit', skiprows=range(2))[0]
tm.assert_frame_equal(df1, df2)
def test_skiprows_list(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=[1, 2])
df2 = self.read_html(self.spam_data, 'Unit', skiprows=[2, 1])
assert_framelist_equal(df1, df2)
def test_skiprows_set(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=set([1, 2]))
df2 = self.read_html(self.spam_data, 'Unit', skiprows=set([2, 1]))
assert_framelist_equal(df1, df2)
def test_skiprows_slice(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=1)
df2 = self.read_html(self.spam_data, 'Unit', skiprows=1)
assert_framelist_equal(df1, df2)
def test_skiprows_slice_short(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=slice(2))
df2 = self.read_html(self.spam_data, 'Unit', skiprows=slice(2))
assert_framelist_equal(df1, df2)
def test_skiprows_slice_long(self):
df1 = self.read_html(self.spam_data, '.*Water.*', skiprows=slice(2, 5))
df2 = self.read_html(self.spam_data, 'Unit', skiprows=slice(4, 1, -1))
assert_framelist_equal(df1, df2)
def test_skiprows_ndarray(self):
df1 = self.read_html(self.spam_data, '.*Water.*',
skiprows=np.arange(2))
df2 = self.read_html(self.spam_data, 'Unit', skiprows=np.arange(2))
assert_framelist_equal(df1, df2)
def test_skiprows_invalid(self):
with tm.assert_raises_regex(TypeError, 'is not a valid type '
'for skipping rows'):
self.read_html(self.spam_data, '.*Water.*', skiprows='asdf')
def test_index(self):
df1 = self.read_html(self.spam_data, '.*Water.*', index_col=0)
df2 = self.read_html(self.spam_data, 'Unit', index_col=0)
assert_framelist_equal(df1, df2)
def test_header_and_index_no_types(self):
df1 = self.read_html(self.spam_data, '.*Water.*', header=1,
index_col=0)
df2 = self.read_html(self.spam_data, 'Unit', header=1, index_col=0)
assert_framelist_equal(df1, df2)
def test_header_and_index_with_types(self):
df1 = self.read_html(self.spam_data, '.*Water.*', header=1,
index_col=0)
df2 = self.read_html(self.spam_data, 'Unit', header=1, index_col=0)
assert_framelist_equal(df1, df2)
def test_infer_types(self):
# 10892 infer_types removed
df1 = self.read_html(self.spam_data, '.*Water.*', index_col=0)
df2 = self.read_html(self.spam_data, 'Unit', index_col=0)
assert_framelist_equal(df1, df2)
def test_string_io(self):
with open(self.spam_data, **self.spam_data_kwargs) as f:
data1 = StringIO(f.read())
with open(self.spam_data, **self.spam_data_kwargs) as f:
data2 = StringIO(f.read())
df1 = self.read_html(data1, '.*Water.*')
df2 = self.read_html(data2, 'Unit')
assert_framelist_equal(df1, df2)
def test_string(self):
with open(self.spam_data, **self.spam_data_kwargs) as f:
data = f.read()
df1 = self.read_html(data, '.*Water.*')
df2 = self.read_html(data, 'Unit')
assert_framelist_equal(df1, df2)
def test_file_like(self):
with open(self.spam_data, **self.spam_data_kwargs) as f:
df1 = self.read_html(f, '.*Water.*')
with open(self.spam_data, **self.spam_data_kwargs) as f:
df2 = self.read_html(f, 'Unit')
assert_framelist_equal(df1, df2)
@network
def test_bad_url_protocol(self):
with pytest.raises(URLError):
self.read_html('git://github.com', match='.*Water.*')
@network
def test_invalid_url(self):
try:
with pytest.raises(URLError):
self.read_html('http://www.a23950sdfa908sd.com',
match='.*Water.*')
except ValueError as e:
assert str(e) == 'No tables found'
@pytest.mark.slow
def test_file_url(self):
url = self.banklist_data
dfs = self.read_html(file_path_to_url(os.path.abspath(url)),
'First',
attrs={'id': 'table'})
assert isinstance(dfs, list)
for df in dfs:
assert isinstance(df, DataFrame)
@pytest.mark.slow
def test_invalid_table_attrs(self):
url = self.banklist_data
with tm.assert_raises_regex(ValueError, 'No tables found'):
self.read_html(url, 'First Federal Bank of Florida',
