laywerrobot/lib/python3.6/site-packages/pandas/tests/indexing/test_loc.py

806 lines
30 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
""" test label based indexing with loc """
import itertools
import pytest
from warnings import catch_warnings
import numpy as np
import pandas as pd
from pandas.compat import lrange, StringIO
from pandas import Series, DataFrame, Timestamp, date_range, MultiIndex, Index
from pandas.util import testing as tm
from pandas.tests.indexing.common import Base
from pandas.api.types import is_scalar
from pandas.compat import PY2
class TestLoc(Base):
def test_loc_getitem_dups(self):
# GH 5678
# repeated gettitems on a dup index returning a ndarray
df = DataFrame(
np.random.random_sample((20, 5)),
index=['ABCDE' [x % 5] for x in range(20)])
expected = df.loc['A', 0]
result = df.loc[:, 0].loc['A']
tm.assert_series_equal(result, expected)
def test_loc_getitem_dups2(self):
# GH4726
# dup indexing with iloc/loc
df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]],
columns=['a', 'a', 'a', 'a', 'a'], index=[1])
expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')],
index=['a', 'a', 'a', 'a', 'a'], name=1)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
result = df.loc[1]
tm.assert_series_equal(result, expected)
def test_loc_setitem_dups(self):
# GH 6541
df_orig = DataFrame(
{'me': list('rttti'),
'foo': list('aaade'),
'bar': np.arange(5, dtype='float64') * 1.34 + 2,
'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me')
indexer = tuple(['r', ['bar', 'bar2']])
df = df_orig.copy()
df.loc[indexer] *= 2.0
tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer])
indexer = tuple(['r', 'bar'])
df = df_orig.copy()
df.loc[indexer] *= 2.0
assert df.loc[indexer] == 2.0 * df_orig.loc[indexer]
indexer = tuple(['t', ['bar', 'bar2']])
df = df_orig.copy()
df.loc[indexer] *= 2.0
tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer])
def test_loc_setitem_slice(self):
# GH10503
# assigning the same type should not change the type
df1 = DataFrame({'a': [0, 1, 1],
'b': Series([100, 200, 300], dtype='uint32')})
ix = df1['a'] == 1
newb1 = df1.loc[ix, 'b'] + 1
df1.loc[ix, 'b'] = newb1
expected = DataFrame({'a': [0, 1, 1],
'b': Series([100, 201, 301], dtype='uint32')})
tm.assert_frame_equal(df1, expected)
# assigning a new type should get the inferred type
df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]},
dtype='uint64')
ix = df1['a'] == 1
newb2 = df2.loc[ix, 'b']
df1.loc[ix, 'b'] = newb2
expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]},
dtype='uint64')
tm.assert_frame_equal(df2, expected)
def test_loc_getitem_int(self):
# int label
self.check_result('int label', 'loc', 2, 'ix', 2,
typs=['ints', 'uints'], axes=0)
self.check_result('int label', 'loc', 3, 'ix', 3,
typs=['ints', 'uints'], axes=1)
self.check_result('int label', 'loc', 4, 'ix', 4,
typs=['ints', 'uints'], axes=2)
self.check_result('int label', 'loc', 2, 'ix', 2,
typs=['label'], fails=KeyError)
def test_loc_getitem_label(self):
# label
self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'],
axes=0)
self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'],
axes=0)
self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0)
self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1,
typs=['ts'], axes=0)
self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'],
fails=KeyError)
def test_loc_getitem_label_out_of_range(self):
# out of range label
self.check_result('label range', 'loc', 'f', 'ix', 'f',
typs=['ints', 'uints', 'labels', 'mixed', 'ts'],
fails=KeyError)
self.check_result('label range', 'loc', 'f', 'ix', 'f',
typs=['floats'], fails=KeyError)
self.check_result('label range', 'loc', 20, 'ix', 20,
typs=['ints', 'uints', 'mixed'], fails=KeyError)
self.check_result('label range', 'loc', 20, 'ix', 20,
typs=['labels'], fails=TypeError)
self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'],
axes=0, fails=TypeError)
self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'],
axes=0, fails=KeyError)
def test_loc_getitem_label_list(self):
# list of labels
self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4],
