laywerrobot/lib/python3.6/site-packages/pandas/tests/frame/test_query_eval.py

1040 lines
40 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
from __future__ import print_function
import operator
import pytest
from pandas.compat import (zip, range, lrange, StringIO)
from pandas import DataFrame, Series, Index, MultiIndex, date_range
import pandas as pd
import numpy as np
from numpy.random import randn
from pandas.util.testing import (assert_series_equal,
assert_frame_equal,
makeCustomDataframe as mkdf)
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas.core.computation.check import _NUMEXPR_INSTALLED
from pandas.tests.frame.common import TestData
PARSERS = 'python', 'pandas'
ENGINES = 'python', pytest.param('numexpr', marks=td.skip_if_no_ne)
@pytest.fixture(params=PARSERS, ids=lambda x: x)
def parser(request):
return request.param
@pytest.fixture(params=ENGINES, ids=lambda x: x)
def engine(request):
return request.param
def skip_if_no_pandas_parser(parser):
if parser != 'pandas':
pytest.skip("cannot evaluate with parser {0!r}".format(parser))
class TestCompat(object):
def setup_method(self, method):
self.df = DataFrame({'A': [1, 2, 3]})
self.expected1 = self.df[self.df.A > 0]
self.expected2 = self.df.A + 1
def test_query_default(self):
# GH 12749
# this should always work, whether _NUMEXPR_INSTALLED or not
df = self.df
result = df.query('A>0')
assert_frame_equal(result, self.expected1)
result = df.eval('A+1')
assert_series_equal(result, self.expected2, check_names=False)
def test_query_None(self):
df = self.df
result = df.query('A>0', engine=None)
assert_frame_equal(result, self.expected1)
result = df.eval('A+1', engine=None)
assert_series_equal(result, self.expected2, check_names=False)
def test_query_python(self):
df = self.df
result = df.query('A>0', engine='python')
assert_frame_equal(result, self.expected1)
result = df.eval('A+1', engine='python')
assert_series_equal(result, self.expected2, check_names=False)
def test_query_numexpr(self):
df = self.df
if _NUMEXPR_INSTALLED:
result = df.query('A>0', engine='numexpr')
assert_frame_equal(result, self.expected1)
result = df.eval('A+1', engine='numexpr')
assert_series_equal(result, self.expected2, check_names=False)
else:
pytest.raises(ImportError,
lambda: df.query('A>0', engine='numexpr'))
pytest.raises(ImportError,
lambda: df.eval('A+1', engine='numexpr'))
class TestDataFrameEval(TestData):
def test_ops(self):
# tst ops and reversed ops in evaluation
# GH7198
# smaller hits python, larger hits numexpr
for n in [4, 4000]:
df = DataFrame(1, index=range(n), columns=list('abcd'))
df.iloc[0] = 2
m = df.mean()
for op_str, op, rop in [('+', '__add__', '__radd__'),
('-', '__sub__', '__rsub__'),
('*', '__mul__', '__rmul__'),
('/', '__truediv__', '__rtruediv__')]:
base = (DataFrame(np.tile(m.values, n) # noqa
.reshape(n, -1),
columns=list('abcd')))
expected = eval("base{op}df".format(op=op_str))
# ops as strings
result = eval("m{op}df".format(op=op_str))
assert_frame_equal(result, expected)
# these are commutative
if op in ['+', '*']:
result = getattr(df, op)(m)
assert_frame_equal(result, expected)
# these are not
elif op in ['-', '/']:
result = getattr(df, rop)(m)
assert_frame_equal(result, expected)
# GH7192
df = DataFrame(dict(A=np.random.randn(25000)))
df.iloc[0:5] = np.nan
expected = (1 - np.isnan(df.iloc[0:25]))
result = (1 - np.isnan(df)).iloc[0:25]
assert_frame_equal(result, expected)
def test_query_non_str(self):
# GH 11485
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'b']})
msg = "expr must be a string to be evaluated"
with tm.assert_raises_regex(ValueError, msg):
df.query(lambda x: x.B == "b")
with tm.assert_raises_regex(ValueError, msg):
df.query(111)
def test_query_empty_string(self):
# GH 13139
df = pd.DataFrame({'A': [1, 2, 3]})
msg = "expr cannot be an empty string"
with tm.assert_raises_regex(ValueError, msg):
df.query('')
def test_eval_resolvers_as_list(self):
# GH 14095
df = DataFrame(randn(10, 2), columns=list('ab'))
dict1 = {'a': 1}
dict2 = {'b': 2}
assert (df.eval('a + b', resolvers=[dict1, dict2]) ==
dict1['a'] + dict2['b'])
assert (pd.eval('a + b', resolvers=[dict1, dict2]) ==
