laywerrobot/lib/python3.6/site-packages/pandas/tests/frame/test_subclass.py

573 lines
20 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
from __future__ import print_function
from warnings import catch_warnings
import numpy as np
from pandas import DataFrame, Series, MultiIndex, Panel, Index
import pandas as pd
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameSubclassing(TestData):
def test_frame_subclassing_and_slicing(self):
# Subclass frame and ensure it returns the right class on slicing it
# In reference to PR 9632
class CustomSeries(Series):
@property
def _constructor(self):
return CustomSeries
def custom_series_function(self):
return 'OK'
class CustomDataFrame(DataFrame):
"""
Subclasses pandas DF, fills DF with simulation results, adds some
custom plotting functions.
"""
def __init__(self, *args, **kw):
super(CustomDataFrame, self).__init__(*args, **kw)
@property
def _constructor(self):
return CustomDataFrame
_constructor_sliced = CustomSeries
def custom_frame_function(self):
return 'OK'
data = {'col1': range(10),
'col2': range(10)}
cdf = CustomDataFrame(data)
# Did we get back our own DF class?
assert isinstance(cdf, CustomDataFrame)
# Do we get back our own Series class after selecting a column?
cdf_series = cdf.col1
assert isinstance(cdf_series, CustomSeries)
assert cdf_series.custom_series_function() == 'OK'
# Do we get back our own DF class after slicing row-wise?
cdf_rows = cdf[1:5]
assert isinstance(cdf_rows, CustomDataFrame)
assert cdf_rows.custom_frame_function() == 'OK'
# Make sure sliced part of multi-index frame is custom class
mcol = pd.MultiIndex.from_tuples([('A', 'A'), ('A', 'B')])
cdf_multi = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
assert isinstance(cdf_multi['A'], CustomDataFrame)
mcol = pd.MultiIndex.from_tuples([('A', ''), ('B', '')])
cdf_multi2 = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
assert isinstance(cdf_multi2['A'], CustomSeries)
def test_dataframe_metadata(self):
df = tm.SubclassedDataFrame({'X': [1, 2, 3], 'Y': [1, 2, 3]},
index=['a', 'b', 'c'])
df.testattr = 'XXX'
assert df.testattr == 'XXX'
assert df[['X']].testattr == 'XXX'
assert df.loc[['a', 'b'], :].testattr == 'XXX'
assert df.iloc[[0, 1], :].testattr == 'XXX'
# see gh-9776
assert df.iloc[0:1, :].testattr == 'XXX'
# see gh-10553
unpickled = tm.round_trip_pickle(df)
tm.assert_frame_equal(df, unpickled)
assert df._metadata == unpickled._metadata
assert df.testattr == unpickled.testattr
def test_indexing_sliced(self):
# GH 11559
df = tm.SubclassedDataFrame({'X': [1, 2, 3],
'Y': [4, 5, 6],
'Z': [7, 8, 9]},
index=['a', 'b', 'c'])
res = df.loc[:, 'X']
exp = tm.SubclassedSeries([1, 2, 3], index=list('abc'), name='X')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.iloc[:, 1]
exp = tm.SubclassedSeries([4, 5, 6], index=list('abc'), name='Y')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc[:, 'Z']
exp = tm.SubclassedSeries([7, 8, 9], index=list('abc'), name='Z')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc['a', :]