typs=['ints', 'uints'], axes=0)
self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9],
typs=['ints', 'uints'], axes=1)
self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12],
typs=['ints', 'uints'], axes=2)
self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix',
['a', 'b', 'd'], typs=['labels'], axes=0)
self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix',
['A', 'B', 'C'], typs=['labels'], axes=1)
self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix',
['Z', 'Y', 'W'], typs=['labels'], axes=2)
self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix',
[2, 8, 'null'], typs=['mixed'], axes=0)
self.check_result('list lbl', 'loc',
[Timestamp('20130102'), Timestamp('20130103')], 'ix',
[Timestamp('20130102'), Timestamp('20130103')],
typs=['ts'], axes=0)
@pytest.mark.skipif(PY2, reason=("Catching warnings unreliable with "
"Python 2 (GH #20770)"))
def test_loc_getitem_label_list_with_missing(self):
self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2],
typs=['empty'], fails=KeyError)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
self.check_result('list lbl', 'loc', [0, 2, 10], 'ix', [0, 2, 10],
typs=['ints', 'uints', 'floats'],
axes=0, fails=KeyError)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7],
typs=['ints', 'uints', 'floats'],
axes=1, fails=KeyError)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10],
typs=['ints', 'uints', 'floats'],
axes=2, fails=KeyError)
# GH 17758 - MultiIndex and missing keys
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
self.check_result('list lbl', 'loc', [(1, 3), (1, 4), (2, 5)],
'ix', [(1, 3), (1, 4), (2, 5)],
typs=['multi'],
axes=0)
def test_getitem_label_list_with_missing(self):
s = Series(range(3), index=['a', 'b', 'c'])
# consistency
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
s[['a', 'd']]
s = Series(range(3))
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
s[[0, 3]]
def test_loc_getitem_label_list_fails(self):
# fails
self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40],
typs=['ints', 'uints'], axes=1, fails=KeyError)
self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40],
typs=['ints', 'uints'], axes=2, fails=KeyError)
def test_loc_getitem_label_array_like(self):
# array like
self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index,
'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0)
self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index,
'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1)
self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index,
'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2)
def test_loc_getitem_bool(self):
# boolean indexers
b = [True, False, True, False]
self.check_result('bool', 'loc', b, 'ix', b,
typs=['ints', 'uints', 'labels',
'mixed', 'ts', 'floats'])
self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'],
fails=KeyError)
def test_loc_getitem_int_slice(self):
# ok
self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4],
typs=['ints', 'uints'], axes=0)
self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6],
typs=['ints', 'uints'], axes=1)
self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8],
typs=['ints', 'uints'], axes=2)
# GH 3053
# loc should treat integer slices like label slices
index = MultiIndex.from_tuples([t for t in itertools.product(
[6, 7, 8], ['a', 'b'])])
df = DataFrame(np.random.randn(6, 6), index, index)
result = df.loc[6:8, :]
expected = df
tm.assert_frame_equal(result, expected)
index = MultiIndex.from_tuples([t
for t in itertools.product(
[10, 20, 30], ['a', 'b'])])
df = DataFrame(np.random.randn(6, 6), index, index)
result = df.loc[20:30, :]
expected = df.iloc[2:]
tm.assert_frame_equal(result, expected)
# doc examples
result = df.loc[10, :]
expected = df.iloc[0:2]
expected.index = ['a', 'b']
tm.assert_frame_equal(result, expected)
result = df.loc[:, 10]
# expected = df.ix[:,10] (this fails)
expected = df[10]
tm.assert_frame_equal(result, expected)
def test_loc_to_fail(self):
# GH3449
df = DataFrame(np.random.random((3, 3)),
index=['a', 'b', 'c'],
columns=['e', 'f', 'g'])