dict1['a'] + dict2['b'])
class TestDataFrameQueryWithMultiIndex(object):
def test_query_with_named_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.choice(['red', 'green'], size=10)
b = np.random.choice(['eggs', 'ham'], size=10)
index = MultiIndex.from_arrays([a, b], names=['color', 'food'])
df = DataFrame(randn(10, 2), index=index)
ind = Series(df.index.get_level_values('color').values, index=index,
name='color')
# equality
res1 = df.query('color == "red"', parser=parser, engine=engine)
res2 = df.query('"red" == color', parser=parser, engine=engine)
exp = df[ind == 'red']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# inequality
res1 = df.query('color != "red"', parser=parser, engine=engine)
res2 = df.query('"red" != color', parser=parser, engine=engine)
exp = df[ind != 'red']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('color == ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] == color', parser=parser, engine=engine)
exp = df[ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('color != ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] != color', parser=parser, engine=engine)
exp = df[~ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["red"] in color', parser=parser, engine=engine)
res2 = df.query('"red" in color', parser=parser, engine=engine)
exp = df[ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('["red"] not in color', parser=parser, engine=engine)
res2 = df.query('"red" not in color', parser=parser, engine=engine)
exp = df[~ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
def test_query_with_unnamed_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.choice(['red', 'green'], size=10)
b = np.random.choice(['eggs', 'ham'], size=10)
index = MultiIndex.from_arrays([a, b])
df = DataFrame(randn(10, 2), index=index)
ind = Series(df.index.get_level_values(0).values, index=index)
res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine)
exp = df[ind == 'red']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# inequality
res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine)
exp = df[ind != 'red']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine)
exp = df[ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine)
exp = df[~ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine)
res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine)
exp = df[ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('["red"] not in ilevel_0', parser=parser,
engine=engine)
res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine)
exp = df[~ind.isin(['red'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# ## LEVEL 1
ind = Series(df.index.get_level_values(1).values, index=index)
res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine)
res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine)
exp = df[ind == 'eggs']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# inequality
res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine)
res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine)
exp = df[ind != 'eggs']
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine)
res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine)
exp = df[ind.isin(['eggs'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine)
res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine)
exp = df[~ind.isin(['eggs'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine)
res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine)
exp = df[ind.isin(['eggs'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
res1 = df.query('["eggs"] not in ilevel_1', parser=parser,
engine=engine)
res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine)
exp = df[~ind.isin(['eggs'])]
assert_frame_equal(res1, exp)
assert_frame_equal(res2, exp)
def test_query_with_partially_named_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.choice(['red', 'green'], size=10)
b = np.arange(10)
index = MultiIndex.from_arrays([a, b])
index.names = [None, 'rating']
df = DataFrame(randn(10, 2), index=index)
res = df.query('rating == 1', parser=parser, engine=engine)
ind = Series(df.index.get_level_values('rating').values, index=index,