attrs={'id': 'tasdfable'})
def _bank_data(self, *args, **kwargs):
return self.read_html(self.banklist_data, 'Metcalf',
attrs={'id': 'table'}, *args, **kwargs)
@pytest.mark.slow
def test_multiindex_header(self):
df = self._bank_data(header=[0, 1])[0]
assert isinstance(df.columns, MultiIndex)
@pytest.mark.slow
def test_multiindex_index(self):
df = self._bank_data(index_col=[0, 1])[0]
assert isinstance(df.index, MultiIndex)
@pytest.mark.slow
def test_multiindex_header_index(self):
df = self._bank_data(header=[0, 1], index_col=[0, 1])[0]
assert isinstance(df.columns, MultiIndex)
assert isinstance(df.index, MultiIndex)
@pytest.mark.slow
def test_multiindex_header_skiprows_tuples(self):
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
df = self._bank_data(header=[0, 1], skiprows=1,
tupleize_cols=True)[0]
assert isinstance(df.columns, Index)
@pytest.mark.slow
def test_multiindex_header_skiprows(self):
df = self._bank_data(header=[0, 1], skiprows=1)[0]
assert isinstance(df.columns, MultiIndex)
@pytest.mark.slow
def test_multiindex_header_index_skiprows(self):
df = self._bank_data(header=[0, 1], index_col=[0, 1], skiprows=1)[0]
assert isinstance(df.index, MultiIndex)
assert isinstance(df.columns, MultiIndex)
@pytest.mark.slow
def test_regex_idempotency(self):
url = self.banklist_data
dfs = self.read_html(file_path_to_url(os.path.abspath(url)),
match=re.compile(re.compile('Florida')),
attrs={'id': 'table'})
assert isinstance(dfs, list)
for df in dfs:
assert isinstance(df, DataFrame)
def test_negative_skiprows(self):
with tm.assert_raises_regex(ValueError,
r'\(you passed a negative value\)'):
self.read_html(self.spam_data, 'Water', skiprows=-1)
@network
def test_multiple_matches(self):
url = 'https://docs.python.org/2/'
dfs = self.read_html(url, match='Python')
assert len(dfs) > 1
@network
def test_python_docs_table(self):
url = 'https://docs.python.org/2/'
dfs = self.read_html(url, match='Python')
zz = [df.iloc[0, 0][0:4] for df in dfs]
assert sorted(zz) == sorted(['Repo', 'What'])
@pytest.mark.slow
def test_thousands_macau_stats(self, datapath):
all_non_nan_table_index = -2
macau_data = datapath("io", "data", "macau.html")
dfs = self.read_html(macau_data, index_col=0,
attrs={'class': 'style1'})
df = dfs[all_non_nan_table_index]
assert not any(s.isna().any() for _, s in df.iteritems())
@pytest.mark.slow
def test_thousands_macau_index_col(self, datapath):
all_non_nan_table_index = -2
macau_data = datapath('io', 'data', 'macau.html')
dfs = self.read_html(macau_data, index_col=0, header=0)
df = dfs[all_non_nan_table_index]
assert not any(s.isna().any() for _, s in df.iteritems())
def test_empty_tables(self):
"""
Make sure that read_html ignores empty tables.
"""
data1 = '''<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>'''
data2 = data1 + '''<table>
<tbody>
</tbody>
</table>'''
res1 = self.read_html(StringIO(data1))
res2 = self.read_html(StringIO(data2))
assert_framelist_equal(res1, res2)
def test_multiple_tbody(self):
# GH-20690
# Read all tbody tags within a single table.
data = '''<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>'''
expected = DataFrame({'A': [1, 3], 'B': [2, 4]})
result = self.read_html(StringIO(data))[0]
tm.assert_frame_equal(result, expected)
def test_header_and_one_column(self):
"""
Don't fail with bs4 when there is a header and only one column
as described in issue #9178
"""
data = StringIO('''<html>
<body>
<table>
<thead>
<tr>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
</tr>
</tbody>
</table>
</body>
</html>''')
expected = DataFrame(data={'Header': 'first'}, index=[0])
result = self.read_html(data)[0]
tm.assert_frame_equal(result, expected)
def test_tfoot_read(self):
"""
Make sure that read_html reads tfoot, containing td or th.
