555 lines
20 KiB
Python
555 lines
20 KiB
Python
|
import pytest
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from datetime import datetime
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._libs.tslib as tslib
|
||
|
import pandas.util.testing as tm
|
||
|
from pandas import (DatetimeIndex, PeriodIndex, Series, Timestamp,
|
||
|
date_range, _np_version_under1p10, Index,
|
||
|
bdate_range)
|
||
|
from pandas.tseries.offsets import BMonthEnd, CDay, BDay, Day, Hour
|
||
|
from pandas.tests.test_base import Ops
|
||
|
from pandas.core.dtypes.generic import ABCDateOffset
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern',
|
||
|
'dateutil/Asia/Singapore',
|
||
|
'dateutil/US/Pacific'])
|
||
|
def tz_fixture(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
START, END = datetime(2009, 1, 1), datetime(2010, 1, 1)
|
||
|
|
||
|
|
||
|
class TestDatetimeIndexOps(Ops):
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
super(TestDatetimeIndexOps, self).setup_method(method)
|
||
|
mask = lambda x: (isinstance(x, DatetimeIndex) or
|
||
|
isinstance(x, PeriodIndex))
|
||
|
self.is_valid_objs = [o for o in self.objs if mask(o)]
|
||
|
self.not_valid_objs = [o for o in self.objs if not mask(o)]
|
||
|
|
||
|
def test_ops_properties(self):
|
||
|
f = lambda x: isinstance(x, DatetimeIndex)
|
||
|
self.check_ops_properties(DatetimeIndex._field_ops, f)
|
||
|
self.check_ops_properties(DatetimeIndex._object_ops, f)
|
||
|
self.check_ops_properties(DatetimeIndex._bool_ops, f)
|
||
|
|
||
|
def test_ops_properties_basic(self):
|
||
|
|
||
|
# sanity check that the behavior didn't change
|
||
|
# GH7206
|
||
|
for op in ['year', 'day', 'second', 'weekday']:
|
||
|
pytest.raises(TypeError, lambda x: getattr(self.dt_series, op))
|
||
|
|
||
|
# attribute access should still work!
|
||
|
s = Series(dict(year=2000, month=1, day=10))
|
||
|
assert s.year == 2000
|
||
|
assert s.month == 1
|
||
|
assert s.day == 10
|
||
|
pytest.raises(AttributeError, lambda: s.weekday)
|
||
|
|
||
|
def test_minmax_tz(self, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
# monotonic
|
||
|
idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02',
|
||
|
'2011-01-03'], tz=tz)
|
||
|
assert idx1.is_monotonic
|
||
|
|
||
|
# non-monotonic
|
||
|
idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03',
|
||
|
'2011-01-02', pd.NaT], tz=tz)
|
||
|
assert not idx2.is_monotonic
|
||
|
|
||
|
for idx in [idx1, idx2]:
|
||
|
assert idx.min() == Timestamp('2011-01-01', tz=tz)
|
||
|
assert idx.max() == Timestamp('2011-01-03', tz=tz)
|
||
|
assert idx.argmin() == 0
|
||
|
assert idx.argmax() == 2
|
||
|
|
||
|
@pytest.mark.parametrize('op', ['min', 'max'])
|
||
|
def test_minmax_nat(self, op):
|
||
|
# Return NaT
|
||
|
obj = DatetimeIndex([])
|
||
|
assert pd.isna(getattr(obj, op)())
|
||
|
|
||
|
obj = DatetimeIndex([pd.NaT])
|
||
|
assert pd.isna(getattr(obj, op)())
|
||
|
|
||
|
obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT])
|
||
|
assert pd.isna(getattr(obj, op)())
|
||
|
|
||
|
def test_numpy_minmax(self):
|
||
|
dr = pd.date_range(start='2016-01-15', end='2016-01-20')
|
||
|
|
||
|
assert np.min(dr) == Timestamp('2016-01-15 00:00:00', freq='D')
|
||
|
assert np.max(dr) == Timestamp('2016-01-20 00:00:00', freq='D')
|
||
|
|
||
|
errmsg = "the 'out' parameter is not supported"
|
||
|
tm.assert_raises_regex(ValueError, errmsg, np.min, dr, out=0)
|
||
|
tm.assert_raises_regex(ValueError, errmsg, np.max, dr, out=0)
|
||
|
|
||
|
assert np.argmin(dr) == 0
|
||
|
assert np.argmax(dr) == 5
|
||
|
|
||
|
if not _np_version_under1p10:
|
||
|
errmsg = "the 'out' parameter is not supported"
|
||
|
tm.assert_raises_regex(
|
||
|
ValueError, errmsg, np.argmin, dr, out=0)
|
||
|
tm.assert_raises_regex(
|
||
|
ValueError, errmsg, np.argmax, dr, out=0)
|
||
|
|
||
|
