506 lines
20 KiB
Python
506 lines
20 KiB
Python
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._libs.tslib as tslib
|
||
|
import pandas.util.testing as tm
|
||
|
from pandas import (DatetimeIndex, PeriodIndex, Series, Period,
|
||
|
_np_version_under1p10, Index)
|
||
|
|
||
|
from pandas.tests.test_base import Ops
|
||
|
|
||
|
|
||
|
class TestPeriodIndexOps(Ops):
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
super(TestPeriodIndexOps, self).setup_method(method)
|
||
|
mask = lambda x: (isinstance(x, DatetimeIndex) or
|
||
|
isinstance(x, PeriodIndex))
|
||
|
self.is_valid_objs = [o for o in self.objs if mask(o)]
|
||
|
self.not_valid_objs = [o for o in self.objs if not mask(o)]
|
||
|
|
||
|
def test_ops_properties(self):
|
||
|
f = lambda x: isinstance(x, PeriodIndex)
|
||
|
self.check_ops_properties(PeriodIndex._field_ops, f)
|
||
|
self.check_ops_properties(PeriodIndex._object_ops, f)
|
||
|
self.check_ops_properties(PeriodIndex._bool_ops, f)
|
||
|
|
||
|
def test_minmax(self):
|
||
|
|
||
|
# monotonic
|
||
|
idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02',
|
||
|
'2011-01-03'], freq='D')
|
||
|
assert idx1.is_monotonic
|
||
|
|
||
|
# non-monotonic
|
||
|
idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03',
|
||
|
'2011-01-02', pd.NaT], freq='D')
|
||
|
assert not idx2.is_monotonic
|
||
|
|
||
|
for idx in [idx1, idx2]:
|
||
|
assert idx.min() == pd.Period('2011-01-01', freq='D')
|
||
|
assert idx.max() == pd.Period('2011-01-03', freq='D')
|
||
|
assert idx1.argmin() == 1
|
||
|
assert idx2.argmin() == 0
|
||
|
assert idx1.argmax() == 3
|
||
|
assert idx2.argmax() == 2
|
||
|
|
||
|
for op in ['min', 'max']:
|
||
|
# Return NaT
|
||
|
obj = PeriodIndex([], freq='M')
|
||
|
result = getattr(obj, op)()
|
||
|
assert result is tslib.NaT
|
||
|
|
||
|
obj = PeriodIndex([pd.NaT], freq='M')
|
||
|
result = getattr(obj, op)()
|
||
|
assert result is tslib.NaT
|
||
|
|
||
|
obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M')
|
||
|
result = getattr(obj, op)()
|
||
|
assert result is tslib.NaT
|
||
|
|
||
|
def test_numpy_minmax(self):
|
||
|
pr = pd.period_range(start='2016-01-15', end='2016-01-20')
|
||
|
|
||
|
assert np.min(pr) == Period('2016-01-15', freq='D')
|
||
|
assert np.max(pr) == Period('2016-01-20', freq='D')
|
||
|
|
||
|
errmsg = "the 'out' parameter is not supported"
|
||
|
tm.assert_raises_regex(ValueError, errmsg, np.min, pr, out=0)
|
||
|
tm.assert_raises_regex(ValueError, errmsg, np.max, pr, out=0)
|
||
|
|
||
|
assert np.argmin(pr) == 0
|
||
|
assert np.argmax(pr) == 5
|
||
|
|
||
|
if not _np_version_under1p10:
|
||
|
errmsg = "the 'out' parameter is not supported"
|
||
|
tm.assert_raises_regex(
|
||
|
ValueError, errmsg, np.argmin, pr, out=0)
|
||
|
tm.assert_raises_regex(
|
||
|
ValueError, errmsg, np.argmax, pr, out=0)
|
||
|
|
||
|
def test_resolution(self):
|
||
|
for freq, expected in zip(['A', 'Q', 'M', 'D', 'H',
|
||
|
'T', 'S', 'L', 'U'],
|
||
|
['day', 'day', 'day', 'day',
|
||
|
'hour', 'minute', 'second',
|
||
|
'millisecond', 'microsecond']):
|
||
|
|
||
|
idx = pd.period_range(start='2013-04-01', periods=30, freq=freq)
|
||
|
assert idx.resolution == expected
|
||
|
|
||
|
def test_value_counts_unique(self):
|
||
|
# GH 7735
|
||
|
idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10)
|
||
|
# create repeated values, 'n'th element is repeated by n+1 times
|
||
|
idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)),
|
||
|
freq='H')
|
||
|
|
||
|
exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00',
|
||
|
'2011-01-01 16:00', '2011-01-01 15:00',
|
||
|
'2011-01-01 14:00', '2011-01-01 13:00',
|
||
|
'2011-01-01 12:00', '2011-01-01 11:00',
|
||
|
'2011-01-01 10:00',
|
||
|
'2011-01-01 09:00'], freq='H')
|
||
|
expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64')
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(), expected)
|
||
|
|
||
|
expected = pd.period_range('2011-01-01 09:00', freq='H',
|
||
|
periods=10)
|
||
|
tm.assert_index_equal(idx.unique(), expected)
|
||
|
|
||
|
idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00',
|
||
|
'2013-01-01 09:00', '2013-01-01 08:00',
|
||
|
'2013-01-01 08:00', pd.NaT], freq='H')
|
||
|
|
||
|
exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'],
|
||
|
freq='H')
|
||
|