Ignores empty tfoot
"""
data_template = '''<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>bodyA</td>
<td>bodyB</td>
</tr>
</tbody>
<tfoot>
{footer}
</tfoot>
</table>'''
data1 = data_template.format(footer="")
data2 = data_template.format(
footer="<tr><td>footA</td><th>footB</th></tr>")
d1 = {'A': ['bodyA'], 'B': ['bodyB']}
d2 = {'A': ['bodyA', 'footA'], 'B': ['bodyB', 'footB']}
tm.assert_frame_equal(self.read_html(data1)[0], DataFrame(d1))
tm.assert_frame_equal(self.read_html(data2)[0], DataFrame(d2))
def test_countries_municipalities(self):
# GH5048
data1 = StringIO('''<table>
<thead>
<tr>
<th>Country</th>
<th>Municipality</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukraine</td>
<th>Odessa</th>
<td>1944</td>
</tr>
</tbody>
</table>''')
data2 = StringIO('''
<table>
<tbody>
<tr>
<th>Country</th>
<th>Municipality</th>
<th>Year</th>
</tr>
<tr>
<td>Ukraine</td>
<th>Odessa</th>
<td>1944</td>
</tr>
</tbody>
</table>''')
res1 = self.read_html(data1)
res2 = self.read_html(data2, header=0)
assert_framelist_equal(res1, res2)
def test_nyse_wsj_commas_table(self, datapath):
data = datapath('io', 'data', 'nyse_wsj.html')
df = self.read_html(data, index_col=0, header=0,
attrs={'class': 'mdcTable'})[0]
columns = Index(['Issue(Roll over for charts and headlines)',
'Volume', 'Price', 'Chg', '% Chg'])
nrows = 100
assert df.shape[0] == nrows
tm.assert_index_equal(df.columns, columns)
@pytest.mark.slow
def test_banklist_header(self, datapath):
from pandas.io.html import _remove_whitespace
def try_remove_ws(x):
try:
return _remove_whitespace(x)
except AttributeError:
return x
df = self.read_html(self.banklist_data, 'Metcalf',
attrs={'id': 'table'})[0]
ground_truth = read_csv(datapath('io', 'data', 'banklist.csv'),
converters={'Updated Date': Timestamp,
'Closing Date': Timestamp})
assert df.shape == ground_truth.shape
old = ['First Vietnamese American BankIn Vietnamese',
'Westernbank Puerto RicoEn Espanol',
'R-G Premier Bank of Puerto RicoEn Espanol',
'EurobankEn Espanol', 'Sanderson State BankEn Espanol',
'Washington Mutual Bank(Including its subsidiary Washington '
'Mutual Bank FSB)',
'Silver State BankEn Espanol',
'AmTrade International BankEn Espanol',
'Hamilton Bank, NAEn Espanol',
'The Citizens Savings BankPioneer Community Bank, Inc.']
new = ['First Vietnamese American Bank', 'Westernbank Puerto Rico',
'R-G Premier Bank of Puerto Rico', 'Eurobank',
'Sanderson State Bank', 'Washington Mutual Bank',
'Silver State Bank', 'AmTrade International Bank',
'Hamilton Bank, NA', 'The Citizens Savings Bank']
dfnew = df.applymap(try_remove_ws).replace(old, new)
gtnew = ground_truth.applymap(try_remove_ws)
converted = dfnew._convert(datetime=True, numeric=True)
date_cols = ['Closing Date', 'Updated Date']
converted[date_cols] = converted[date_cols]._convert(datetime=True,
coerce=True)
tm.assert_frame_equal(converted, gtnew)
@pytest.mark.slow
def test_gold_canyon(self):
gc = 'Gold Canyon'
with open(self.banklist_data, 'r') as f:
raw_text = f.read()
assert gc in raw_text
df = self.read_html(self.banklist_data, 'Gold Canyon',
attrs={'id': 'table'})[0]
assert gc in df.to_string()
def test_different_number_of_rows(self):
expected = """<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>C_l0_g0</th>
<th>C_l0_g1</th>
<th>C_l0_g2</th>
<th>C_l0_g3</th>
<th>C_l0_g4</th>
</tr>
</thead>
<tbody>
<tr>
<th>R_l0_g0</th>
<td> 0.763</td>
<td> 0.233</td>
<td> nan</td>
<td> nan</td>
<td> nan</td>
</tr>
<tr>
<th>R_l0_g1</th>
<td> 0.244</td>
<td> 0.285</td>
<td> 0.392</td>
<td> 0.137</td>
<td> 0.222</td>
</tr>
</tbody>
</table>"""
out = """<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>C_l0_g0</th>
<th>C_l0_g1</th>
<th>C_l0_g2</th>
<th>C_l0_g3</th>
<th>C_l0_g4</th>
