215 lines
7.2 KiB
Python
215 lines
7.2 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (DataFrame, Series, MultiIndex, Timestamp, Timedelta,
|
||
|
Period)
|
||
|
from pandas.util.testing import (assert_series_equal, assert_frame_equal)
|
||
|
from pandas.compat import (range, product as cart_product)
|
||
|
|
||
|
|
||
|
class TestCounting(object):
|
||
|
|
||
|
def test_cumcount(self):
|
||
|
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'])
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 1, 2, 0, 3])
|
||
|
|
||
|
assert_series_equal(expected, g.cumcount())
|
||
|
assert_series_equal(expected, sg.cumcount())
|
||
|
|
||
|
def test_cumcount_empty(self):
|
||
|
ge = DataFrame().groupby(level=0)
|
||
|
se = Series().groupby(level=0)
|
||
|
|
||
|
# edge case, as this is usually considered float
|
||
|
e = Series(dtype='int64')
|
||
|
|
||
|
assert_series_equal(e, ge.cumcount())
|
||
|
assert_series_equal(e, se.cumcount())
|
||
|
|
||
|
def test_cumcount_dupe_index(self):
|
||
|
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
|
||
|
index=[0] * 5)
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
|
||
|
|
||
|
assert_series_equal(expected, g.cumcount())
|
||
|
assert_series_equal(expected, sg.cumcount())
|
||
|
|
||
|
def test_cumcount_mi(self):
|
||
|
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
|
||
|
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
|
||
|
index=mi)
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 1, 2, 0, 3], index=mi)
|
||
|
|
||
|
assert_series_equal(expected, g.cumcount())
|
||
|
assert_series_equal(expected, sg.cumcount())
|
||
|
|
||
|
def test_cumcount_groupby_not_col(self):
|
||
|
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'],
|
||
|
index=[0] * 5)
|
||
|
g = df.groupby([0, 0, 0, 1, 0])
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
|
||
|
|
||
|
assert_series_equal(expected, g.cumcount())
|
||
|
assert_series_equal(expected, sg.cumcount())
|
||
|
|
||
|
def test_ngroup(self):
|
||
|
df = DataFrame({'A': list('aaaba')})
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 0, 0, 1, 0])
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_distinct(self):
|
||
|
df = DataFrame({'A': list('abcde')})
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series(range(5), dtype='int64')
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_one_group(self):
|
||
|
df = DataFrame({'A': [0] * 5})
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0] * 5)
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_empty(self):
|
||
|
ge = DataFrame().groupby(level=0)
|
||
|
se = Series().groupby(level=0)
|
||
|
|
||
|
# edge case, as this is usually considered float
|
||
|
e = Series(dtype='int64')
|
||
|
|
||
|
assert_series_equal(e, ge.ngroup())
|
||
|
assert_series_equal(e, se.ngroup())
|
||
|
|
||
|
def test_ngroup_series_matches_frame(self):
|
||
|
df = DataFrame({'A': list('aaaba')})
|
||
|
s = Series(list('aaaba'))
|
||
|
|
||
|
assert_series_equal(df.groupby(s).ngroup(),
|
||
|
s.groupby(s).ngroup())
|
||
|
|
||
|
def test_ngroup_dupe_index(self):
|
||
|
df = DataFrame({'A': list('aaaba')}, index=[0] * 5)
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_mi(self):
|
||
|
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
|
||
|
df = DataFrame({'A': list('aaaba')}, index=mi)
