laywerrobot/lib/python3.6/site-packages/pandas/tests/indexes/period/test_ops.py

506 lines
20 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
import numpy as np
import pytest
import pandas as pd
import pandas._libs.tslib as tslib
import pandas.util.testing as tm
from pandas import (DatetimeIndex, PeriodIndex, Series, Period,
_np_version_under1p10, Index)
from pandas.tests.test_base import Ops
class TestPeriodIndexOps(Ops):
def setup_method(self, method):
super(TestPeriodIndexOps, self).setup_method(method)
mask = lambda x: (isinstance(x, DatetimeIndex) or
isinstance(x, PeriodIndex))
self.is_valid_objs = [o for o in self.objs if mask(o)]
self.not_valid_objs = [o for o in self.objs if not mask(o)]
def test_ops_properties(self):
f = lambda x: isinstance(x, PeriodIndex)
self.check_ops_properties(PeriodIndex._field_ops, f)
self.check_ops_properties(PeriodIndex._object_ops, f)
self.check_ops_properties(PeriodIndex._bool_ops, f)
def test_minmax(self):
# monotonic
idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02',
'2011-01-03'], freq='D')
assert idx1.is_monotonic
# non-monotonic
idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03',
'2011-01-02', pd.NaT], freq='D')
assert not idx2.is_monotonic
for idx in [idx1, idx2]:
assert idx.min() == pd.Period('2011-01-01', freq='D')
assert idx.max() == pd.Period('2011-01-03', freq='D')
assert idx1.argmin() == 1
assert idx2.argmin() == 0
assert idx1.argmax() == 3
assert idx2.argmax() == 2
for op in ['min', 'max']:
# Return NaT
obj = PeriodIndex([], freq='M')
result = getattr(obj, op)()
assert result is tslib.NaT
obj = PeriodIndex([pd.NaT], freq='M')
result = getattr(obj, op)()
assert result is tslib.NaT
obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M')
result = getattr(obj, op)()
assert result is tslib.NaT
def test_numpy_minmax(self):
pr = pd.period_range(start='2016-01-15', end='2016-01-20')
assert np.min(pr) == Period('2016-01-15', freq='D')
assert np.max(pr) == Period('2016-01-20', freq='D')
errmsg = "the 'out' parameter is not supported"
tm.assert_raises_regex(ValueError, errmsg, np.min, pr, out=0)
tm.assert_raises_regex(ValueError, errmsg, np.max, pr, out=0)
assert np.argmin(pr) == 0
assert np.argmax(pr) == 5
if not _np_version_under1p10:
errmsg = "the 'out' parameter is not supported"
tm.assert_raises_regex(
ValueError, errmsg, np.argmin, pr, out=0)
tm.assert_raises_regex(
ValueError, errmsg, np.argmax, pr, out=0)
def test_resolution(self):
for freq, expected in zip(['A', 'Q', 'M', 'D', 'H',
'T', 'S', 'L', 'U'],
['day', 'day', 'day', 'day',
'hour', 'minute', 'second',
'millisecond', 'microsecond']):
idx = pd.period_range(start='2013-04-01', periods=30, freq=freq)
assert idx.resolution == expected
def test_value_counts_unique(self):
# GH 7735
idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10)
# create repeated values, 'n'th element is repeated by n+1 times
idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)),
freq='H')
exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00',
'2011-01-01 16:00', '2011-01-01 15:00',
'2011-01-01 14:00', '2011-01-01 13:00',
'2011-01-01 12:00', '2011-01-01 11:00',
'2011-01-01 10:00',
'2011-01-01 09:00'], freq='H')
expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64')
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(), expected)
expected = pd.period_range('2011-01-01 09:00', freq='H',
periods=10)
tm.assert_index_equal(idx.unique(), expected)
idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00',
'2013-01-01 09:00', '2013-01-01 08:00',
'2013-01-01 08:00', pd.NaT], freq='H')
exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'],
freq='H')
expected = Series([3, 2], index=exp_idx)
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(), expected)
exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00',