# raise a KeyError?
pytest.raises(KeyError, df.loc.__getitem__,
tuple([[1, 2], [1, 2]]))
# GH 7496
# loc should not fallback
s = Series()
s.loc[1] = 1
s.loc['a'] = 2
pytest.raises(KeyError, lambda: s.loc[-1])
pytest.raises(KeyError, lambda: s.loc[[-1, -2]])
pytest.raises(KeyError, lambda: s.loc[['4']])
s.loc[-1] = 3
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = s.loc[[-1, -2]]
expected = Series([3, np.nan], index=[-1, -2])
tm.assert_series_equal(result, expected)
s['a'] = 2
pytest.raises(KeyError, lambda: s.loc[[-2]])
del s['a']
def f():
s.loc[[-2]] = 0
pytest.raises(KeyError, f)
# inconsistency between .loc[values] and .loc[values,:]
# GH 7999
df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value'])
def f():
df.loc[[3], :]
pytest.raises(KeyError, f)
def f():
df.loc[[3]]
pytest.raises(KeyError, f)
def test_loc_getitem_list_with_fail(self):
# 15747
# should KeyError if *any* missing labels
s = Series([1, 2, 3])
s.loc[[2]]
with pytest.raises(KeyError):
s.loc[[3]]
# a non-match and a match
with tm.assert_produces_warning(FutureWarning):
expected = s.loc[[2, 3]]
result = s.reindex([2, 3])
tm.assert_series_equal(result, expected)
def test_loc_getitem_label_slice(self):
# label slices (with ints)
self.check_result('lab slice', 'loc', slice(1, 3),
'ix', slice(1, 3),
typs=['labels', 'mixed', 'empty', 'ts', 'floats'],
fails=TypeError)
# real label slices
self.check_result('lab slice', 'loc', slice('a', 'c'),
'ix', slice('a', 'c'), typs=['labels'], axes=0)
self.check_result('lab slice', 'loc', slice('A', 'C'),
'ix', slice('A', 'C'), typs=['labels'], axes=1)
self.check_result('lab slice', 'loc', slice('W', 'Z'),
'ix', slice('W', 'Z'), typs=['labels'], axes=2)
self.check_result('ts slice', 'loc', slice('20130102', '20130104'),
'ix', slice('20130102', '20130104'),
typs=['ts'], axes=0)
self.check_result('ts slice', 'loc', slice('20130102', '20130104'),
'ix', slice('20130102', '20130104'),
typs=['ts'], axes=1, fails=TypeError)
self.check_result('ts slice', 'loc', slice('20130102', '20130104'),
'ix', slice('20130102', '20130104'),
typs=['ts'], axes=2, fails=TypeError)
# GH 14316
self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'),
'indexer', [0, 1, 2], typs=['ts_rev'], axes=0)
self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8),
typs=['mixed'], axes=0, fails=TypeError)
self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8),
typs=['mixed'], axes=1, fails=KeyError)
self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8),
typs=['mixed'], axes=2, fails=KeyError)
self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice(
2, 4, 2), typs=['mixed'], axes=0, fails=TypeError)
def test_loc_index(self):
# gh-17131
# a boolean index should index like a boolean numpy array
df = DataFrame(
np.random.random(size=(5, 10)),
index=["alpha_0", "alpha_1", "alpha_2", "beta_0", "beta_1"])
mask = df.index.map(lambda x: "alpha" in x)
expected = df.loc[np.array(mask)]
result = df.loc[mask]
tm.assert_frame_equal(result, expected)
result = df.loc[mask.values]
tm.assert_frame_equal(result, expected)
def test_loc_general(self):
df = DataFrame(
np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'],
index=['A', 'B', 'C', 'D'])
# want this to work
result = df.loc[:, "A":"B"].iloc[0:2, :]
assert (result.columns == ['A', 'B']).all()
assert (result.index == ['A', 'B']).all()
# mixed type
result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0]
expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0)
tm.assert_series_equal(result, expected)
assert result.dtype == object
def test_loc_setitem_consistency(self):
# GH 6149
# coerce similarly for setitem and loc when rows have a null-slice
expected = DataFrame({'date': Series(0, index=range(5),
dtype=np.int64),
'val': Series(range(5), dtype=np.int64)})