exp = tm.SubclassedSeries([1, 4, 7], index=list('XYZ'), name='a')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.iloc[1, :]
exp = tm.SubclassedSeries([2, 5, 8], index=list('XYZ'), name='b')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc['c', :]
exp = tm.SubclassedSeries([3, 6, 9], index=list('XYZ'), name='c')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
def test_to_panel_expanddim(self):
# GH 9762
with catch_warnings(record=True):
class SubclassedFrame(DataFrame):
@property
def _constructor_expanddim(self):
return SubclassedPanel
class SubclassedPanel(Panel):
pass
index = MultiIndex.from_tuples([(0, 0), (0, 1), (0, 2)])
df = SubclassedFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]}, index=index)
result = df.to_panel()
assert isinstance(result, SubclassedPanel)
expected = SubclassedPanel([[[1, 2, 3]], [[4, 5, 6]]],
items=['X', 'Y'], major_axis=[0],
minor_axis=[0, 1, 2],
dtype='int64')
tm.assert_panel_equal(result, expected)
def test_subclass_attr_err_propagation(self):
# GH 11808
class A(DataFrame):
@property
def bar(self):
return self.i_dont_exist
with tm.assert_raises_regex(AttributeError, '.*i_dont_exist.*'):
A().bar
def test_subclass_align(self):
# GH 12983
df1 = tm.SubclassedDataFrame({'a': [1, 3, 5],
'b': [1, 3, 5]}, index=list('ACE'))
df2 = tm.SubclassedDataFrame({'c': [1, 2, 4],
'd': [1, 2, 4]}, index=list('ABD'))
res1, res2 = df1.align(df2, axis=0)
exp1 = tm.SubclassedDataFrame({'a': [1, np.nan, 3, np.nan, 5],
'b': [1, np.nan, 3, np.nan, 5]},
index=list('ABCDE'))
exp2 = tm.SubclassedDataFrame({'c': [1, 2, np.nan, 4, np.nan],
'd': [1, 2, np.nan, 4, np.nan]},
index=list('ABCDE'))
assert isinstance(res1, tm.SubclassedDataFrame)
tm.assert_frame_equal(res1, exp1)
assert isinstance(res2, tm.SubclassedDataFrame)
tm.assert_frame_equal(res2, exp2)
res1, res2 = df1.a.align(df2.c)
assert isinstance(res1, tm.SubclassedSeries)
tm.assert_series_equal(res1, exp1.a)
assert isinstance(res2, tm.SubclassedSeries)
tm.assert_series_equal(res2, exp2.c)
def test_subclass_align_combinations(self):
# GH 12983
df = tm.SubclassedDataFrame({'a': [1, 3, 5],
'b': [1, 3, 5]}, index=list('ACE'))
s = tm.SubclassedSeries([1, 2, 4], index=list('ABD'), name='x')
# frame + series
res1, res2 = df.align(s, axis=0)
exp1 = pd.DataFrame({'a': [1, np.nan, 3, np.nan, 5],
'b': [1, np.nan, 3, np.nan, 5]},
index=list('ABCDE'))
# name is lost when
exp2 = pd.Series([1, 2, np.nan, 4, np.nan],
index=list('ABCDE'), name='x')
assert isinstance(res1, tm.SubclassedDataFrame)
tm.assert_frame_equal(res1, exp1)
assert isinstance(res2, tm.SubclassedSeries)
tm.assert_series_equal(res2, exp2)
# series + frame
res1, res2 = s.align(df)
assert isinstance(res1, tm.SubclassedSeries)
tm.assert_series_equal(res1, exp2)
assert isinstance(res2, tm.SubclassedDataFrame)
tm.assert_frame_equal(res2, exp1)
def test_subclass_iterrows(self):
# GH 13977
df = tm.SubclassedDataFrame({'a': [1]})
for i, row in df.iterrows():
assert isinstance(row, tm.SubclassedSeries)
tm.assert_series_equal(row, df.loc[i])