name='rating')
exp = df[ind == 1]
assert_frame_equal(res, exp)
res = df.query('rating != 1', parser=parser, engine=engine)
ind = Series(df.index.get_level_values('rating').values, index=index,
name='rating')
exp = df[ind != 1]
assert_frame_equal(res, exp)
res = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
ind = Series(df.index.get_level_values(0).values, index=index)
exp = df[ind == "red"]
assert_frame_equal(res, exp)
res = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
ind = Series(df.index.get_level_values(0).values, index=index)
exp = df[ind != "red"]
assert_frame_equal(res, exp)
def test_query_multiindex_get_index_resolvers(self):
df = mkdf(10, 3, r_idx_nlevels=2, r_idx_names=['spam', 'eggs'])
resolvers = df._get_index_resolvers()
def to_series(mi, level):
level_values = mi.get_level_values(level)
s = level_values.to_series()
s.index = mi
return s
col_series = df.columns.to_series()
expected = {'index': df.index,
'columns': col_series,
'spam': to_series(df.index, 'spam'),
'eggs': to_series(df.index, 'eggs'),
'C0': col_series}
for k, v in resolvers.items():
if isinstance(v, Index):
assert v.is_(expected[k])
elif isinstance(v, Series):
assert_series_equal(v, expected[k])
else:
raise AssertionError("object must be a Series or Index")
def test_raise_on_panel_with_multiindex(self, parser, engine):
p = tm.makePanel(7)
p.items = tm.makeCustomIndex(len(p.items), nlevels=2)
with pytest.raises(NotImplementedError):
pd.eval('p + 1', parser=parser, engine=engine)
@td.skip_if_no_ne
class TestDataFrameQueryNumExprPandas(object):
@classmethod
def setup_class(cls):
cls.engine = 'numexpr'
cls.parser = 'pandas'
@classmethod
def teardown_class(cls):
del cls.engine, cls.parser
def test_date_query_with_attribute_access(self):
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
df = DataFrame(randn(5, 3))
df['dates1'] = date_range('1/1/2012', periods=5)
df['dates2'] = date_range('1/1/2013', periods=5)
df['dates3'] = date_range('1/1/2014', periods=5)
res = df.query('@df.dates1 < 20130101 < @df.dates3', engine=engine,
parser=parser)
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_query_no_attribute_access(self):
engine, parser = self.engine, self.parser
df = DataFrame(randn(5, 3))
df['dates1'] = date_range('1/1/2012', periods=5)
df['dates2'] = date_range('1/1/2013', periods=5)
df['dates3'] = date_range('1/1/2014', periods=5)
res = df.query('dates1 < 20130101 < dates3', engine=engine,
parser=parser)
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_query_with_NaT(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates2'] = date_range('1/1/2013', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT
res = df.query('dates1 < 20130101 < dates3', engine=engine,
parser=parser)
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.set_index('dates1', inplace=True, drop=True)
res = df.query('index < 20130101 < dates3', engine=engine,
parser=parser)
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query_with_NaT(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.iloc[0, 0] = pd.NaT
df.set_index('dates1', inplace=True, drop=True)
res = df.query('index < 20130101 < dates3', engine=engine,
parser=parser)
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query_with_NaT_duplicates(self):
engine, parser = self.engine, self.parser
n = 10
d = {}
d['dates1'] = date_range('1/1/2012', periods=n)
d['dates3'] = date_range('1/1/2014', periods=n)
df = DataFrame(d)
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
df.set_index('dates1', inplace=True, drop=True)
res = df.query('dates1 < 20130101 < dates3', engine=engine,
parser=parser)
expec = df[(df.index.to_series() < '20130101') &
('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_query_with_non_date(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame({'dates': date_range('1/1/2012', periods=n),
'nondate': np.arange(n)})
ops = '==', '!=', '<', '>', '<=', '>='
for op in ops:
with pytest.raises(TypeError):
df.query('dates %s nondate' % op, parser=parser, engine=engine)
def test_query_syntax_error(self):
engine, parser = self.engine, self.parser
df = DataFrame({"i": lrange(10), "+": lrange(3, 13),
