laywerrobot/lib/python3.6/site-packages/pandas/tests/io/parser/parse_dates.py

677 lines
27 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
"""
Tests date parsing functionality for all of the
parsers defined in parsers.py
"""
from distutils.version import LooseVersion
from datetime import datetime, date
import pytest
import numpy as np
from pandas._libs.tslibs import parsing
from pandas._libs.tslib import Timestamp
import pandas as pd
import pandas.io.parsers as parsers
import pandas.core.tools.datetimes as tools
import pandas.util.testing as tm
import pandas.io.date_converters as conv
from pandas import DataFrame, Series, Index, DatetimeIndex, MultiIndex
from pandas import compat
from pandas.compat import parse_date, StringIO, lrange
from pandas.compat.numpy import np_array_datetime64_compat
from pandas.core.indexes.datetimes import date_range
class ParseDatesTests(object):
def test_separator_date_conflict(self):
# Regression test for gh-4678: make sure thousands separator and
# date parsing do not conflict.
data = '06-02-2013;13:00;1-000.215'
expected = DataFrame(
[[datetime(2013, 6, 2, 13, 0, 0), 1000.215]],
columns=['Date', 2]
)
df = self.read_csv(StringIO(data), sep=';', thousands='-',
parse_dates={'Date': [0, 1]}, header=None)
tm.assert_frame_equal(df, expected)
def test_multiple_date_col(self):
# Can use multiple date parsers
data = """\
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
def func(*date_cols):
res = parsing.try_parse_dates(parsers._concat_date_cols(date_cols))
return res
df = self.read_csv(StringIO(data), header=None,
date_parser=func,
prefix='X',
parse_dates={'nominal': [1, 2],
'actual': [1, 3]})
assert 'nominal' in df
assert 'actual' in df
assert 'X1' not in df
assert 'X2' not in df
assert 'X3' not in df
d = datetime(1999, 1, 27, 19, 0)
assert df.loc[0, 'nominal'] == d
df = self.read_csv(StringIO(data), header=None,
date_parser=func,
parse_dates={'nominal': [1, 2],
'actual': [1, 3]},
keep_date_col=True)
assert 'nominal' in df
assert 'actual' in df
assert 1 in df
assert 2 in df
assert 3 in df
data = """\
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
df = self.read_csv(StringIO(data), header=None,
prefix='X', parse_dates=[[1, 2], [1, 3]])
assert 'X1_X2' in df
assert 'X1_X3' in df
assert 'X1' not in df
assert 'X2' not in df
assert 'X3' not in df
d = datetime(1999, 1, 27, 19, 0)
assert df.loc[0, 'X1_X2'] == d
df = self.read_csv(StringIO(data), header=None,
parse_dates=[[1, 2], [1, 3]], keep_date_col=True)
assert '1_2' in df
assert '1_3' in df
assert 1 in df
assert 2 in df
assert 3 in df
data = '''\
KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
'''
df = self.read_csv(StringIO(data), sep=',', header=None,
parse_dates=[1], index_col=1)
d = datetime(1999, 1, 27, 19, 0)
assert df.index[0] == d
def test_multiple_date_cols_int_cast(self):
data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n"
"KORD,19990127, 20:00:00, 19:56:00, 0.0100\n"
"KORD,19990127, 21:00:00, 20:56:00, -0.5900\n"
"KORD,19990127, 21:00:00, 21:18:00, -0.9900\n"
"KORD,19990127, 22:00:00, 21:56:00, -0.5900\n"
"KORD,19990127, 23:00:00, 22:56:00, -0.5900")
date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
import pandas.io.date_converters as conv
# it works!
df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec,
date_parser=conv.parse_date_time)
assert 'nominal' in df
def test_multiple_date_col_timestamp_parse(self):
data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25
05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25"""
result = self.read_csv(StringIO(data), sep=',', header=None,
parse_dates=[[0, 1]], date_parser=Timestamp)
ex_val = Timestamp('05/31/2012 15:30:00.029')
assert result['0_1'][0] == ex_val
def test_multiple_date_cols_with_header(self):
data = """\
ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000"""
df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]})
assert not isinstance(df.nominal[0], compat.string_types)
ts_data = """\
ID,date,nominalTime,actualTime,A,B,C,D,E
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
def test_multiple_date_col_name_collision(self):
with pytest.raises(ValueError):
self.read_csv(StringIO(self.ts_data), parse_dates={'ID': [1, 2]})
data = """\
date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir
KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa
with pytest.raises(ValueError):
self.read_csv(StringIO(data), parse_dates=[[1, 2]])
def test_date_parser_int_bug(self):
# See gh-3071
log_file = StringIO(
'posix_timestamp,elapsed,sys,user,queries,query_time,rows,'
'accountid,userid,contactid,level,silo,method\n'
'1343103150,0.062353,0,4,6,0.01690,3,'
'12345,1,-1,3,invoice_InvoiceResource,search\n'
)
def f(posix_string):
return datetime.utcfromtimestamp(int(posix_string))