def test_repeat_range(self, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
rng = date_range('1/1/2000', '1/1/2001')
|
||
|
|
||
|
result = rng.repeat(5)
|
||
|
assert result.freq is None
|
||
|
assert len(result) == 5 * len(rng)
|
||
|
|
||
|
index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz)
|
||
|
exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01',
|
||
|
'2001-01-02', '2001-01-02'], tz=tz)
|
||
|
for res in [index.repeat(2), np.repeat(index, 2)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
assert res.freq is None
|
||
|
|
||
|
index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz)
|
||
|
exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01',
|
||
|
'2001-01-03', '2001-01-03'], tz=tz)
|
||
|
for res in [index.repeat(2), np.repeat(index, 2)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
assert res.freq is None
|
||
|
|
||
|
index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'],
|
||
|
tz=tz)
|
||
|
exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01',
|
||
|
'NaT', 'NaT', 'NaT',
|
||
|
'2003-01-01', '2003-01-01', '2003-01-01'],
|
||
|
tz=tz)
|
||
|
for res in [index.repeat(3), np.repeat(index, 3)]:
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
assert res.freq is None
|
||
|
|
||
|
def test_repeat(self, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
reps = 2
|
||
|
msg = "the 'axis' parameter is not supported"
|
||
|
|
||
|
rng = pd.date_range(start='2016-01-01', periods=2,
|
||
|
freq='30Min', tz=tz)
|
||
|
|
||
|
expected_rng = DatetimeIndex([
|
||
|
Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'),
|
||
|
Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'),
|
||
|
Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'),
|
||
|
Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'),
|
||
|
])
|
||
|
|
||
|
res = rng.repeat(reps)
|
||
|
tm.assert_index_equal(res, expected_rng)
|
||
|
assert res.freq is None
|
||
|
|
||
|
tm.assert_index_equal(np.repeat(rng, reps), expected_rng)
|
||
|
tm.assert_raises_regex(ValueError, msg, np.repeat,
|
||
|
rng, reps, axis=1)
|
||
|
|
||
|
def test_resolution(self, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T',
|
||
|
'S', 'L', 'U'],
|
||
|
['day', 'day', 'day', 'day', 'hour',
|
||
|
'minute', 'second', 'millisecond',
|
||
|
'microsecond']):
|
||
|
idx = pd.date_range(start='2013-04-01', periods=30, freq=freq,
|
||
|
tz=tz)
|
||
|
assert idx.resolution == expected
|
||
|
|
||
|
def test_value_counts_unique(self, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
# GH 7735
|
||
|
idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10)
|
||
|
# create repeated values, 'n'th element is repeated by n+1 times
|
||
|
idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)),
|
||
|
tz=tz)
|
||
|
|
||
|
exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10,
|
||
|
tz=tz)
|
||
|
expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64')
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(), expected)
|
||
|
|
||
|
expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10,
|
||
|
tz=tz)
|
||
|
tm.assert_index_equal(idx.unique(), expected)
|
||
|
|
||
|
idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00',
|
||
|
'2013-01-01 09:00', '2013-01-01 08:00',
|
||
|
'2013-01-01 08:00', pd.NaT], tz=tz)
|
||
|
|
||
|
exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'],
|
||
|
tz=tz)
|
||
|
expected = Series([3, 2], index=exp_idx)
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(), expected)
|
||
|
|
||
|
exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00',
|
||
|
pd.NaT], tz=tz)
|
||
|
expected = Series([3, 2, 1], index=exp_idx)
|
||
|
|
||
|
for obj in [idx, Series(idx)]:
|
||
|
tm.assert_series_equal(obj.value_counts(dropna=False),
|
||
|
expected)
|
||
|
|
||
|
tm.assert_index_equal(idx.unique(), exp_idx)
|
||
|
|
||
|
def test_nonunique_contains(self):
|
||
|