def test_subclass_sparse_slice(self):
rows = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
ssdf = tm.SubclassedSparseDataFrame(rows)
ssdf.testattr = "testattr"
tm.assert_sp_frame_equal(ssdf.loc[:2],
tm.SubclassedSparseDataFrame(rows[:3]))
tm.assert_sp_frame_equal(ssdf.iloc[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
tm.assert_sp_frame_equal(ssdf[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
assert ssdf.loc[:2].testattr == "testattr"
assert ssdf.iloc[:2].testattr == "testattr"
assert ssdf[:2].testattr == "testattr"
tm.assert_sp_series_equal(ssdf.loc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False)
tm.assert_sp_series_equal(ssdf.iloc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False)
def test_subclass_sparse_transpose(self):
ossdf = tm.SubclassedSparseDataFrame([[1, 2, 3],
[4, 5, 6]])
essdf = tm.SubclassedSparseDataFrame([[1, 4],
[2, 5],
[3, 6]])
tm.assert_sp_frame_equal(ossdf.T, essdf)
def test_subclass_stack(self):
# GH 15564
df = tm.SubclassedDataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=['a', 'b', 'c'],
columns=['X', 'Y', 'Z'])
res = df.stack()
exp = tm.SubclassedSeries(
[1, 2, 3, 4, 5, 6, 7, 8, 9],
index=[list('aaabbbccc'), list('XYZXYZXYZ')])
tm.assert_series_equal(res, exp)
def test_subclass_stack_multi(self):
# GH 15564
df = tm.SubclassedDataFrame([
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]],
index=MultiIndex.from_tuples(
list(zip(list('AABB'), list('cdcd'))),
names=['aaa', 'ccc']),
columns=MultiIndex.from_tuples(
list(zip(list('WWXX'), list('yzyz'))),
names=['www', 'yyy']))
exp = tm.SubclassedDataFrame([
[10, 12],
[11, 13],
[20, 22],
[21, 23],
[30, 32],
[31, 33],
[40, 42],
[41, 43]],
index=MultiIndex.from_tuples(list(zip(
list('AAAABBBB'), list('ccddccdd'), list('yzyzyzyz'))),
names=['aaa', 'ccc', 'yyy']),
columns=Index(['W', 'X'], name='www'))
res = df.stack()
tm.assert_frame_equal(res, exp)
res = df.stack('yyy')
tm.assert_frame_equal(res, exp)
exp = tm.SubclassedDataFrame([
[10, 11],
[12, 13],
[20, 21],
[22, 23],
[30, 31],
[32, 33],
[40, 41],
[42, 43]],
index=MultiIndex.from_tuples(list(zip(
list('AAAABBBB'), list('ccddccdd'), list('WXWXWXWX'))),
names=['aaa', 'ccc', 'www']),
columns=Index(['y', 'z'], name='yyy'))
res = df.stack('www')
tm.assert_frame_equal(res, exp)
def test_subclass_stack_multi_mixed(self):
# GH 15564
df = tm.SubclassedDataFrame([
[10, 11, 12.0, 13.0],
[20, 21, 22.0, 23.0],
[30, 31, 32.0, 33.0],
[40, 41, 42.0, 43.0]],
index=MultiIndex.from_tuples(
list(zip(list('AABB'), list('cdcd'))),
names=['aaa', 'ccc']),
columns=MultiIndex.from_tuples(
list(zip(list('WWXX'), list('yzyz'))),
names=['www', 'yyy']))
exp = tm.SubclassedDataFrame([
[10, 12.0],
[11, 13.0],
[20, 22.0],
[21, 23.0],
[30, 32.0],
[31, 33.0],
[40, 42.0],
[41, 43.0]],
index=MultiIndex.from_tuples(list(zip(
list('AAAABBBB'), list('ccddccdd'), list('yzyzyzyz'))),
names=['aaa', 'ccc', 'yyy']),
columns=Index(['W', 'X'], name='www'))
res = df.stack()
tm.assert_frame_equal(res, exp)
res = df.stack('yyy')