pd.NaT], freq='H')
expected = Series([3, 2, 1], index=exp_idx)
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(dropna=False), expected)
tm.assert_index_equal(idx.unique(), exp_idx)
def test_drop_duplicates_metadata(self):
# GH 10115
idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx')
result = idx.drop_duplicates()
tm.assert_index_equal(idx, result)
assert idx.freq == result.freq
idx_dup = idx.append(idx) # freq will not be reset
result = idx_dup.drop_duplicates()
tm.assert_index_equal(idx, result)
assert idx.freq == result.freq
def test_drop_duplicates(self):
# to check Index/Series compat
base = pd.period_range('2011-01-01', '2011-01-31', freq='D',
name='idx')
idx = base.append(base[:5])
res = idx.drop_duplicates()
tm.assert_index_equal(res, base)
res = Series(idx).drop_duplicates()
tm.assert_series_equal(res, Series(base))
res = idx.drop_duplicates(keep='last')
exp = base[5:].append(base[:5])
tm.assert_index_equal(res, exp)
res = Series(idx).drop_duplicates(keep='last')
tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36)))
res = idx.drop_duplicates(keep=False)
tm.assert_index_equal(res, base[5:])
res = Series(idx).drop_duplicates(keep=False)
tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31)))
def test_order_compat(self):
def _check_freq(index, expected_index):
if isinstance(index, PeriodIndex):
assert index.freq == expected_index.freq
pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A')
# for compatibility check
iidx = Index([2011, 2012, 2013], name='idx')
for idx in [pidx, iidx]:
ordered = idx.sort_values()
tm.assert_index_equal(ordered, idx)
_check_freq(ordered, idx)
ordered = idx.sort_values(ascending=False)
tm.assert_index_equal(ordered, idx[::-1])
_check_freq(ordered, idx[::-1])
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, idx)
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]),
check_dtype=False)
_check_freq(ordered, idx)
ordered, indexer = idx.sort_values(return_indexer=True,
ascending=False)
tm.assert_index_equal(ordered, idx[::-1])
tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]),
check_dtype=False)
_check_freq(ordered, idx[::-1])
pidx = PeriodIndex(['2011', '2013', '2015', '2012',
'2011'], name='pidx', freq='A')
pexpected = PeriodIndex(
['2011', '2011', '2012', '2013', '2015'], name='pidx', freq='A')
# for compatibility check
iidx = Index([2011, 2013, 2015, 2012, 2011], name='idx')
iexpected = Index([2011, 2011, 2012, 2013, 2015], name='idx')
for idx, expected in [(pidx, pexpected), (iidx, iexpected)]:
ordered = idx.sort_values()
tm.assert_index_equal(ordered, expected)
_check_freq(ordered, idx)
ordered = idx.sort_values(ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
_check_freq(ordered, idx)
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, expected)
exp = np.array([0, 4, 3, 1, 2])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
_check_freq(ordered, idx)
ordered, indexer = idx.sort_values(return_indexer=True,
ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
exp = np.array([2, 1, 3, 4, 0])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
_check_freq(ordered, idx)
pidx = PeriodIndex(['2011', '2013', 'NaT', '2011'], name='pidx',
freq='D')
result = pidx.sort_values()
expected = PeriodIndex(['NaT', '2011', '2011', '2013'],
name='pidx', freq='D')
tm.assert_index_equal(result, expected)
assert result.freq == 'D'
result = pidx.sort_values(ascending=False)
expected = PeriodIndex(
['2013', '2011', '2011', 'NaT'], name='pidx', freq='D')
tm.assert_index_equal(result, expected)
assert result.freq == 'D'
def test_order(self):
for freq in ['D', '2D', '4D']:
idx = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'],
freq=freq, name='idx')
ordered = idx.sort_values()
tm.assert_index_equal(ordered, idx)
assert ordered.freq == idx.freq