"r": lrange(4, 14)})
with pytest.raises(SyntaxError):
df.query('i - +', engine=engine, parser=parser)
def test_query_scope(self):
from pandas.core.computation.ops import UndefinedVariableError
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.randn(20, 2), columns=list('ab'))
a, b = 1, 2 # noqa
res = df.query('a > b', engine=engine, parser=parser)
expected = df[df.a > df.b]
assert_frame_equal(res, expected)
res = df.query('@a > b', engine=engine, parser=parser)
expected = df[a > df.b]
assert_frame_equal(res, expected)
# no local variable c
with pytest.raises(UndefinedVariableError):
df.query('@a > b > @c', engine=engine, parser=parser)
# no column named 'c'
with pytest.raises(UndefinedVariableError):
df.query('@a > b > c', engine=engine, parser=parser)
def test_query_doesnt_pickup_local(self):
from pandas.core.computation.ops import UndefinedVariableError
engine, parser = self.engine, self.parser
n = m = 10
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
# we don't pick up the local 'sin'
with pytest.raises(UndefinedVariableError):
df.query('sin > 5', engine=engine, parser=parser)
def test_query_builtin(self):
from pandas.core.computation.engines import NumExprClobberingError
engine, parser = self.engine, self.parser
n = m = 10
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
df.index.name = 'sin'
with tm.assert_raises_regex(NumExprClobberingError,
'Variables in expression.+'):
df.query('sin > 5', engine=engine, parser=parser)
def test_query(self):
engine, parser = self.engine, self.parser
df = DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c'])
assert_frame_equal(df.query('a < b', engine=engine, parser=parser),
df[df.a < df.b])
assert_frame_equal(df.query('a + b > b * c', engine=engine,
parser=parser),
df[df.a + df.b > df.b * df.c])
def test_query_index_with_name(self):
engine, parser = self.engine, self.parser
df = DataFrame(np.random.randint(10, size=(10, 3)),
index=Index(range(10), name='blob'),
columns=['a', 'b', 'c'])
res = df.query('(blob < 5) & (a < b)', engine=engine, parser=parser)
expec = df[(df.index < 5) & (df.a < df.b)]
assert_frame_equal(res, expec)
res = df.query('blob < b', engine=engine, parser=parser)
expec = df[df.index < df.b]
assert_frame_equal(res, expec)
def test_query_index_without_name(self):
engine, parser = self.engine, self.parser
df = DataFrame(np.random.randint(10, size=(10, 3)),
index=range(10), columns=['a', 'b', 'c'])
# "index" should refer to the index
res = df.query('index < b', engine=engine, parser=parser)
expec = df[df.index < df.b]
assert_frame_equal(res, expec)
# test against a scalar
res = df.query('index < 5', engine=engine, parser=parser)
expec = df[df.index < 5]
assert_frame_equal(res, expec)
def test_nested_scope(self):
engine = self.engine
parser = self.parser
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.randn(5, 3))
df2 = DataFrame(np.random.randn(5, 3))
expected = df[(df > 0) & (df2 > 0)]
result = df.query('(@df > 0) & (@df2 > 0)', engine=engine,
parser=parser)
assert_frame_equal(result, expected)
result = pd.eval('df[df > 0 and df2 > 0]', engine=engine,
parser=parser)
assert_frame_equal(result, expected)
result = pd.eval('df[df > 0 and df2 > 0 and df[df > 0] > 0]',
engine=engine, parser=parser)
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
assert_frame_equal(result, expected)
result = pd.eval('df[(df>0) & (df2>0)]', engine=engine, parser=parser)
expected = df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser)
assert_frame_equal(result, expected)
def test_nested_raises_on_local_self_reference(self):
from pandas.core.computation.ops import UndefinedVariableError
df = DataFrame(np.random.randn(5, 3))
# can't reference ourself b/c we're a local so @ is necessary
with pytest.raises(UndefinedVariableError):
df.query('df > 0', engine=self.engine, parser=self.parser)
def test_local_syntax(self):
skip_if_no_pandas_parser(self.parser)
engine, parser = self.engine, self.parser
df = DataFrame(randn(100, 10), columns=list('abcdefghij'))
b = 1
expect = df[df.a < b]
result = df.query('a < @b', engine=engine, parser=parser)
assert_frame_equal(result, expect)