tm.assert_frame_equal(res, exp)
exp = tm.SubclassedDataFrame([
[10.0, 11.0],
[12.0, 13.0],
[20.0, 21.0],
[22.0, 23.0],
[30.0, 31.0],
[32.0, 33.0],
[40.0, 41.0],
[42.0, 43.0]],
index=MultiIndex.from_tuples(list(zip(
list('AAAABBBB'), list('ccddccdd'), list('WXWXWXWX'))),
names=['aaa', 'ccc', 'www']),
columns=Index(['y', 'z'], name='yyy'))
res = df.stack('www')
tm.assert_frame_equal(res, exp)
def test_subclass_unstack(self):
# GH 15564
df = tm.SubclassedDataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=['a', 'b', 'c'],
columns=['X', 'Y', 'Z'])
res = df.unstack()
exp = tm.SubclassedSeries(
[1, 4, 7, 2, 5, 8, 3, 6, 9],
index=[list('XXXYYYZZZ'), list('abcabcabc')])
tm.assert_series_equal(res, exp)
def test_subclass_unstack_multi(self):
# GH 15564
df = tm.SubclassedDataFrame([
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]],
index=MultiIndex.from_tuples(
list(zip(list('AABB'), list('cdcd'))),
names=['aaa', 'ccc']),
columns=MultiIndex.from_tuples(
list(zip(list('WWXX'), list('yzyz'))),
names=['www', 'yyy']))
exp = tm.SubclassedDataFrame([
[10, 20, 11, 21, 12, 22, 13, 23],
[30, 40, 31, 41, 32, 42, 33, 43]],
index=Index(['A', 'B'], name='aaa'),
columns=MultiIndex.from_tuples(list(zip(
list('WWWWXXXX'), list('yyzzyyzz'), list('cdcdcdcd'))),
names=['www', 'yyy', 'ccc']))
res = df.unstack()
tm.assert_frame_equal(res, exp)
res = df.unstack('ccc')
tm.assert_frame_equal(res, exp)
exp = tm.SubclassedDataFrame([
[10, 30, 11, 31, 12, 32, 13, 33],
[20, 40, 21, 41, 22, 42, 23, 43]],
index=Index(['c', 'd'], name='ccc'),
columns=MultiIndex.from_tuples(list(zip(
list('WWWWXXXX'), list('yyzzyyzz'), list('ABABABAB'))),
names=['www', 'yyy', 'aaa']))
res = df.unstack('aaa')
tm.assert_frame_equal(res, exp)
def test_subclass_unstack_multi_mixed(self):
# GH 15564
df = tm.SubclassedDataFrame([
[10, 11, 12.0, 13.0],
[20, 21, 22.0, 23.0],
[30, 31, 32.0, 33.0],
[40, 41, 42.0, 43.0]],
index=MultiIndex.from_tuples(
list(zip(list('AABB'), list('cdcd'))),
names=['aaa', 'ccc']),
columns=MultiIndex.from_tuples(
list(zip(list('WWXX'), list('yzyz'))),
names=['www', 'yyy']))
exp = tm.SubclassedDataFrame([
[10, 20, 11, 21, 12.0, 22.0, 13.0, 23.0],
[30, 40, 31, 41, 32.0, 42.0, 33.0, 43.0]],
index=Index(['A', 'B'], name='aaa'),
columns=MultiIndex.from_tuples(list(zip(
list('WWWWXXXX'), list('yyzzyyzz'), list('cdcdcdcd'))),
names=['www', 'yyy', 'ccc']))
res = df.unstack()
tm.assert_frame_equal(res, exp)
res = df.unstack('ccc')
tm.assert_frame_equal(res, exp)
exp = tm.SubclassedDataFrame([
[10, 30, 11, 31, 12.0, 32.0, 13.0, 33.0],
[20, 40, 21, 41, 22.0, 42.0, 23.0, 43.0]],
index=Index(['c', 'd'], name='ccc'),
columns=MultiIndex.from_tuples(list(zip(
list('WWWWXXXX'), list('yyzzyyzz'), list('ABABABAB'))),
names=['www', 'yyy', 'aaa']))
res = df.unstack('aaa')
tm.assert_frame_equal(res, exp)
def test_subclass_pivot(self):
# GH 15564
df = tm.SubclassedDataFrame({
'index': ['A', 'B', 'C', 'C', 'B', 'A'],
'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'],
'values': [1., 2., 3., 3., 2., 1.]})