</tr>
</thead>
<tbody>
<tr>
<th>R_l0_g0</th>
<td> 0.763</td>
<td> 0.233</td>
</tr>
<tr>
<th>R_l0_g1</th>
<td> 0.244</td>
<td> 0.285</td>
<td> 0.392</td>
<td> 0.137</td>
<td> 0.222</td>
</tr>
</tbody>
</table>"""
expected = self.read_html(expected, index_col=0)[0]
res = self.read_html(out, index_col=0)[0]
tm.assert_frame_equal(expected, res)
def test_parse_dates_list(self):
df = DataFrame({'date': date_range('1/1/2001', periods=10)})
expected = df.to_html()
res = self.read_html(expected, parse_dates=[1], index_col=0)
tm.assert_frame_equal(df, res[0])
res = self.read_html(expected, parse_dates=['date'], index_col=0)
tm.assert_frame_equal(df, res[0])
def test_parse_dates_combine(self):
raw_dates = Series(date_range('1/1/2001', periods=10))
df = DataFrame({'date': raw_dates.map(lambda x: str(x.date())),
'time': raw_dates.map(lambda x: str(x.time()))})
res = self.read_html(df.to_html(), parse_dates={'datetime': [1, 2]},
index_col=1)
newdf = DataFrame({'datetime': raw_dates})
tm.assert_frame_equal(newdf, res[0])
def test_computer_sales_page(self, datapath):
data = datapath('io', 'data', 'computer_sales_page.html')
with tm.assert_raises_regex(ParserError,
r"Passed header=\[0,1\] are "
r"too many rows for this "
r"multi_index of columns"):
self.read_html(data, header=[0, 1])
data = datapath('io', 'data', 'computer_sales_page.html')
assert self.read_html(data, header=[1, 2])
def test_wikipedia_states_table(self, datapath):
data = datapath('io', 'data', 'wikipedia_states.html')
assert os.path.isfile(data), '%r is not a file' % data
assert os.path.getsize(data), '%r is an empty file' % data
result = self.read_html(data, 'Arizona', header=1)[0]
assert result['sq mi'].dtype == np.dtype('float64')
def test_decimal_rows(self):
# GH 12907
data = StringIO('''<html>
<body>
<table>
<thead>
<tr>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100#101</td>
</tr>
</tbody>
</table>
</body>
</html>''')
expected = DataFrame(data={'Header': 1100.101}, index=[0])
result = self.read_html(data, decimal='#')[0]
assert result['Header'].dtype == np.dtype('float64')
tm.assert_frame_equal(result, expected)
def test_bool_header_arg(self):
# GH 6114
for arg in [True, False]:
with pytest.raises(TypeError):
read_html(self.spam_data, header=arg)
def test_converters(self):
# GH 13461
html_data = """<table>
<thead>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td> 0.763</td>
</tr>
<tr>
<td> 0.244</td>
</tr>
</tbody>
</table>"""
expected_df = DataFrame({'a': ['0.763', '0.244']})
html_df = read_html(html_data, converters={'a': str})[0]
tm.assert_frame_equal(expected_df, html_df)
def test_na_values(self):
# GH 13461
html_data = """<table>
<thead>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td> 0.763</td>
</tr>
<tr>
<td> 0.244</td>
</tr>
</tbody>
</table>"""
expected_df = DataFrame({'a': [0.763, np.nan]})
html_df = read_html(html_data, na_values=[0.244])[0]
tm.assert_frame_equal(expected_df, html_df)
def test_keep_default_na(self):
html_data = """<table>
<thead>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td> N/A</td>
</tr>
<tr>
<td> NA</td>
</tr>
</tbody>
</table>"""
expected_df = DataFrame({'a': ['N/A', 'NA']})
html_df = read_html(html_data, keep_default_na=False)[0]
tm.assert_frame_equal(expected_df, html_df)
expected_df = DataFrame({'a': [np.nan, np.nan]})
html_df = read_html(html_data, keep_default_na=True)[0]
tm.assert_frame_equal(expected_df, html_df)
def test_multiple_header_rows(self):
# Issue #13434
expected_df = DataFrame(data=[("Hillary", 68, "D"),
("Bernie", 74, "D"),
("Donald", 69, "R")])
expected_df.columns = [["Unnamed: 0_level_0", "Age", "Party"],
["Name", "Unnamed: 1_level_1",
"Unnamed: 2_level_1"]]
html = expected_df.to_html(index=False)
