laywerrobot/lib/python3.6/site-packages/pandas/tests/groupby/aggregate/test_other.py

505 lines
18 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
"""
test all other .agg behavior
"""
from __future__ import print_function
import pytest
from collections import OrderedDict
import datetime as dt
from functools import partial
import numpy as np
import pandas as pd
from pandas import (
date_range, DataFrame, Index, MultiIndex, PeriodIndex, period_range, Series
)
from pandas.core.groupby.groupby import SpecificationError
from pandas.io.formats.printing import pprint_thing
import pandas.util.testing as tm
def test_agg_api():
# GH 6337
# http://stackoverflow.com/questions/21706030/pandas-groupby-agg-function-column-dtype-error
# different api for agg when passed custom function with mixed frame
df = DataFrame({'data1': np.random.randn(5),
'data2': np.random.randn(5),
'key1': ['a', 'a', 'b', 'b', 'a'],
'key2': ['one', 'two', 'one', 'two', 'one']})
grouped = df.groupby('key1')
def peak_to_peak(arr):
return arr.max() - arr.min()
expected = grouped.agg([peak_to_peak])
expected.columns = ['data1', 'data2']
result = grouped.agg(peak_to_peak)
tm.assert_frame_equal(result, expected)
def test_agg_datetimes_mixed():
data = [[1, '2012-01-01', 1.0],
[2, '2012-01-02', 2.0],
[3, None, 3.0]]
df1 = DataFrame({'key': [x[0] for x in data],
'date': [x[1] for x in data],
'value': [x[2] for x in data]})
data = [[row[0],
(dt.datetime.strptime(row[1], '%Y-%m-%d').date()
if row[1] else None),
row[2]]
for row in data]
df2 = DataFrame({'key': [x[0] for x in data],
'date': [x[1] for x in data],
'value': [x[2] for x in data]})
df1['weights'] = df1['value'] / df1['value'].sum()
gb1 = df1.groupby('date').aggregate(np.sum)
df2['weights'] = df1['value'] / df1['value'].sum()
gb2 = df2.groupby('date').aggregate(np.sum)
assert (len(gb1) == len(gb2))
def test_agg_period_index():
prng = period_range('2012-1-1', freq='M', periods=3)
df = DataFrame(np.random.randn(3, 2), index=prng)
rs = df.groupby(level=0).sum()
assert isinstance(rs.index, PeriodIndex)
# GH 3579
index = period_range(start='1999-01', periods=5, freq='M')
s1 = Series(np.random.rand(len(index)), index=index)
s2 = Series(np.random.rand(len(index)), index=index)
series = [('s1', s1), ('s2', s2)]
df = DataFrame.from_dict(OrderedDict(series))
grouped = df.groupby(df.index.month)
list(grouped)
def test_agg_dict_parameter_cast_result_dtypes():
# GH 12821
df = DataFrame({'class': ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D'],
'time': date_range('1/1/2011', periods=8, freq='H')})
df.loc[[0, 1, 2, 5], 'time'] = None
# test for `first` function
exp = df.loc[[0, 3, 4, 6]].set_index('class')
grouped = df.groupby('class')
tm.assert_frame_equal(grouped.first(), exp)
tm.assert_frame_equal(grouped.agg('first'), exp)
tm.assert_frame_equal(grouped.agg({'time': 'first'}), exp)
tm.assert_series_equal(grouped.time.first(), exp['time'])
tm.assert_series_equal(grouped.time.agg('first'), exp['time'])
# test for `last` function
exp = df.loc[[0, 3, 4, 7]].set_index('class')
grouped = df.groupby('class')
tm.assert_frame_equal(grouped.last(), exp)
tm.assert_frame_equal(grouped.agg('last'), exp)
tm.assert_frame_equal(grouped.agg({'time': 'last'}), exp)
tm.assert_series_equal(grouped.time.last(), exp['time'])
tm.assert_series_equal(grouped.time.agg('last'), exp['time'])
# count
exp = pd.Series([2, 2, 2, 2],
index=Index(list('ABCD'), name='class'),
name='time')
tm.assert_series_equal(grouped.time.agg(len), exp)
tm.assert_series_equal(grouped.time.size(), exp)
exp = pd.Series([0, 1, 1, 2],
index=Index(list('ABCD'), name='class'),
name='time')
tm.assert_series_equal(grouped.time.count(), exp)
def test_agg_cast_results_dtypes():
# similar to GH12821
# xref #11444
u = [dt.datetime(2015, x + 1, 1) for x in range(12)]
v = list('aaabbbbbbccd')
df = pd.DataFrame({'X': v, 'Y': u})
result = df.groupby('X')['Y'].agg(len)
expected = df.groupby('X')['Y'].count()
tm.assert_series_equal(result, expected)
def test_aggregate_float64_no_int64():
# see gh-11199
df = DataFrame({"a": [1, 2, 3, 4, 5],
"b": [1, 2, 2, 4, 5],
"c": [1, 2, 3, 4, 5]})
expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5])
expected.index.name = "b"
result = df.groupby("b")[["a"]].mean()
tm.assert_frame_equal(result, expected)
expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]},
index=[1, 2, 4, 5])
expected.index.name = "b"
result = df.groupby("b")[["a", "c"]].mean()
tm.assert_frame_equal(result, expected)
def test_aggregate_api_consistency():
# GH 9052
# make sure that the aggregates via dict
# are consistent
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