ordered = idx.sort_values(ascending=False)
expected = idx[::-1]
tm.assert_index_equal(ordered, expected)
assert ordered.freq == expected.freq
assert ordered.freq == freq
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, idx)
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]),
check_dtype=False)
assert ordered.freq == idx.freq
assert ordered.freq == freq
ordered, indexer = idx.sort_values(return_indexer=True,
ascending=False)
expected = idx[::-1]
tm.assert_index_equal(ordered, expected)
tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]),
check_dtype=False)
assert ordered.freq == expected.freq
assert ordered.freq == freq
idx1 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05',
'2011-01-02', '2011-01-01'], freq='D', name='idx1')
exp1 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02',
'2011-01-03', '2011-01-05'], freq='D', name='idx1')
idx2 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05',
'2011-01-02', '2011-01-01'],
freq='D', name='idx2')
exp2 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02',
'2011-01-03', '2011-01-05'],
freq='D', name='idx2')
idx3 = PeriodIndex([pd.NaT, '2011-01-03', '2011-01-05',
'2011-01-02', pd.NaT], freq='D', name='idx3')
exp3 = PeriodIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03',
'2011-01-05'], freq='D', name='idx3')
for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]:
ordered = idx.sort_values()
tm.assert_index_equal(ordered, expected)
assert ordered.freq == 'D'
ordered = idx.sort_values(ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
assert ordered.freq == 'D'
ordered, indexer = idx.sort_values(return_indexer=True)
tm.assert_index_equal(ordered, expected)
exp = np.array([0, 4, 3, 1, 2])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
assert ordered.freq == 'D'
ordered, indexer = idx.sort_values(return_indexer=True,
ascending=False)
tm.assert_index_equal(ordered, expected[::-1])
exp = np.array([2, 1, 3, 4, 0])
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
assert ordered.freq == 'D'
def test_nat_new(self):
idx = pd.period_range('2011-01', freq='M', periods=5, name='x')
result = idx._nat_new()
exp = pd.PeriodIndex([pd.NaT] * 5, freq='M', name='x')
tm.assert_index_equal(result, exp)
result = idx._nat_new(box=False)
exp = np.array([tslib.iNaT] * 5, dtype=np.int64)
tm.assert_numpy_array_equal(result, exp)
def test_shift(self):
# This is tested in test_arithmetic
pass
def test_repeat(self):
index = pd.period_range('2001-01-01', periods=2, freq='D')
exp = pd.PeriodIndex(['2001-01-01', '2001-01-01',
'2001-01-02', '2001-01-02'], freq='D')
for res in [index.repeat(2), np.repeat(index, 2)]:
tm.assert_index_equal(res, exp)
index = pd.period_range('2001-01-01', periods=2, freq='2D')
exp = pd.PeriodIndex(['2001-01-01', '2001-01-01',
'2001-01-03', '2001-01-03'], freq='2D')
for res in [index.repeat(2), np.repeat(index, 2)]:
tm.assert_index_equal(res, exp)
index = pd.PeriodIndex(['2001-01', 'NaT', '2003-01'], freq='M')
exp = pd.PeriodIndex(['2001-01', '2001-01', '2001-01',
'NaT', 'NaT', 'NaT',
'2003-01', '2003-01', '2003-01'], freq='M')
for res in [index.repeat(3), np.repeat(index, 3)]:
tm.assert_index_equal(res, exp)
def test_nat(self):
assert pd.PeriodIndex._na_value is pd.NaT
assert pd.PeriodIndex([], freq='M')._na_value is pd.NaT
idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D')
assert idx._can_hold_na
tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
assert not idx.hasnans
tm.assert_numpy_array_equal(idx._nan_idxs,
np.array([], dtype=np.intp))
idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D')
assert idx._can_hold_na
tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
assert idx.hasnans
tm.assert_numpy_array_equal(idx._nan_idxs,
np.array([1], dtype=np.intp))
@pytest.mark.parametrize('freq', ['D', 'M'])
def test_equals(self, freq):