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(
range(5), dtype=np.int64)})
df.loc[:, 'date'] = 0
tm.assert_frame_equal(df, expected)
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(range(5), dtype=np.int64)})
df.loc[:, 'date'] = np.array(0, dtype=np.int64)
tm.assert_frame_equal(df, expected)
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(range(5), dtype=np.int64)})
df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64)
tm.assert_frame_equal(df, expected)
expected = DataFrame({'date': Series('foo', index=range(5)),
'val': Series(range(5), dtype=np.int64)})
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(range(5), dtype=np.int64)})
df.loc[:, 'date'] = 'foo'
tm.assert_frame_equal(df, expected)
expected = DataFrame({'date': Series(1.0, index=range(5)),
'val': Series(range(5), dtype=np.int64)})
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(range(5), dtype=np.int64)})
df.loc[:, 'date'] = 1.0
tm.assert_frame_equal(df, expected)
# GH 15494
# setting on frame with single row
df = DataFrame({'date': Series([Timestamp('20180101')])})
df.loc[:, 'date'] = 'string'
expected = DataFrame({'date': Series(['string'])})
tm.assert_frame_equal(df, expected)
def test_loc_setitem_consistency_empty(self):
# empty (essentially noops)
expected = DataFrame(columns=['x', 'y'])
expected['x'] = expected['x'].astype(np.int64)
df = DataFrame(columns=['x', 'y'])
df.loc[:, 'x'] = 1
tm.assert_frame_equal(df, expected)
df = DataFrame(columns=['x', 'y'])
df['x'] = 1
tm.assert_frame_equal(df, expected)
def test_loc_setitem_consistency_slice_column_len(self):
# .loc[:,column] setting with slice == len of the column
# GH10408
data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat
Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse
Region,Site,RespondentID,,,,,
Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes,
Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes
Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes,
Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No"""
df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2])
df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, (
'Respondent', 'StartDate')])
df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, (
'Respondent', 'EndDate')])
df.loc[:, ('Respondent', 'Duration')] = df.loc[:, (
'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')]
df.loc[:, ('Respondent', 'Duration')] = df.loc[:, (
'Respondent', 'Duration')].astype('timedelta64[s]')
expected = Series([1380, 720, 840, 2160.], index=df.index,
name=('Respondent', 'Duration'))
tm.assert_series_equal(df[('Respondent', 'Duration')], expected)
def test_loc_setitem_frame(self):
df = self.frame_labels
result = df.iloc[0, 0]
df.loc['a', 'A'] = 1
result = df.loc['a', 'A']
assert result == 1
result = df.iloc[0, 0]
assert result == 1
df.loc[:, 'B':'D'] = 0
expected = df.loc[:, 'B':'D']
result = df.iloc[:, 1:]
tm.assert_frame_equal(result, expected)
# GH 6254
# setting issue
df = DataFrame(index=[3, 5, 4], columns=['A'])
df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64')
expected = DataFrame(dict(A=Series(
[1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4])
tm.assert_frame_equal(df, expected)
# GH 6252
# setting with an empty frame
keys1 = ['@' + str(i) for i in range(5)]
val1 = np.arange(5, dtype='int64')
keys2 = ['@' + str(i) for i in range(4)]
val2 = np.arange(4, dtype='int64')
index = list(set(keys1).union(keys2))
df = DataFrame(index=index)
df['A'] = np.nan
df.loc[keys1, 'A'] = val1
df['B'] = np.nan
df.loc[keys2, 'B'] = val2
expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series(
val2, index=keys2))).reindex(index=index)
tm.assert_frame_equal(df, expected)
# GH 8669
# invalid coercion of nan -> int
df = DataFrame({'A': [1, 2, 3], 'B': np.nan})