expect = df[df.a < df.b]
result = df.query('a < b', engine=engine, parser=parser)
assert_frame_equal(result, expect)
def test_chained_cmp_and_in(self):
skip_if_no_pandas_parser(self.parser)
engine, parser = self.engine, self.parser
cols = list('abc')
df = DataFrame(randn(100, len(cols)), columns=cols)
res = df.query('a < b < c and a not in b not in c', engine=engine,
parser=parser)
ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b) # noqa
expec = df[ind]
assert_frame_equal(res, expec)
def test_local_variable_with_in(self):
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
a = Series(np.random.randint(3, size=15), name='a')
b = Series(np.random.randint(10, size=15), name='b')
df = DataFrame({'a': a, 'b': b})
expected = df.loc[(df.b - 1).isin(a)]
result = df.query('b - 1 in a', engine=engine, parser=parser)
assert_frame_equal(expected, result)
b = Series(np.random.randint(10, size=15), name='b')
expected = df.loc[(b - 1).isin(a)]
result = df.query('@b - 1 in a', engine=engine, parser=parser)
assert_frame_equal(expected, result)
def test_at_inside_string(self):
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
c = 1 # noqa
df = DataFrame({'a': ['a', 'a', 'b', 'b', '@c', '@c']})
result = df.query('a == "@c"', engine=engine, parser=parser)
expected = df[df.a == "@c"]
assert_frame_equal(result, expected)
def test_query_undefined_local(self):
from pandas.core.computation.ops import UndefinedVariableError
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.rand(10, 2), columns=list('ab'))
with tm.assert_raises_regex(UndefinedVariableError,
"local variable 'c' is not defined"):
df.query('a == @c', engine=engine, parser=parser)
def test_index_resolvers_come_after_columns_with_the_same_name(self):
n = 1 # noqa
a = np.r_[20:101:20]
df = DataFrame({'index': a, 'b': np.random.randn(a.size)})
df.index.name = 'index'
result = df.query('index > 5', engine=self.engine, parser=self.parser)
expected = df[df['index'] > 5]
assert_frame_equal(result, expected)
df = DataFrame({'index': a,
'b': np.random.randn(a.size)})
result = df.query('ilevel_0 > 5', engine=self.engine,
parser=self.parser)
expected = df.loc[df.index[df.index > 5]]
assert_frame_equal(result, expected)
df = DataFrame({'a': a, 'b': np.random.randn(a.size)})
df.index.name = 'a'
result = df.query('a > 5', engine=self.engine, parser=self.parser)
expected = df[df.a > 5]
assert_frame_equal(result, expected)
result = df.query('index > 5', engine=self.engine, parser=self.parser)
expected = df.loc[df.index[df.index > 5]]
assert_frame_equal(result, expected)
def test_inf(self):
n = 10
df = DataFrame({'a': np.random.rand(n), 'b': np.random.rand(n)})
df.loc[::2, 0] = np.inf
ops = '==', '!='
d = dict(zip(ops, (operator.eq, operator.ne)))
for op, f in d.items():
q = 'a %s inf' % op
expected = df[f(df.a, np.inf)]
result = df.query(q, engine=self.engine, parser=self.parser)
assert_frame_equal(result, expected)
@td.skip_if_no_ne
class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas):
@classmethod
def setup_class(cls):
super(TestDataFrameQueryNumExprPython, cls).setup_class()
cls.engine = 'numexpr'
cls.parser = 'python'
cls.frame = TestData().frame
def test_date_query_no_attribute_access(self):
engine, parser = self.engine, self.parser
df = DataFrame(randn(5, 3))
df['dates1'] = date_range('1/1/2012', periods=5)
df['dates2'] = date_range('1/1/2013', periods=5)
df['dates3'] = date_range('1/1/2014', periods=5)
res = df.query('(dates1 < 20130101) & (20130101 < dates3)',
engine=engine, parser=parser)
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_query_with_NaT(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates2'] = date_range('1/1/2013', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT
res = df.query('(dates1 < 20130101) & (20130101 < dates3)',
engine=engine, parser=parser)
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.set_index('dates1', inplace=True, drop=True)
res = df.query('(index < 20130101) & (20130101 < dates3)',
engine=engine, parser=parser)
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query_with_NaT(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.iloc[0, 0] = pd.NaT