# it works!
self.read_csv(log_file, index_col=0, parse_dates=[0], date_parser=f)
def test_nat_parse(self):
# See gh-3062
df = DataFrame(dict({
'A': np.asarray(lrange(10), dtype='float64'),
'B': pd.Timestamp('20010101')}))
df.iloc[3:6, :] = np.nan
with tm.ensure_clean('__nat_parse_.csv') as path:
df.to_csv(path)
result = self.read_csv(path, index_col=0, parse_dates=['B'])
tm.assert_frame_equal(result, df)
expected = Series(dict(A='float64', B='datetime64[ns]'))
tm.assert_series_equal(expected, result.dtypes)
# test with NaT for the nan_rep
# we don't have a method to specify the Datetime na_rep
# (it defaults to '')
df.to_csv(path)
result = self.read_csv(path, index_col=0, parse_dates=['B'])
tm.assert_frame_equal(result, df)
def test_csv_custom_parser(self):
data = """A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
f = lambda x: datetime.strptime(x, '%Y%m%d')
df = self.read_csv(StringIO(data), date_parser=f)
expected = self.read_csv(StringIO(data), parse_dates=True)
tm.assert_frame_equal(df, expected)
def test_parse_dates_implicit_first_col(self):
data = """A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
df = self.read_csv(StringIO(data), parse_dates=True)
expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True)
assert isinstance(
df.index[0], (datetime, np.datetime64, Timestamp))
tm.assert_frame_equal(df, expected)
def test_parse_dates_string(self):
data = """date,A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
rs = self.read_csv(
StringIO(data), index_col='date', parse_dates=['date'])
idx = date_range('1/1/2009', periods=3)
idx.name = 'date'
xp = DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 3, 4],
'C': [2, 4, 5]}, idx)
tm.assert_frame_equal(rs, xp)
def test_yy_format_with_yearfirst(self):
data = """date,time,B,C
090131,0010,1,2
090228,1020,3,4
090331,0830,5,6
"""
# See gh-217
import dateutil
if LooseVersion(dateutil.__version__) >= LooseVersion('2.5.0'):
pytest.skip("testing yearfirst=True not-support"
"on datetutil < 2.5.0 this works but"
"is wrong")
rs = self.read_csv(StringIO(data), index_col=0,
parse_dates=[['date', 'time']])
idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0),
datetime(2009, 2, 28, 10, 20, 0),
datetime(2009, 3, 31, 8, 30, 0)],
dtype=object, name='date_time')
xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx)
tm.assert_frame_equal(rs, xp)
rs = self.read_csv(StringIO(data), index_col=0,
parse_dates=[[0, 1]])
idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0),
datetime(2009, 2, 28, 10, 20, 0),
datetime(2009, 3, 31, 8, 30, 0)],
dtype=object, name='date_time')
xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx)
tm.assert_frame_equal(rs, xp)
def test_parse_dates_column_list(self):
data = 'a,b,c\n01/01/2010,1,15/02/2010'
expected = DataFrame({'a': [datetime(2010, 1, 1)], 'b': [1],
'c': [datetime(2010, 2, 15)]})
expected = expected.set_index(['a', 'b'])
df = self.read_csv(StringIO(data), index_col=[0, 1],
parse_dates=[0, 2], dayfirst=True)
tm.assert_frame_equal(df, expected)
df = self.read_csv(StringIO(data), index_col=[0, 1],
parse_dates=['a', 'c'], dayfirst=True)
tm.assert_frame_equal(df, expected)
def test_multi_index_parse_dates(self):
data = """index1,index2,A,B,C
20090101,one,a,1,2
20090101,two,b,3,4
20090101,three,c,4,5
20090102,one,a,1,2
20090102,two,b,3,4
20090102,three,c,4,5
20090103,one,a,1,2
20090103,two,b,3,4
20090103,three,c,4,5
"""
df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True)
assert isinstance(df.index.levels[0][0],
(datetime, np.datetime64, Timestamp))