df.loc[df.B > df.A, 'B'] = df.A
expected = DataFrame({'A': [1, 2, 3], 'B': np.nan})
tm.assert_frame_equal(df, expected)
# GH 6546
# setting with mixed labels
df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']})
result = df.loc[0, [1, 2]]
expected = Series([1, 3], index=[1, 2], dtype=object, name=0)
tm.assert_series_equal(result, expected)
expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']})
df.loc[0, [1, 2]] = [5, 6]
tm.assert_frame_equal(df, expected)
def test_loc_setitem_frame_multiples(self):
# multiple setting
df = DataFrame({'A': ['foo', 'bar', 'baz'],
'B': Series(
range(3), dtype=np.int64)})
rhs = df.loc[1:2]
rhs.index = df.index[0:2]
df.loc[0:1] = rhs
expected = DataFrame({'A': ['bar', 'baz', 'baz'],
'B': Series(
[1, 2, 2], dtype=np.int64)})
tm.assert_frame_equal(df, expected)
# multiple setting with frame on rhs (with M8)
df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'),
'val': Series(
range(5), dtype=np.int64)})
expected = DataFrame({'date': [Timestamp('20000101'), Timestamp(
'20000102'), Timestamp('20000101'), Timestamp('20000102'),
Timestamp('20000103')],
'val': Series(
[0, 1, 0, 1, 2], dtype=np.int64)})
rhs = df.loc[0:2]
rhs.index = df.index[2:5]
df.loc[2:4] = rhs
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize(
'indexer', [['A'], slice(None, 'A', None), np.array(['A'])])
@pytest.mark.parametrize(
'value', [['Z'], np.array(['Z'])])
def test_loc_setitem_with_scalar_index(self, indexer, value):
# GH #19474
# assigning like "df.loc[0, ['A']] = ['Z']" should be evaluated
# elementwisely, not using "setter('A', ['Z'])".
df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
df.loc[0, indexer] = value
result = df.loc[0, 'A']
assert is_scalar(result) and result == 'Z'
def test_loc_coerceion(self):
# 12411
df = DataFrame({'date': [Timestamp('20130101').tz_localize('UTC'),
pd.NaT]})
expected = df.dtypes
result = df.iloc[[0]]
tm.assert_series_equal(result.dtypes, expected)
result = df.iloc[[1]]
tm.assert_series_equal(result.dtypes, expected)
# 12045
import datetime
df = DataFrame({'date': [datetime.datetime(2012, 1, 1),
datetime.datetime(1012, 1, 2)]})
expected = df.dtypes
result = df.iloc[[0]]
tm.assert_series_equal(result.dtypes, expected)
result = df.iloc[[1]]
tm.assert_series_equal(result.dtypes, expected)
# 11594
df = DataFrame({'text': ['some words'] + [None] * 9})
expected = df.dtypes
result = df.iloc[0:2]
tm.assert_series_equal(result.dtypes, expected)
result = df.iloc[3:]
tm.assert_series_equal(result.dtypes, expected)
def test_loc_non_unique(self):
# GH3659
# non-unique indexer with loc slice
# https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs
# these are going to raise because the we are non monotonic
df = DataFrame({'A': [1, 2, 3, 4, 5, 6],
'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3])
pytest.raises(KeyError, df.loc.__getitem__,
tuple([slice(1, None)]))
pytest.raises(KeyError, df.loc.__getitem__,
tuple([slice(0, None)]))
pytest.raises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)]))
# monotonic are ok
df = DataFrame({'A': [1, 2, 3, 4, 5, 6],
'B': [3, 4, 5, 6, 7, 8]},
index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0)
result = df.loc[1:]
expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]},
index=[1, 1, 2, 3])
tm.assert_frame_equal(result, expected)
result = df.loc[0:]
tm.assert_frame_equal(result, df)
result = df.loc[1:2]
expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]},
index=[1, 1, 2])
tm.assert_frame_equal(result, expected)
def test_loc_non_unique_memory_error(self):
# GH 4280
# non_unique index with a large selection triggers a memory error
columns = list('ABCDEFG')
def gen_test(l, l2):
return pd.concat([
DataFrame(np.random.randn(l, len(columns)),