# GH 9512
|
||
|
for idx in map(DatetimeIndex,
|
||
|
([0, 1, 0], [0, 0, -1], [0, -1, -1],
|
||
|
['2015', '2015', '2016'], ['2015', '2015', '2014'])):
|
||
|
assert idx[0] in idx
|
||
|
|
||
|
@pytest.mark.parametrize('idx',
|
||
|
[
|
||
|
DatetimeIndex(
|
||
|
['2011-01-01',
|
||
|
'2011-01-02',
|
||
|
'2011-01-03'],
|
||
|
freq='D', name='idx'),
|
||
|
DatetimeIndex(
|
||
|
['2011-01-01 09:00',
|
||
|
'2011-01-01 10:00',
|
||
|
'2011-01-01 11:00'],
|
||
|
freq='H', name='tzidx', tz='Asia/Tokyo')
|
||
|
])
|
||
|
def test_order_with_freq(self, idx):
|
||
|
ordered = idx.sort_values()
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
assert ordered.freq == idx.freq
|
||
|
|
||
|
ordered = idx.sort_values(ascending=False)
|
||
|
expected = idx[::-1]
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
assert ordered.freq == expected.freq
|
||
|
assert ordered.freq.n == -1
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, idx)
|
||
|
tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]),
|
||
|
check_dtype=False)
|
||
|
assert ordered.freq == idx.freq
|
||
|
|
||
|
ordered, indexer = idx.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
expected = idx[::-1]
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
tm.assert_numpy_array_equal(indexer,
|
||
|
np.array([2, 1, 0]),
|
||
|
check_dtype=False)
|
||
|
assert ordered.freq == expected.freq
|
||
|
assert ordered.freq.n == -1
|
||
|
|
||
|
@pytest.mark.parametrize('index_dates,expected_dates', [
|
||
|
(['2011-01-01', '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', '2011-01-01'],
|
||
|
['2011-01-01', '2011-01-01', '2011-01-02',
|
||
|
'2011-01-03', '2011-01-05']),
|
||
|
(['2011-01-01', '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', '2011-01-01'],
|
||
|
['2011-01-01', '2011-01-01', '2011-01-02',
|
||
|
'2011-01-03', '2011-01-05']),
|
||
|
([pd.NaT, '2011-01-03', '2011-01-05',
|
||
|
'2011-01-02', pd.NaT],
|
||
|
[pd.NaT, pd.NaT, '2011-01-02', '2011-01-03',
|
||
|
'2011-01-05'])
|
||
|
])
|
||
|
def test_order_without_freq(self, index_dates, expected_dates, tz_fixture):
|
||
|
tz = tz_fixture
|
||
|
|
||
|
# without freq
|
||
|
index = DatetimeIndex(index_dates, tz=tz, name='idx')
|
||
|
expected = DatetimeIndex(expected_dates, tz=tz, name='idx')
|
||
|
|
||
|
ordered = index.sort_values()
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
assert ordered.freq is None
|
||
|
|
||
|
ordered = index.sort_values(ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
assert ordered.freq is None
|
||
|
|
||
|
ordered, indexer = index.sort_values(return_indexer=True)
|
||
|
tm.assert_index_equal(ordered, expected)
|
||
|
|
||
|
exp = np.array([0, 4, 3, 1, 2])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
assert ordered.freq is None
|
||
|
|
||
|
ordered, indexer = index.sort_values(return_indexer=True,
|
||
|
ascending=False)
|
||
|
tm.assert_index_equal(ordered, expected[::-1])
|
||
|
|
||
|
exp = np.array([2, 1, 3, 4, 0])
|
||
|
tm.assert_numpy_array_equal(indexer, exp, check_dtype=False)
|
||
|
assert ordered.freq is None
|
||
|
|
||
|
def test_drop_duplicates_metadata(self):
|
||
|
# GH 10115
|
||
|
idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx')
|
||
|
result = idx.drop_duplicates()
|
||
|
tm.assert_index_equal(idx, result)
|
||
|
assert idx.freq == result.freq
|
||
|
|
||
|
idx_dup = idx.append(idx)
|
||
|
assert idx_dup.freq is None # freq is reset
|
||
|
result = idx_dup.drop_duplicates()
|
||
|
tm.assert_index_equal(idx, result)
|
||
|
assert result.freq is None
|
||
|
|
||
|
def test_drop_duplicates(self):
|
||
|
# to check Index/Series compat
|
||
|
base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx')
|
||
|
idx = base.append(base[:5])
|
||
|
|
||
|
res = idx.drop_duplicates()
|
||
|
tm.assert_index_equal(res, base)
|
||
|
res = Series(idx).drop_duplicates()
|