grouped = df.groupby(['A', 'B'])
c_mean = grouped['C'].mean()
c_sum = grouped['C'].sum()
d_mean = grouped['D'].mean()
d_sum = grouped['D'].sum()
result = grouped['D'].agg(['sum', 'mean'])
expected = pd.concat([d_sum, d_mean], axis=1)
expected.columns = ['sum', 'mean']
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg([np.sum, np.mean])
expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1)
expected.columns = MultiIndex.from_product([['C', 'D'],
['sum', 'mean']])
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped[['D', 'C']].agg([np.sum, np.mean])
expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1)
expected.columns = MultiIndex.from_product([['D', 'C'],
['sum', 'mean']])
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg({'C': 'mean', 'D': 'sum'})
expected = pd.concat([d_sum, c_mean], axis=1)
tm.assert_frame_equal(result, expected, check_like=True)
result = grouped.agg({'C': ['mean', 'sum'],
'D': ['mean', 'sum']})
expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1)
expected.columns = MultiIndex.from_product([['C', 'D'],
['mean', 'sum']])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped[['D', 'C']].agg({'r': np.sum,
'r2': np.mean})
expected = pd.concat([d_sum, c_sum, d_mean, c_mean], axis=1)
expected.columns = MultiIndex.from_product([['r', 'r2'],
['D', 'C']])
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_dict_renaming_deprecation():
# 15931
df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
'B': range(5),
'C': range(5)})
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False) as w:
df.groupby('A').agg({'B': {'foo': ['sum', 'max']},
'C': {'bar': ['count', 'min']}})
assert "using a dict with renaming" in str(w[0].message)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
df.groupby('A')[['B', 'C']].agg({'ma': 'max'})
with tm.assert_produces_warning(FutureWarning) as w:
df.groupby('A').B.agg({'foo': 'count'})
assert "using a dict on a Series for aggregation" in str(w[0].message)
def test_agg_compat():
# GH 12334
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
g = df.groupby(['A', 'B'])
expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1)
expected.columns = MultiIndex.from_tuples([('C', 'sum'),
('C', 'std')])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'C': ['sum', 'std']})
tm.assert_frame_equal(result, expected, check_like=True)
expected = pd.concat([g['D'].sum(), g['D'].std()], axis=1)
expected.columns = ['C', 'D']
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'C': 'sum', 'D': 'std'})
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_nested_dicts():
# API change for disallowing these types of nested dicts
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': np.random.randn(8) + 1.0,
'D': np.arange(8)})
g = df.groupby(['A', 'B'])
msg = r'cannot perform renaming for r[1-2] with a nested dictionary'
with tm.assert_raises_regex(SpecificationError, msg):
g.aggregate({'r1': {'C': ['mean', 'sum']},
'r2': {'D': ['mean', 'sum']}})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g.agg({'C': {'ra': ['mean', 'std']},
'D': {'rb': ['mean', 'std']}})
expected = pd.concat([g['C'].mean(), g['C'].std(),
g['D'].mean(), g['D'].std()],
axis=1)
expected.columns = pd.MultiIndex.from_tuples(
[('ra', 'mean'), ('ra', 'std'),
('rb', 'mean'), ('rb', 'std')])
tm.assert_frame_equal(result, expected, check_like=True)
# same name as the original column
# GH9052
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = g['D'].agg({'result1': np.sum, 'result2': np.mean})
expected = expected.rename(columns={'result1': 'D'})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = g['D'].agg({'D': np.sum, 'result2': np.mean})
tm.assert_frame_equal(result, expected, check_like=True)
def test_agg_item_by_item_raise_typeerror():
df = DataFrame(np.random.randint(10, size=(20, 10)))
def raiseException(df):
pprint_thing('----------------------------------------')
pprint_thing(df.to_string())
raise TypeError('test')
with tm.assert_raises_regex(TypeError, 'test'):
df.groupby(0).agg(raiseException)
def test_series_agg_multikey():
ts = tm.makeTimeSeries()
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.agg(np.sum)
expected = grouped.sum()
tm.assert_series_equal(result, expected)
def test_series_agg_multi_pure_python():
data = DataFrame(
{'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny',
'dull', 'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
def bad(x):
assert (len(x.values.base) > 0)
return 'foo'
result = data.groupby(['A', 'B']).agg(bad)
expected = data.groupby(['A', 'B']).agg(lambda x: 'foo')