html_df = read_html(html, )[0]
tm.assert_frame_equal(expected_df, html_df)
def test_works_on_valid_markup(self, datapath):
filename = datapath('io', 'data', 'valid_markup.html')
dfs = self.read_html(filename, index_col=0)
assert isinstance(dfs, list)
assert isinstance(dfs[0], DataFrame)
@pytest.mark.slow
def test_fallback_success(self, datapath):
banklist_data = datapath('io', 'data', 'banklist.html')
self.read_html(banklist_data, '.*Water.*', flavor=['lxml', 'html5lib'])
def test_to_html_timestamp(self):
rng = date_range('2000-01-01', periods=10)
df = DataFrame(np.random.randn(10, 4), index=rng)
result = df.to_html()
assert '2000-01-01' in result
@pytest.mark.parametrize("displayed_only,exp0,exp1", [
(True, DataFrame(["foo"]), None),
(False, DataFrame(["foo bar baz qux"]), DataFrame(["foo"]))])
def test_displayed_only(self, displayed_only, exp0, exp1):
# GH 20027
data = StringIO("""<html>
<body>
<table>
<tr>
<td>
foo
<span style="display:none;text-align:center">bar</span>
<span style="display:none">baz</span>
<span style="display: none">qux</span>
</td>
</tr>
</table>
<table style="display: none">
<tr>
<td>foo</td>
</tr>
</table>
</body>
</html>""")
dfs = self.read_html(data, displayed_only=displayed_only)
tm.assert_frame_equal(dfs[0], exp0)
if exp1 is not None:
tm.assert_frame_equal(dfs[1], exp1)
else:
assert len(dfs) == 1 # Should not parse hidden table
def test_encode(self, html_encoding_file):
_, encoding = os.path.splitext(
os.path.basename(html_encoding_file)
)[0].split('_')
try:
with open(html_encoding_file, 'rb') as fobj:
from_string = self.read_html(fobj.read(), encoding=encoding,
index_col=0).pop()
with open(html_encoding_file, 'rb') as fobj:
from_file_like = self.read_html(BytesIO(fobj.read()),
encoding=encoding,
index_col=0).pop()
from_filename = self.read_html(html_encoding_file,
encoding=encoding,
index_col=0).pop()
tm.assert_frame_equal(from_string, from_file_like)
tm.assert_frame_equal(from_string, from_filename)
except Exception:
# seems utf-16/32 fail on windows
if is_platform_windows():
if '16' in encoding or '32' in encoding:
pytest.skip()
raise
def test_parse_failure_unseekable(self):
# Issue #17975
if self.read_html.keywords.get('flavor') == 'lxml':
pytest.skip("Not applicable for lxml")
class UnseekableStringIO(StringIO):
def seekable(self):
return False
bad = UnseekableStringIO('''
<table><tr><td>spam<foobr />eggs</td></tr></table>''')
assert self.read_html(bad)
with pytest.raises(ValueError,
match='passed a non-rewindable file object'):
self.read_html(bad)
def test_parse_failure_rewinds(self):
# Issue #17975
class MockFile(object):
def __init__(self, data):
self.data = data
self.at_end = False
def read(self, size=None):
data = '' if self.at_end else self.data
self.at_end = True
return data
def seek(self, offset):
self.at_end = False
def seekable(self):
return True
good = MockFile('<table><tr><td>spam<br />eggs</td></tr></table>')
bad = MockFile('<table><tr><td>spam<foobr />eggs</td></tr></table>')
assert self.read_html(good)
assert self.read_html(bad)
@pytest.mark.slow
def test_importcheck_thread_safety(self, datapath):
# see gh-16928
class ErrorThread(threading.Thread):
def run(self):
try:
super(ErrorThread, self).run()
except Exception as e:
self.err = e
else:
self.err = None
# force import check by reinitalising global vars in html.py
reload(pandas.io.html)
filename = datapath('io', 'data', 'valid_markup.html')
helper_thread1 = ErrorThread(target=self.read_html, args=(filename,))
helper_thread2 = ErrorThread(target=self.read_html, args=(filename,))
helper_thread1.start()
helper_thread2.start()
while helper_thread1.is_alive() or helper_thread2.is_alive():
pass
assert None is helper_thread1.err is helper_thread2.err