# GH#13107
idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'],
freq=freq)
assert idx.equals(idx)
assert idx.equals(idx.copy())
assert idx.equals(idx.astype(object))
assert idx.astype(object).equals(idx)
assert idx.astype(object).equals(idx.astype(object))
assert not idx.equals(list(idx))
assert not idx.equals(pd.Series(idx))
idx2 = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'],
freq='H')
assert not idx.equals(idx2)
assert not idx.equals(idx2.copy())
assert not idx.equals(idx2.astype(object))
assert not idx.astype(object).equals(idx2)
assert not idx.equals(list(idx2))
assert not idx.equals(pd.Series(idx2))
# same internal, different tz
idx3 = pd.PeriodIndex._simple_new(idx.asi8, freq='H')
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
assert not idx.equals(idx3)
assert not idx.equals(idx3.copy())
assert not idx.equals(idx3.astype(object))
assert not idx.astype(object).equals(idx3)
assert not idx.equals(list(idx3))
assert not idx.equals(pd.Series(idx3))
def test_freq_setter_deprecated(self):
# GH 20678
idx = pd.period_range('2018Q1', periods=4, freq='Q')
# no warning for getter
with tm.assert_produces_warning(None):
idx.freq
# warning for setter
with tm.assert_produces_warning(FutureWarning):
idx.freq = pd.offsets.Day()
class TestPeriodIndexSeriesMethods(object):
""" Test PeriodIndex and Period Series Ops consistency """
def _check(self, values, func, expected):
idx = pd.PeriodIndex(values)
result = func(idx)
if isinstance(expected, pd.Index):
tm.assert_index_equal(result, expected)
else:
# comp op results in bool
tm.assert_numpy_array_equal(result, expected)
s = pd.Series(values)
result = func(s)
exp = pd.Series(expected, name=values.name)
tm.assert_series_equal(result, exp)
def test_pi_comp_period(self):
idx = PeriodIndex(['2011-01', '2011-02', '2011-03',
'2011-04'], freq='M', name='idx')
f = lambda x: x == pd.Period('2011-03', freq='M')
exp = np.array([False, False, True, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') == x
self._check(idx, f, exp)
f = lambda x: x != pd.Period('2011-03', freq='M')
exp = np.array([True, True, False, True], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') != x
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') >= x
exp = np.array([True, True, True, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: x > pd.Period('2011-03', freq='M')
exp = np.array([False, False, False, True], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') >= x
exp = np.array([True, True, True, False], dtype=np.bool)
self._check(idx, f, exp)
def test_pi_comp_period_nat(self):
idx = PeriodIndex(['2011-01', 'NaT', '2011-03',
'2011-04'], freq='M', name='idx')
f = lambda x: x == pd.Period('2011-03', freq='M')
exp = np.array([False, False, True, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') == x
self._check(idx, f, exp)
f = lambda x: x == tslib.NaT
exp = np.array([False, False, False, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: tslib.NaT == x
self._check(idx, f, exp)
f = lambda x: x != pd.Period('2011-03', freq='M')
exp = np.array([True, True, False, True], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') != x
self._check(idx, f, exp)
f = lambda x: x != tslib.NaT
exp = np.array([True, True, True, True], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: tslib.NaT != x
self._check(idx, f, exp)
f = lambda x: pd.Period('2011-03', freq='M') >= x
exp = np.array([True, False, True, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: x < pd.Period('2011-03', freq='M')
exp = np.array([True, False, False, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: x > tslib.NaT
exp = np.array([False, False, False, False], dtype=np.bool)
self._check(idx, f, exp)
f = lambda x: tslib.NaT >= x
exp = np.array([False, False, False, False], dtype=np.bool)
self._check(idx, f, exp)