# specify columns out of order!
df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True)
assert isinstance(df2.index.levels[1][0],
(datetime, np.datetime64, Timestamp))
def test_parse_dates_custom_euroformat(self):
text = """foo,bar,baz
31/01/2010,1,2
01/02/2010,1,NA
02/02/2010,1,2
"""
parser = lambda d: parse_date(d, dayfirst=True)
df = self.read_csv(StringIO(text),
names=['time', 'Q', 'NTU'], header=0,
index_col=0, parse_dates=True,
date_parser=parser, na_values=['NA'])
exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1),
datetime(2010, 2, 2)], name='time')
expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]},
index=exp_index, columns=['Q', 'NTU'])
tm.assert_frame_equal(df, expected)
parser = lambda d: parse_date(d, day_first=True)
pytest.raises(TypeError, self.read_csv,
StringIO(text), skiprows=[0],
names=['time', 'Q', 'NTU'], index_col=0,
parse_dates=True, date_parser=parser,
na_values=['NA'])
def test_parse_tz_aware(self):
# See gh-1693
import pytz
data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5")
# it works
result = self.read_csv(data, index_col=0, parse_dates=True)
stamp = result.index[0]
assert stamp.minute == 39
try:
assert result.index.tz is pytz.utc
except AssertionError: # hello Yaroslav
arr = result.index.to_pydatetime()
result = tools.to_datetime(arr, utc=True)[0]
assert stamp.minute == result.minute
assert stamp.hour == result.hour
assert stamp.day == result.day
def test_multiple_date_cols_index(self):
data = """
ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir
KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]})
df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]},
index_col='nominal')
tm.assert_frame_equal(xp.set_index('nominal'), df)
df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]},
index_col=0)
tm.assert_frame_equal(df2, df)
df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0)
tm.assert_frame_equal(df3, df, check_names=False)
def test_multiple_date_cols_chunked(self):
df = self.read_csv(StringIO(self.ts_data), parse_dates={
'nominal': [1, 2]}, index_col='nominal')
reader = self.read_csv(StringIO(self.ts_data),
parse_dates={'nominal': [1, 2]},
index_col='nominal', chunksize=2)
chunks = list(reader)
assert 'nominalTime' not in df
tm.assert_frame_equal(chunks[0], df[:2])
tm.assert_frame_equal(chunks[1], df[2:4])
tm.assert_frame_equal(chunks[2], df[4:])
def test_multiple_date_col_named_components(self):
xp = self.read_csv(StringIO(self.ts_data),
parse_dates={'nominal': [1, 2]},
index_col='nominal')
colspec = {'nominal': ['date', 'nominalTime']}
df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec,
index_col='nominal')
tm.assert_frame_equal(df, xp)
def test_multiple_date_col_multiple_index(self):
df = self.read_csv(StringIO(self.ts_data),
parse_dates={'nominal': [1, 2]},
index_col=['nominal', 'ID'])
xp = self.read_csv(StringIO(self.ts_data),
parse_dates={'nominal': [1, 2]})
tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df)
def test_read_with_parse_dates_scalar_non_bool(self):
# See gh-5636
errmsg = ("Only booleans, lists, and "
"dictionaries are accepted "
"for the 'parse_dates' parameter")
data = """A,B,C
1,2,2003-11-1"""
tm.assert_raises_regex(TypeError, errmsg, self.read_csv,
StringIO(data), parse_dates="C")
tm.assert_raises_regex(TypeError, errmsg, self.read_csv,
StringIO(data), parse_dates="C",
index_col="C")
def test_read_with_parse_dates_invalid_type(self):
errmsg = ("Only booleans, lists, and "
"dictionaries are accepted "
"for the 'parse_dates' parameter")
data = """A,B,C
1,2,2003-11-1"""
tm.assert_raises_regex(TypeError, errmsg, self.read_csv,
StringIO(data), parse_dates=(1,))
tm.assert_raises_regex(TypeError, errmsg,
self.read_csv, StringIO(data),
parse_dates=np.array([4, 5]))
tm.assert_raises_regex(TypeError, errmsg, self.read_csv,
StringIO(data), parse_dates=set([1, 3, 3]))
def test_parse_dates_empty_string(self):
# see gh-2263
data = "Date, test\n2012-01-01, 1\n,2"
result = self.read_csv(StringIO(data), parse_dates=["Date"],
na_filter=False)
assert result['Date'].isna()[1]
def test_parse_dates_noconvert_thousands(self):
# see gh-14066
data = 'a\n04.15.2016'
expected = DataFrame([datetime(2016, 4, 15)], columns=['a'])
result = self.read_csv(StringIO(data), parse_dates=['a'],
thousands='.')