pivoted = df.pivot(
index='index', columns='columns', values='values')
expected = tm.SubclassedDataFrame({
'One': {'A': 1., 'B': 2., 'C': 3.},
'Two': {'A': 1., 'B': 2., 'C': 3.}})
expected.index.name, expected.columns.name = 'index', 'columns'
tm.assert_frame_equal(pivoted, expected)
def test_subclassed_melt(self):
# GH 15564
cheese = tm.SubclassedDataFrame({
'first': ['John', 'Mary'],
'last': ['Doe', 'Bo'],
'height': [5.5, 6.0],
'weight': [130, 150]})
melted = pd.melt(cheese, id_vars=['first', 'last'])
expected = tm.SubclassedDataFrame([
['John', 'Doe', 'height', 5.5],
['Mary', 'Bo', 'height', 6.0],
['John', 'Doe', 'weight', 130],
['Mary', 'Bo', 'weight', 150]],
columns=['first', 'last', 'variable', 'value'])
tm.assert_frame_equal(melted, expected)
def test_subclassed_wide_to_long(self):
# GH 9762
np.random.seed(123)
x = np.random.randn(3)
df = tm.SubclassedDataFrame({
"A1970": {0: "a", 1: "b", 2: "c"},
"A1980": {0: "d", 1: "e", 2: "f"},
"B1970": {0: 2.5, 1: 1.2, 2: .7},
"B1980": {0: 3.2, 1: 1.3, 2: .1},
"X": dict(zip(range(3), x))})
df["id"] = df.index
exp_data = {"X": x.tolist() + x.tolist(),
"A": ['a', 'b', 'c', 'd', 'e', 'f'],
"B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1],
"year": [1970, 1970, 1970, 1980, 1980, 1980],
"id": [0, 1, 2, 0, 1, 2]}
expected = tm.SubclassedDataFrame(exp_data)
expected = expected.set_index(['id', 'year'])[["X", "A", "B"]]
long_frame = pd.wide_to_long(df, ["A", "B"], i="id", j="year")
tm.assert_frame_equal(long_frame, expected)
def test_subclassed_apply(self):
# GH 19822
def check_row_subclass(row):
assert isinstance(row, tm.SubclassedSeries)
def strech(row):
if row["variable"] == "height":
row["value"] += 0.5
return row
df = tm.SubclassedDataFrame([
['John', 'Doe', 'height', 5.5],
['Mary', 'Bo', 'height', 6.0],
['John', 'Doe', 'weight', 130],
['Mary', 'Bo', 'weight', 150]],
columns=['first', 'last', 'variable', 'value'])
df.apply(lambda x: check_row_subclass(x))
df.apply(lambda x: check_row_subclass(x), axis=1)
expected = tm.SubclassedDataFrame([
['John', 'Doe', 'height', 6.0],
['Mary', 'Bo', 'height', 6.5],
['John', 'Doe', 'weight', 130],
['Mary', 'Bo', 'weight', 150]],
columns=['first', 'last', 'variable', 'value'])
result = df.apply(lambda x: strech(x), axis=1)
assert isinstance(result, tm.SubclassedDataFrame)
tm.assert_frame_equal(result, expected)
expected = tm.SubclassedDataFrame([
[1, 2, 3],
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
result = df.apply(lambda x: tm.SubclassedSeries([1, 2, 3]), axis=1)
assert isinstance(result, tm.SubclassedDataFrame)
tm.assert_frame_equal(result, expected)
result = df.apply(lambda x: [1, 2, 3], axis=1, result_type="expand")
assert isinstance(result, tm.SubclassedDataFrame)
tm.assert_frame_equal(result, expected)
expected = tm.SubclassedSeries([
[1, 2, 3],
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
result = df.apply(lambda x: [1, 2, 3], axis=1)
assert not isinstance(result, tm.SubclassedDataFrame)
tm.assert_series_equal(result, expected)