expected = Series([3, 2], index=exp_idx)
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(), expected)
|
||
|
|
||
|
exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00',
|
||
|
pd.NaT], freq='H')
|
||
|
expected = Series([3, 2, 1], index=exp_idx)
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(dropna=False), expected)
|
||
|
|
||
|
tm.assert_index_equal(idx.unique(), exp_idx)
|
||
|
|
||
|
def test_drop_duplicates_metadata(self):
|
||
|
# GH 10115
|
||
|
idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx')
|
||
|
result = idx.drop_duplicates()
|
||
|
tm.assert_index_equal(idx, result)
|
||
|
assert idx.freq == result.freq
|
||
|
|
||
|
idx_dup = idx.append(idx) # freq will not be reset
|
||
|
result = idx_dup.drop_duplicates()
|
||
|
tm.assert_index_equal(idx, result)
|
||
|
assert idx.freq == result.freq
|
||
|
|
||
|
def test_drop_duplicates(self):
|
||
|
# to check Index/Series compat
|
||
|
base = pd.period_range('2011-01-01', '2011-01-31', freq='D',
|
||
|
name='idx')
|
||
|
idx = base.append(base[:5])
|
||
|
|
||
|
res = idx.drop_duplicates()
|
||
|
tm.assert_index_equal(res, base)
|
||
|
res = Series(idx).drop_duplicates()
|
||
|
tm.assert_series_equal(res, Series(base))
|
||
|
|
||
|
res = idx.drop_duplicates(keep='last')
|
||
|
exp = base[5:].append(base[:5])
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
res = Series(idx).drop_duplicates(keep='last')
|
||
|
tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36)))
|
||
|
|
||
|
res = idx.drop_duplicates(keep=False)
|
||
|
tm.assert_index_equal(res, base[5:])
|
||
|
res = Series(idx).drop_duplicates(keep=False)
|
||
|
tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31)))
|
||
|
|
||
|
def test_order_compat(self):
|
||
|
def _check_freq(index, expected_index):
|
||
|
if isinstance(index, PeriodIndex):
|
||
|
assert index.freq == expected_index.freq
|
||
|
|
||
|
pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A')
|
||
|
# for compatibility check
|
||
|
iidx = Index([2011, 2012, 2013], name='idx')
|
||
|
for idx in [pidx, iidx]:
|
||
|
ordered = idx.sort_values()
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
ordered = idx.sort_values(ascending=False)
|
||
|
tm.assert_index_equal(ordered, idx[::-1])
|
||
|
_check_freq(ordered, idx[::-1])
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]),
|
||
|
check_dtype=False)
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
tm.assert_index_equal(ordered, idx[::-1])
|
||
|
tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]),
|
||
|
check_dtype=False)
|
||
|
_check_freq(ordered, idx[::-1])
|
||
|
|
||
|
pidx = PeriodIndex(['2011', '2013', '2015', '2012',
|
||
|
'2011'], name='pidx', freq='A')
|
||
|
pexpected = PeriodIndex(
|
||
|
['2011', '2011', '2012', '2013', '2015'], name='pidx', freq='A')
|
||
|
# for compatibility check
|
||
|
iidx = Index([2011, 2013, 2015, 2012, 2011], name='idx')
|
||
|
iexpected = Index([2011, 2011, 2012, 2013, 2015], name='idx')
|
||
|
for idx, expected in [(pidx, pexpected), (iidx, iexpected)]:
|
||
|
ordered = idx.sort_values()
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
ordered = idx.sort_values(ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
|
||
|
exp = np.array([0, 4, 3, 1, 2])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
|
||
|
exp = np.array([2, 1, 3, 4, 0])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
_check_freq(ordered, idx)
|
||
|
|
||
|
pidx = PeriodIndex(['2011', '2013', 'NaT', '2011'], name='pidx',
|
||
|
freq='D')
|
||
|
|
||
|
result = pidx.sort_values()
|
||
|
expected = PeriodIndex(['NaT', '2011', '2011', '2013'],
|
||
|
name='pidx', freq='D')
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
assert result.freq == 'D'
|
||
|
|
||
|
result = pidx.sort_values(ascending=False)
|
||
|
expected = PeriodIndex(
|
||
|
['2013', '2011', '2011', 'NaT'], name='pidx', freq='D')
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
assert result.freq == 'D'
|
||
|
|
||
|
def test_order(self):
|
||
|
for freq in ['D', '2D', '4D']:
|
||
|
idx = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'],
|
||
|
freq=freq, name='idx')
|
||
|
|
||
|
ordered = idx.sort_values()
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
assert ordered.freq == idx.freq
|
||
|
|
||
|
ordered = idx.sort_values(ascending=False)