tm.assert_frame_equal(result, expected)
exp_index = DatetimeIndex(['2016-04-15'], name='a')
expected = DataFrame(index=exp_index)
result = self.read_csv(StringIO(data), index_col=0,
parse_dates=True, thousands='.')
tm.assert_frame_equal(result, expected)
data = 'a,b\n04.15.2016,09.16.2013'
expected = DataFrame([[datetime(2016, 4, 15),
datetime(2013, 9, 16)]],
columns=['a', 'b'])
result = self.read_csv(StringIO(data), parse_dates=['a', 'b'],
thousands='.')
tm.assert_frame_equal(result, expected)
expected = DataFrame([[datetime(2016, 4, 15),
datetime(2013, 9, 16)]],
columns=['a', 'b'])
expected = expected.set_index(['a', 'b'])
result = self.read_csv(StringIO(data), index_col=[0, 1],
parse_dates=True, thousands='.')
tm.assert_frame_equal(result, expected)
def test_parse_date_time_multi_level_column_name(self):
data = """\
D,T,A,B
date, time,a,b
2001-01-05, 09:00:00, 0.0, 10.
2001-01-06, 00:00:00, 1.0, 11.
"""
datecols = {'date_time': [0, 1]}
result = self.read_csv(StringIO(data), sep=',', header=[0, 1],
parse_dates=datecols,
date_parser=conv.parse_date_time)
expected_data = [[datetime(2001, 1, 5, 9, 0, 0), 0., 10.],
[datetime(2001, 1, 6, 0, 0, 0), 1., 11.]]
expected = DataFrame(expected_data,
columns=['date_time', ('A', 'a'), ('B', 'b')])
tm.assert_frame_equal(result, expected)
def test_parse_date_time(self):
dates = np.array(['2007/1/3', '2008/2/4'], dtype=object)
times = np.array(['05:07:09', '06:08:00'], dtype=object)
expected = np.array([datetime(2007, 1, 3, 5, 7, 9),
datetime(2008, 2, 4, 6, 8, 0)])
result = conv.parse_date_time(dates, times)
assert (result == expected).all()
data = """\
date, time, a, b
2001-01-05, 10:00:00, 0.0, 10.
2001-01-05, 00:00:00, 1., 11.
"""
datecols = {'date_time': [0, 1]}
df = self.read_csv(StringIO(data), sep=',', header=0,
parse_dates=datecols,
date_parser=conv.parse_date_time)
assert 'date_time' in df
assert df.date_time.loc[0] == datetime(2001, 1, 5, 10, 0, 0)
data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n"
"KORD,19990127, 20:00:00, 19:56:00, 0.0100\n"
"KORD,19990127, 21:00:00, 20:56:00, -0.5900\n"
"KORD,19990127, 21:00:00, 21:18:00, -0.9900\n"
"KORD,19990127, 22:00:00, 21:56:00, -0.5900\n"
"KORD,19990127, 23:00:00, 22:56:00, -0.5900")
date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec,
date_parser=conv.parse_date_time)
def test_parse_date_fields(self):
years = np.array([2007, 2008])
months = np.array([1, 2])
days = np.array([3, 4])
result = conv.parse_date_fields(years, months, days)
expected = np.array([datetime(2007, 1, 3), datetime(2008, 2, 4)])
assert (result == expected).all()
data = ("year, month, day, a\n 2001 , 01 , 10 , 10.\n"
"2001 , 02 , 1 , 11.")
datecols = {'ymd': [0, 1, 2]}
df = self.read_csv(StringIO(data), sep=',', header=0,
parse_dates=datecols,
date_parser=conv.parse_date_fields)
assert 'ymd' in df
assert df.ymd.loc[0] == datetime(2001, 1, 10)
def test_datetime_six_col(self):
years = np.array([2007, 2008])
months = np.array([1, 2])
days = np.array([3, 4])
hours = np.array([5, 6])
minutes = np.array([7, 8])
seconds = np.array([9, 0])
expected = np.array([datetime(2007, 1, 3, 5, 7, 9),
datetime(2008, 2, 4, 6, 8, 0)])
result = conv.parse_all_fields(years, months, days,
hours, minutes, seconds)
assert (result == expected).all()
data = """\
year, month, day, hour, minute, second, a, b
2001, 01, 05, 10, 00, 0, 0.0, 10.