||
|
tm.assert_series_equal(res, Series(base))
|
||
|
|
||
|
res = idx.drop_duplicates(keep='last')
|
||
|
exp = base[5:].append(base[:5])
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
res = Series(idx).drop_duplicates(keep='last')
|
||
|
tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36)))
|
||
|
|
||
|
res = idx.drop_duplicates(keep=False)
|
||
|
tm.assert_index_equal(res, base[5:])
|
||
|
res = Series(idx).drop_duplicates(keep=False)
|
||
|
tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31)))
|
||
|
|
||
|
@pytest.mark.parametrize('freq', [
|
||
|
'A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D',
|
||
|
'-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S',
|
||
|
'-3S'])
|
||
|
def test_infer_freq(self, freq):
|
||
|
# GH 11018
|
||
|
idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10)
|
||
|
result = pd.DatetimeIndex(idx.asi8, freq='infer')
|
||
|
tm.assert_index_equal(idx, result)
|
||
|
assert result.freq == freq
|
||
|
|
||
|
def test_nat_new(self):
|
||
|
idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x')
|
||
|
result = idx._nat_new()
|
||
|
exp = pd.DatetimeIndex([pd.NaT] * 5, name='x')
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
result = idx._nat_new(box=False)
|
||
|
exp = np.array([tslib.iNaT] * 5, dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result, exp)
|
||
|
|
||
|
def test_nat(self, tz_naive_fixture):
|
||
|
timezone = tz_naive_fixture
|
||
|
assert pd.DatetimeIndex._na_value is pd.NaT
|
||
|
assert pd.DatetimeIndex([])._na_value is pd.NaT
|
||
|
|
||
|
idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=timezone)
|
||
|
assert idx._can_hold_na
|
||
|
|
||
|
tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
|
||
|
assert not idx.hasnans
|
||
|
tm.assert_numpy_array_equal(idx._nan_idxs,
|
||
|
np.array([], dtype=np.intp))
|
||
|
|
||
|
idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=timezone)
|
||
|
assert idx._can_hold_na
|
||
|
|
||
|
tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
|
||
|
assert idx.hasnans
|
||
|
tm.assert_numpy_array_equal(idx._nan_idxs,
|
||
|
np.array([1], dtype=np.intp))
|
||
|
|
||
|
def test_equals(self):
|
||
|
# GH 13107
|
||
|
idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'])
|
||
|
assert idx.equals(idx)
|
||
|
assert idx.equals(idx.copy())
|
||
|
assert idx.equals(idx.astype(object))
|
||
|
assert idx.astype(object).equals(idx)
|
||
|
assert idx.astype(object).equals(idx.astype(object))
|
||
|
assert not idx.equals(list(idx))
|
||
|
assert not idx.equals(pd.Series(idx))
|
||
|
|
||
|
idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'],
|
||
|
tz='US/Pacific')
|
||
|
assert not idx.equals(idx2)
|
||
|
assert not idx.equals(idx2.copy())
|
||
|
assert not idx.equals(idx2.astype(object))
|
||
|
assert not idx.astype(object).equals(idx2)
|
||
|
assert not idx.equals(list(idx2))
|
||
|
assert not idx.equals(pd.Series(idx2))
|
||
|
|
||
|
# same internal, different tz
|
||
|
idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific')
|
||
|
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
|
||
|
assert not idx.equals(idx3)
|
||
|
assert not idx.equals(idx3.copy())
|
||
|
assert not idx.equals(idx3.astype(object))
|
||
|
assert not idx.astype(object).equals(idx3)
|
||
|
assert not idx.equals(list(idx3))
|
||
|
assert not idx.equals(pd.Series(idx3))
|
||
|
|
||
|
@pytest.mark.parametrize('values', [
|
||
|
['20180101', '20180103', '20180105'], []])
|
||
|
@pytest.mark.parametrize('freq', [
|
||
|
'2D', Day(2), '2B', BDay(2), '48H', Hour(48)])
|
||
|
@pytest.mark.parametrize('tz', [None, 'US/Eastern'])
|
||
|
def test_freq_setter(self, values, freq, tz):
|
||
|
# GH 20678
|
||
|
idx = DatetimeIndex(values, tz=tz)
|
||
|
|
||
|
# can set to an offset, converting from string if necessary
|
||
|
idx.freq = freq
|
||
|
assert idx.freq == freq