index=lrange(l), columns=columns),
DataFrame(np.ones((l2, len(columns))),
index=[0] * l2, columns=columns)])
def gen_expected(df, mask):
l = len(mask)
return pd.concat([df.take([0]),
DataFrame(np.ones((l, len(columns))),
index=[0] * l,
columns=columns),
df.take(mask[1:])])
df = gen_test(900, 100)
assert not df.index.is_unique
mask = np.arange(100)
result = df.loc[mask]
expected = gen_expected(df, mask)
tm.assert_frame_equal(result, expected)
df = gen_test(900000, 100000)
assert not df.index.is_unique
mask = np.arange(100000)
result = df.loc[mask]
expected = gen_expected(df, mask)
tm.assert_frame_equal(result, expected)
def test_loc_name(self):
# GH 3880
df = DataFrame([[1, 1], [1, 1]])
df.index.name = 'index_name'
result = df.iloc[[0, 1]].index.name
assert result == 'index_name'
with catch_warnings(record=True):
result = df.ix[[0, 1]].index.name
assert result == 'index_name'
result = df.loc[[0, 1]].index.name
assert result == 'index_name'
def test_loc_empty_list_indexer_is_ok(self):
from pandas.util.testing import makeCustomDataframe as mkdf
df = mkdf(5, 2)
# vertical empty
tm.assert_frame_equal(df.loc[:, []], df.iloc[:, :0],
check_index_type=True, check_column_type=True)
# horizontal empty
tm.assert_frame_equal(df.loc[[], :], df.iloc[:0, :],
check_index_type=True, check_column_type=True)
# horizontal empty
tm.assert_frame_equal(df.loc[[]], df.iloc[:0, :],
check_index_type=True,
check_column_type=True)
def test_identity_slice_returns_new_object(self):
# GH13873
original_df = DataFrame({'a': [1, 2, 3]})
sliced_df = original_df.loc[:]
assert sliced_df is not original_df
assert original_df[:] is not original_df
# should be a shallow copy
original_df['a'] = [4, 4, 4]
assert (sliced_df['a'] == 4).all()
# These should not return copies
assert original_df is original_df.loc[:, :]
df = DataFrame(np.random.randn(10, 4))
assert df[0] is df.loc[:, 0]
# Same tests for Series
original_series = Series([1, 2, 3, 4, 5, 6])
sliced_series = original_series.loc[:]
assert sliced_series is not original_series
assert original_series[:] is not original_series
original_series[:3] = [7, 8, 9]
assert all(sliced_series[:3] == [7, 8, 9])
@pytest.mark.parametrize(
'indexer_type_1',
(list, tuple, set, slice, np.ndarray, Series, Index))
@pytest.mark.parametrize(
'indexer_type_2',
(list, tuple, set, slice, np.ndarray, Series, Index))
def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
# GH #19686
# .loc should work with nested indexers which can be
# any list-like objects (see `pandas.api.types.is_list_like`) or slices
def convert_nested_indexer(indexer_type, keys):
if indexer_type == np.ndarray:
return np.array(keys)
if indexer_type == slice:
return slice(*keys)
return indexer_type(keys)
a = [10, 20, 30]
b = [1, 2, 3]
index = pd.MultiIndex.from_product([a, b])
df = pd.DataFrame(
np.arange(len(index), dtype='int64'),
index=index, columns=['Data'])
keys = ([10, 20], [2, 3])
types = (indexer_type_1, indexer_type_2)
# check indexers with all the combinations of nested objects
# of all the valid types
indexer = tuple(
convert_nested_indexer(indexer_type, k)
for indexer_type, k in zip(types, keys))
result = df.loc[indexer, 'Data']
expected = pd.Series(
[1, 2, 4, 5], name='Data',
index=pd.MultiIndex.from_product(keys))
tm.assert_series_equal(result, expected)
def test_loc_uint64(self):
# GH20722
# Test whether loc accept uint64 max value as index.
s = pd.Series([1, 2],
index=[np.iinfo('uint64').max - 1,
np.iinfo('uint64').max])
result = s.loc[np.iinfo('uint64').max - 1]
expected = s.iloc[0]
assert result == expected
result = s.loc[[np.iinfo('uint64').max - 1]]
expected = s.iloc[[0]]
tm.assert_series_equal(result, expected)
result = s.loc[[np.iinfo('uint64').max - 1,
np.iinfo('uint64').max]]
tm.assert_series_equal(result, s)