|
||
|
expected = idx[::-1]
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
assert ordered.freq == expected.freq
|
||
|
assert ordered.freq == freq
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]),
|
||
|
check_dtype=False)
|
||
|
assert ordered.freq == idx.freq
|
||
|
assert ordered.freq == freq
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
expected = idx[::-1]
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]),
|
||
|
check_dtype=False)
|
||
|
assert ordered.freq == expected.freq
|
||
|
assert ordered.freq == freq
|
||
|
|
||
|
idx1 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', '2011-01-01'], freq='D', name='idx1')
|
||
|
exp1 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02',
|
||
|
'2011-01-03', '2011-01-05'], freq='D', name='idx1')
|
||
|
|
||
|
idx2 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', '2011-01-01'],
|
||
|
freq='D', name='idx2')
|
||
|
exp2 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02',
|
||
|
'2011-01-03', '2011-01-05'],
|
||
|
freq='D', name='idx2')
|
||
|
|
||
|
idx3 = PeriodIndex([pd.NaT, '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', pd.NaT], freq='D', name='idx3')
|
||
|
exp3 = PeriodIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03',
|
||
|
'2011-01-05'], freq='D', name='idx3')
|
||
|
|
||
|
for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]:
|
||
|
ordered = idx.sort_values()
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
assert ordered.freq == 'D'
|
||
|
|
||
|
ordered = idx.sort_values(ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
assert ordered.freq == 'D'
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
|
||
|
exp = np.array([0, 4, 3, 1, 2])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
assert ordered.freq == 'D'
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
|
||
|
exp = np.array([2, 1, 3, 4, 0])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
assert ordered.freq == 'D'
|
||
|
|
||
|
def test_nat_new(self):
|
||
|
|
||
|
idx = pd.period_range('2011-01', freq='M', periods=5, name='x')
|
||
|
result = idx._nat_new()
|
||
|
exp = pd.PeriodIndex([pd.NaT] * 5, freq='M', name='x')
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
result = idx._nat_new(box=False)
|
||
|
exp = np.array([tslib.iNaT] * 5, dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result, exp)
|
||
|
|
||
|
def test_shift(self):
|
||
|
# This is tested in test_arithmetic
|
||
|
pass
|
||
|
|
||
|
def test_repeat(self):
|
||
|
index = pd.period_range('2001-01-01', periods=2, freq='D')
|
||
|
exp = pd.PeriodIndex(['2001-01-01', '2001-01-01',
|
||
|
'2001-01-02', '2001-01-02'], freq='D')
|
||
|
for res in [index.repeat(2), np.repeat(index, 2)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
index = pd.period_range('2001-01-01', periods=2, freq='2D')
|
||
|
exp = pd.PeriodIndex(['2001-01-01', '2001-01-01',
|
||
|
'2001-01-03', '2001-01-03'], freq='2D')
|
||
|
for res in [index.repeat(2), np.repeat(index, 2)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
index = pd.PeriodIndex(['2001-01', 'NaT', '2003-01'], freq='M')
|
||
|
exp = pd.PeriodIndex(['2001-01', '2001-01', '2001-01',
|
||
|
'NaT', 'NaT', 'NaT',
|
||
|
'2003-01', '2003-01', '2003-01'], freq='M')
|
||
|
for res in [index.repeat(3), np.repeat(index, 3)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
def test_nat(self):
|
||
|
assert pd.PeriodIndex._na_value is pd.NaT
|
||
|
assert pd.PeriodIndex([], freq='M')._na_value is pd.NaT
|
||
|
|
||
|
idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D')
|
||
|
assert idx._can_hold_na
|
||
|
|
||
|
tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
|
||
|
assert not idx.hasnans
|
||
|
tm.assert_numpy_array_equal(idx._nan_idxs,
|
||
|
np.array([], dtype=np.intp))
|
||
|
|
||
|
idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D')
|
||
|
assert idx._can_hold_na
|
||
|
|
||
|
tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
|
||
|
assert idx.hasnans
|
||
|
tm.assert_numpy_array_equal(idx._nan_idxs,
|
||
|
np.array([1], dtype=np.intp))
|
||
|
|
||
|
@pytest.mark.parametrize('freq', ['D', 'M'])
|
||
|
def test_equals(self, freq):
|
||
|
# GH#13107
|
||
|
idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'],
|
||
|
freq=freq)
|
||
|
assert idx.equals(idx)
|
||
|
assert idx.equals(idx.copy())