|
||
|
assert isinstance(idx.freq, ABCDateOffset)
|
||
|
|
||
|
# can reset to None
|
||
|
idx.freq = None
|
||
|
assert idx.freq is None
|
||
|
|
||
|
def test_freq_setter_errors(self):
|
||
|
# GH 20678
|
||
|
idx = DatetimeIndex(['20180101', '20180103', '20180105'])
|
||
|
|
||
|
# setting with an incompatible freq
|
||
|
msg = ('Inferred frequency 2D from passed values does not conform to '
|
||
|
'passed frequency 5D')
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
idx.freq = '5D'
|
||
|
|
||
|
# setting with non-freq string
|
||
|
with tm.assert_raises_regex(ValueError, 'Invalid frequency'):
|
||
|
idx.freq = 'foo'
|
||
|
|
||
|
def test_offset_deprecated(self):
|
||
|
# GH 20716
|
||
|
idx = pd.DatetimeIndex(['20180101', '20180102'])
|
||
|
|
||
|
# getter deprecated
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
idx.offset
|
||
|
|
||
|
# setter deprecated
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
idx.offset = BDay()
|
||
|
|
||
|
|
||
|
class TestBusinessDatetimeIndex(object):
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
self.rng = bdate_range(START, END)
|
||
|
|
||
|
def test_comparison(self):
|
||
|
d = self.rng[10]
|
||
|
|
||
|
comp = self.rng > d
|
||
|
assert comp[11]
|
||
|
assert not comp[9]
|
||
|
|
||
|
def test_pickle_unpickle(self):
|
||
|
unpickled = tm.round_trip_pickle(self.rng)
|
||
|
assert unpickled.freq is not None
|
||
|
|
||
|
def test_copy(self):
|
||
|
cp = self.rng.copy()
|
||
|
repr(cp)
|
||
|
tm.assert_index_equal(cp, self.rng)
|
||
|
|
||
|
def test_shift(self):
|
||
|
shifted = self.rng.shift(5)
|
||
|
assert shifted[0] == self.rng[5]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
shifted = self.rng.shift(-5)
|
||
|
assert shifted[5] == self.rng[0]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
shifted = self.rng.shift(0)
|
||
|
assert shifted[0] == self.rng[0]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
rng = date_range(START, END, freq=BMonthEnd())
|
||
|
shifted = rng.shift(1, freq=BDay())
|
||
|
assert shifted[0] == rng[0] + BDay()
|
||
|
|
||
|
def test_equals(self):
|
||
|
assert not self.rng.equals(list(self.rng))
|
||
|
|
||
|
def test_identical(self):
|
||
|
t1 = self.rng.copy()
|
||
|
t2 = self.rng.copy()
|
||
|
assert t1.identical(t2)
|
||
|
|
||
|
# name
|
||
|
t1 = t1.rename('foo')
|
||
|
assert t1.equals(t2)
|
||
|
assert not t1.identical(t2)
|
||
|
t2 = t2.rename('foo')
|
||
|
assert t1.identical(t2)
|
||
|
|
||
|
# freq
|
||
|
t2v = Index(t2.values)
|
||
|
assert t1.equals(t2v)
|
||
|
assert not t1.identical(t2v)
|
||
|
|
||
|
|
||
|
class TestCustomDatetimeIndex(object):
|
||
|
def setup_method(self, method):
|
||
|
self.rng = bdate_range(START, END, freq='C')
|
||
|
|
||
|
def test_comparison(self):
|
||
|
d = self.rng[10]
|
||
|
|
||
|
comp = self.rng > d
|
||
|
assert comp[11]
|
||
|
assert not comp[9]
|
||
|
|
||
|
def test_copy(self):
|
||
|
cp = self.rng.copy()
|
||
|
repr(cp)
|
||
|
tm.assert_index_equal(cp, self.rng)
|
||
|
|
||
|
def test_shift(self):
|
||
|
|
||
|
shifted = self.rng.shift(5)
|
||
|
assert shifted[0] == self.rng[5]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
shifted = self.rng.shift(-5)
|
||
|
assert shifted[5] == self.rng[0]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
shifted = self.rng.shift(0)
|
||
|
assert shifted[0] == self.rng[0]
|
||
|
assert shifted.freq == self.rng.freq
|
||
|
|
||
|
# PerformanceWarning
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
rng = date_range(START, END, freq=BMonthEnd())
|
||
|
shifted = rng.shift(1, freq=CDay())
|
||
|
assert shifted[0] == rng[0] + CDay()
|
||
|
|
||
|
def test_pickle_unpickle(self):
|
||
|
unpickled = tm.round_trip_pickle(self.rng)
|
||
|
assert unpickled.freq is not None
|
||
|
|
||
|
def test_equals(self):
|
||
|
assert not self.rng.equals(list(self.rng))
|