|
||
|
g = df.groupby('A')
|
||
|
sg = g.A
|
||
|
expected = Series([0, 0, 0, 1, 0], index=mi)
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_groupby_not_col(self):
|
||
|
df = DataFrame({'A': list('aaaba')}, index=[0] * 5)
|
||
|
g = df.groupby([0, 0, 0, 1, 0])
|
||
|
sg = g.A
|
||
|
|
||
|
expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
|
||
|
|
||
|
assert_series_equal(expected, g.ngroup())
|
||
|
assert_series_equal(expected, sg.ngroup())
|
||
|
|
||
|
def test_ngroup_descending(self):
|
||
|
df = DataFrame(['a', 'a', 'b', 'a', 'b'], columns=['A'])
|
||
|
g = df.groupby(['A'])
|
||
|
|
||
|
ascending = Series([0, 0, 1, 0, 1])
|
||
|
descending = Series([1, 1, 0, 1, 0])
|
||
|
|
||
|
assert_series_equal(descending, (g.ngroups - 1) - ascending)
|
||
|
assert_series_equal(ascending, g.ngroup(ascending=True))
|
||
|
assert_series_equal(descending, g.ngroup(ascending=False))
|
||
|
|
||
|
def test_ngroup_matches_cumcount(self):
|
||
|
# verify one manually-worked out case works
|
||
|
df = DataFrame([['a', 'x'], ['a', 'y'], ['b', 'x'],
|
||
|
['a', 'x'], ['b', 'y']], columns=['A', 'X'])
|
||
|
g = df.groupby(['A', 'X'])
|
||
|
g_ngroup = g.ngroup()
|
||
|
g_cumcount = g.cumcount()
|
||
|
expected_ngroup = Series([0, 1, 2, 0, 3])
|
||
|
expected_cumcount = Series([0, 0, 0, 1, 0])
|
||
|
|
||
|
assert_series_equal(g_ngroup, expected_ngroup)
|
||
|
assert_series_equal(g_cumcount, expected_cumcount)
|
||
|
|
||
|
def test_ngroup_cumcount_pair(self):
|
||
|
# brute force comparison for all small series
|
||
|
for p in cart_product(range(3), repeat=4):
|
||
|
df = DataFrame({'a': p})
|
||
|
g = df.groupby(['a'])
|
||
|
|
||
|
order = sorted(set(p))
|
||
|
ngroupd = [order.index(val) for val in p]
|
||
|
cumcounted = [p[:i].count(val) for i, val in enumerate(p)]
|
||
|
|
||
|
assert_series_equal(g.ngroup(), Series(ngroupd))
|
||
|
assert_series_equal(g.cumcount(), Series(cumcounted))
|
||
|
|
||
|
def test_ngroup_respects_groupby_order(self):
|
||
|
np.random.seed(0)
|
||
|
df = DataFrame({'a': np.random.choice(list('abcdef'), 100)})
|
||
|
for sort_flag in (False, True):
|
||
|
g = df.groupby(['a'], sort=sort_flag)
|
||
|
df['group_id'] = -1
|
||
|
df['group_index'] = -1
|
||
|
|
||
|
for i, (_, group) in enumerate(g):
|
||
|
df.loc[group.index, 'group_id'] = i
|
||
|
for j, ind in enumerate(group.index):
|
||
|
df.loc[ind, 'group_index'] = j
|
||
|
|
||
|
assert_series_equal(Series(df['group_id'].values),
|
||
|
g.ngroup())
|
||
|
assert_series_equal(Series(df['group_index'].values),
|
||
|
g.cumcount())
|
||
|
|
||
|
@pytest.mark.parametrize('datetimelike', [
|
||
|
[Timestamp('2016-05-%02d 20:09:25+00:00' % i) for i in range(1, 4)],
|
||
|
[Timestamp('2016-05-%02d 20:09:25' % i) for i in range(1, 4)],
|
||
|
[Timedelta(x, unit="h") for x in range(1, 4)],
|
||
|
[Period(freq="2W", year=2017, month=x) for x in range(1, 4)]])
|
||
|
def test_count_with_datetimelike(self, datetimelike):
|
||
|
# test for #13393, where DataframeGroupBy.count() fails
|
||
|
# when counting a datetimelike column.
|
||
|
|
||
|
df = DataFrame({'x': ['a', 'a', 'b'], 'y': datetimelike})
|
||
|
res = df.groupby('x').count()
|
||
|
expected = DataFrame({'y': [2, 1]}, index=['a', 'b'])
|
||
|
expected.index.name = "x"
|
||
|
assert_frame_equal(expected, res)
|