|
||
|
assert idx.equals(idx.astype(object))
|
||
|
assert idx.astype(object).equals(idx)
|
||
|
assert idx.astype(object).equals(idx.astype(object))
|
||
|
assert not idx.equals(list(idx))
|
||
|
assert not idx.equals(pd.Series(idx))
|
||
|
|
||
|
idx2 = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'],
|
||
|
freq='H')
|
||
|
assert not idx.equals(idx2)
|
||
|
assert not idx.equals(idx2.copy())
|
||
|
assert not idx.equals(idx2.astype(object))
|
||
|
assert not idx.astype(object).equals(idx2)
|
||
|
assert not idx.equals(list(idx2))
|
||
|
assert not idx.equals(pd.Series(idx2))
|
||
|
|
||
|
# same internal, different tz
|
||
|
idx3 = pd.PeriodIndex._simple_new(idx.asi8, freq='H')
|
||
|
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
|
||
|
assert not idx.equals(idx3)
|
||
|
assert not idx.equals(idx3.copy())
|
||
|
assert not idx.equals(idx3.astype(object))
|
||
|
assert not idx.astype(object).equals(idx3)
|
||
|
assert not idx.equals(list(idx3))
|
||
|
assert not idx.equals(pd.Series(idx3))
|
||
|
|
||
|
def test_freq_setter_deprecated(self):
|
||
|
# GH 20678
|
||
|
idx = pd.period_range('2018Q1', periods=4, freq='Q')
|
||
|
|
||
|
# no warning for getter
|
||
|
with tm.assert_produces_warning(None):
|
||
|
idx.freq
|
||
|
|
||
|
# warning for setter
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
idx.freq = pd.offsets.Day()
|
||
|
|
||
|
|
||
|
class TestPeriodIndexSeriesMethods(object):
|
||
|
""" Test PeriodIndex and Period Series Ops consistency """
|
||
|
|
||
|
def _check(self, values, func, expected):
|
||
|
idx = pd.PeriodIndex(values)
|
||
|
result = func(idx)
|
||
|
if isinstance(expected, pd.Index):
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
else:
|
||
|
# comp op results in bool
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
s = pd.Series(values)
|
||
|
result = func(s)
|
||
|
|
||
|
exp = pd.Series(expected, name=values.name)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_pi_comp_period(self):
|
||
|
idx = PeriodIndex(['2011-01', '2011-02', '2011-03',
|
||
|
'2011-04'], freq='M', name='idx')
|
||
|
|
||
|
f = lambda x: x == pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([False, False, True, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') == x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x != pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([True, True, False, True], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') != x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') >= x
|
||
|
exp = np.array([True, True, True, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x > pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([False, False, False, True], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') >= x
|
||
|
exp = np.array([True, True, True, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
def test_pi_comp_period_nat(self):
|
||
|
idx = PeriodIndex(['2011-01', 'NaT', '2011-03',
|
||
|
'2011-04'], freq='M', name='idx')
|
||
|
|
||
|
f = lambda x: x == pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([False, False, True, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') == x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x == tslib.NaT
|
||
|
exp = np.array([False, False, False, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: tslib.NaT == x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x != pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([True, True, False, True], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') != x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x != tslib.NaT
|
||
|
exp = np.array([True, True, True, True], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
f = lambda x: tslib.NaT != x
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: pd.Period('2011-03', freq='M') >= x
|
||
|
exp = np.array([True, False, True, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x < pd.Period('2011-03', freq='M')
|
||
|
exp = np.array([True, False, False, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: x > tslib.NaT
|
||
|
exp = np.array([False, False, False, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|
||
|
|
||
|
f = lambda x: tslib.NaT >= x
|
||
|
exp = np.array([False, False, False, False], dtype=np.bool)
|
||
|
self._check(idx, f, exp)
|