tm.assert_frame_equal(result, expected)
def test_agg_consistency():
# agg with ([]) and () not consistent
# GH 6715
def P1(a):
try:
return np.percentile(a.dropna(), q=1)
except Exception:
return np.nan
df = DataFrame({'col1': [1, 2, 3, 4],
'col2': [10, 25, 26, 31],
'date': [dt.date(2013, 2, 10), dt.date(2013, 2, 10),
dt.date(2013, 2, 11), dt.date(2013, 2, 11)]})
g = df.groupby('date')
expected = g.agg([P1])
expected.columns = expected.columns.levels[0]
result = g.agg(P1)
tm.assert_frame_equal(result, expected)
def test_agg_callables():
# GH 7929
df = DataFrame({'foo': [1, 2], 'bar': [3, 4]}).astype(np.int64)
class fn_class(object):
def __call__(self, x):
return sum(x)
equiv_callables = [sum,
np.sum,
lambda x: sum(x),
lambda x: x.sum(),
partial(sum),
fn_class(), ]
expected = df.groupby("foo").agg(sum)
for ecall in equiv_callables:
result = df.groupby('foo').agg(ecall)
tm.assert_frame_equal(result, expected)
def test_agg_over_numpy_arrays():
# GH 3788
df = pd.DataFrame([[1, np.array([10, 20, 30])],
[1, np.array([40, 50, 60])],
[2, np.array([20, 30, 40])]],
columns=['category', 'arraydata'])
result = df.groupby('category').agg(sum)
expected_data = [[np.array([50, 70, 90])], [np.array([20, 30, 40])]]
expected_index = pd.Index([1, 2], name='category')
expected_column = ['arraydata']
expected = pd.DataFrame(expected_data,
index=expected_index,
columns=expected_column)
tm.assert_frame_equal(result, expected)
def test_agg_timezone_round_trip():
# GH 15426
ts = pd.Timestamp("2016-01-01 12:00:00", tz='US/Pacific')
df = pd.DataFrame({'a': 1,
'b': [ts + dt.timedelta(minutes=nn)
for nn in range(10)]})
result1 = df.groupby('a')['b'].agg(np.min).iloc[0]
result2 = df.groupby('a')['b'].agg(lambda x: np.min(x)).iloc[0]
result3 = df.groupby('a')['b'].min().iloc[0]
assert result1 == ts
assert result2 == ts
assert result3 == ts
dates = [pd.Timestamp("2016-01-0%d 12:00:00" % i, tz='US/Pacific')
for i in range(1, 5)]
df = pd.DataFrame({'A': ['a', 'b'] * 2, 'B': dates})
grouped = df.groupby('A')
ts = df['B'].iloc[0]
assert ts == grouped.nth(0)['B'].iloc[0]
assert ts == grouped.head(1)['B'].iloc[0]
assert ts == grouped.first()['B'].iloc[0]
assert ts == grouped.apply(lambda x: x.iloc[0])[0]
ts = df['B'].iloc[2]
assert ts == grouped.last()['B'].iloc[0]
assert ts == grouped.apply(lambda x: x.iloc[-1])[0]
def test_sum_uint64_overflow():
# see gh-14758
# Convert to uint64 and don't overflow
df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], dtype=object)
df = df + 9223372036854775807
index = pd.Index([9223372036854775808,
9223372036854775810,
9223372036854775812],
dtype=np.uint64)
expected = pd.DataFrame({1: [9223372036854775809,
9223372036854775811,
9223372036854775813]},
index=index)
expected.index.name = 0
result = df.groupby(0).sum()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("structure, expected", [
(tuple, pd.DataFrame({'C': {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})),
(list, pd.DataFrame({'C': {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})),
(lambda x: tuple(x), pd.DataFrame({'C': {(1, 1): (1, 1, 1),
(3, 4): (3, 4, 4)}})),
(lambda x: list(x), pd.DataFrame({'C': {(1, 1): [1, 1, 1],
(3, 4): [3, 4, 4]}}))
])
def test_agg_structs_dataframe(structure, expected):
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4],
'C': [1, 1, 1, 3, 4, 4]})
result = df.groupby(['A', 'B']).aggregate(structure)
expected.index.names = ['A', 'B']
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("structure, expected", [
(tuple, pd.Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name='C')),
(list, pd.Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name='C')),
(lambda x: tuple(x), pd.Series([(1, 1, 1), (3, 4, 4)],
index=[1, 3], name='C')),
(lambda x: list(x), pd.Series([[1, 1, 1], [3, 4, 4]],
index=[1, 3], name='C'))
])
def test_agg_structs_series(structure, expected):
# Issue #18079
df = pd.DataFrame({'A': [1, 1, 1, 3, 3, 3],
'B': [1, 1, 1, 4, 4, 4],
'C': [1, 1, 1, 3, 4, 4]})
result = df.groupby('A')['C'].aggregate(structure)
expected.index.name = 'A'
tm.assert_series_equal(result, expected)
@pytest.mark.xfail(reason="GH-18869: agg func not called on empty groups.")
def test_agg_category_nansum(observed):
categories = ['a', 'b', 'c']
df = pd.DataFrame({"A": pd.Categorical(['a', 'a', 'b'],
categories=categories),
'B': [1, 2, 3]})
result = df.groupby("A", observed=observed).B.agg(np.nansum)
expected = pd.Series([3, 3, 0],
index=pd.CategoricalIndex(['a', 'b', 'c'],
categories=categories,
name='A'),
name='B')
if observed:
expected = expected[expected != 0]
tm.assert_series_equal(result, expected)