2001, 01, 5, 10, 0, 00, 1., 11.
"""
datecols = {'ymdHMS': [0, 1, 2, 3, 4, 5]}
df = self.read_csv(StringIO(data), sep=',', header=0,
parse_dates=datecols,
date_parser=conv.parse_all_fields)
assert 'ymdHMS' in df
assert df.ymdHMS.loc[0] == datetime(2001, 1, 5, 10, 0, 0)
def test_datetime_fractional_seconds(self):
data = """\
year, month, day, hour, minute, second, a, b
2001, 01, 05, 10, 00, 0.123456, 0.0, 10.
2001, 01, 5, 10, 0, 0.500000, 1., 11.
"""
datecols = {'ymdHMS': [0, 1, 2, 3, 4, 5]}
df = self.read_csv(StringIO(data), sep=',', header=0,
parse_dates=datecols,
date_parser=conv.parse_all_fields)
assert 'ymdHMS' in df
assert df.ymdHMS.loc[0] == datetime(2001, 1, 5, 10, 0, 0,
microsecond=123456)
assert df.ymdHMS.loc[1] == datetime(2001, 1, 5, 10, 0, 0,
microsecond=500000)
def test_generic(self):
data = "year, month, day, a\n 2001, 01, 10, 10.\n 2001, 02, 1, 11."
datecols = {'ym': [0, 1]}
dateconverter = lambda y, m: date(year=int(y), month=int(m), day=1)
df = self.read_csv(StringIO(data), sep=',', header=0,
parse_dates=datecols,
date_parser=dateconverter)
assert 'ym' in df
assert df.ym.loc[0] == date(2001, 1, 1)
def test_dateparser_resolution_if_not_ns(self):
# GH 10245
data = """\
date,time,prn,rxstatus
2013-11-03,19:00:00,126,00E80000
2013-11-03,19:00:00,23,00E80000
2013-11-03,19:00:00,13,00E80000
"""
def date_parser(date, time):
datetime = np_array_datetime64_compat(
date + 'T' + time + 'Z', dtype='datetime64[s]')
return datetime
df = self.read_csv(StringIO(data), date_parser=date_parser,
parse_dates={'datetime': ['date', 'time']},
index_col=['datetime', 'prn'])
datetimes = np_array_datetime64_compat(['2013-11-03T19:00:00Z'] * 3,
dtype='datetime64[s]')
df_correct = DataFrame(data={'rxstatus': ['00E80000'] * 3},
index=MultiIndex.from_tuples(
[(datetimes[0], 126),
(datetimes[1], 23),
(datetimes[2], 13)],
names=['datetime', 'prn']))
tm.assert_frame_equal(df, df_correct)
def test_parse_date_column_with_empty_string(self):
# GH 6428
data = """case,opdate
7,10/18/2006
7,10/18/2008
621, """
result = self.read_csv(StringIO(data), parse_dates=['opdate'])
expected_data = [[7, '10/18/2006'],
[7, '10/18/2008'],
[621, ' ']]
expected = DataFrame(expected_data, columns=['case', 'opdate'])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("data,expected", [
("a\n135217135789158401\n1352171357E+5",
DataFrame({"a": [135217135789158401,
135217135700000]}, dtype="float64")),
("a\n99999999999\n123456789012345\n1234E+0",
DataFrame({"a": [99999999999,
123456789012345,
1234]}, dtype="float64"))
])
@pytest.mark.parametrize("parse_dates", [True, False])
def test_parse_date_float(self, data, expected, parse_dates):
# see gh-2697
#
# Date parsing should fail, so we leave the data untouched
# (i.e. float precision should remain unchanged).
result = self.read_csv(StringIO(data), parse_dates=parse_dates)
tm.assert_frame_equal(result, expected)