df.set_index('dates1', inplace=True, drop=True)
res = df.query('(index < 20130101) & (20130101 < dates3)',
engine=engine, parser=parser)
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
assert_frame_equal(res, expec)
def test_date_index_query_with_NaT_duplicates(self):
engine, parser = self.engine, self.parser
n = 10
df = DataFrame(randn(n, 3))
df['dates1'] = date_range('1/1/2012', periods=n)
df['dates3'] = date_range('1/1/2014', periods=n)
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
df.set_index('dates1', inplace=True, drop=True)
with pytest.raises(NotImplementedError):
df.query('index < 20130101 < dates3', engine=engine, parser=parser)
def test_nested_scope(self):
from pandas.core.computation.ops import UndefinedVariableError
engine = self.engine
parser = self.parser
# smoke test
x = 1 # noqa
result = pd.eval('x + 1', engine=engine, parser=parser)
assert result == 2
df = DataFrame(np.random.randn(5, 3))
df2 = DataFrame(np.random.randn(5, 3))
# don't have the pandas parser
with pytest.raises(SyntaxError):
df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser)
with pytest.raises(UndefinedVariableError):
df.query('(df>0) & (df2>0)', engine=engine, parser=parser)
expected = df[(df > 0) & (df2 > 0)]
result = pd.eval('df[(df > 0) & (df2 > 0)]', engine=engine,
parser=parser)
assert_frame_equal(expected, result)
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
result = pd.eval('df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]',
engine=engine, parser=parser)
assert_frame_equal(expected, result)
class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas):
@classmethod
def setup_class(cls):
super(TestDataFrameQueryPythonPandas, cls).setup_class()
cls.engine = 'python'
cls.parser = 'pandas'
cls.frame = TestData().frame
def test_query_builtin(self):
engine, parser = self.engine, self.parser
n = m = 10
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
df.index.name = 'sin'
expected = df[df.index > 5]
result = df.query('sin > 5', engine=engine, parser=parser)
assert_frame_equal(expected, result)
class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython):
@classmethod
def setup_class(cls):
super(TestDataFrameQueryPythonPython, cls).setup_class()
cls.engine = cls.parser = 'python'
cls.frame = TestData().frame
def test_query_builtin(self):
engine, parser = self.engine, self.parser
n = m = 10
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
df.index.name = 'sin'
expected = df[df.index > 5]
result = df.query('sin > 5', engine=engine, parser=parser)
assert_frame_equal(expected, result)
class TestDataFrameQueryStrings(object):
def test_str_query_method(self, parser, engine):
df = DataFrame(randn(10, 1), columns=['b'])
df['strings'] = Series(list('aabbccddee'))
expect = df[df.strings == 'a']
if parser != 'pandas':
col = 'strings'
lst = '"a"'
lhs = [col] * 2 + [lst] * 2
rhs = lhs[::-1]
eq, ne = '==', '!='
ops = 2 * ([eq] + [ne])
for lhs, op, rhs in zip(lhs, ops, rhs):
ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs)
pytest.raises(NotImplementedError, df.query, ex,
engine=engine, parser=parser,
local_dict={'strings': df.strings})
else:
res = df.query('"a" == strings', engine=engine, parser=parser)
assert_frame_equal(res, expect)
res = df.query('strings == "a"', engine=engine, parser=parser)
assert_frame_equal(res, expect)
assert_frame_equal(res, df[df.strings.isin(['a'])])
expect = df[df.strings != 'a']
res = df.query('strings != "a"', engine=engine, parser=parser)
assert_frame_equal(res, expect)
res = df.query('"a" != strings', engine=engine, parser=parser)
assert_frame_equal(res, expect)
assert_frame_equal(res, df[~df.strings.isin(['a'])])
def test_str_list_query_method(self, parser, engine):
df = DataFrame(randn(10, 1), columns=['b'])
df['strings'] = Series(list('aabbccddee'))
expect = df[df.strings.isin(['a', 'b'])]
if parser != 'pandas':
col = 'strings'
lst = '["a", "b"]'
lhs = [col] * 2 + [lst] * 2
rhs = lhs[::-1]
eq, ne = '==', '!='
ops = 2 * ([eq] + [ne])
for lhs, op, rhs in zip(lhs, ops, rhs):
ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs)
with pytest.raises(NotImplementedError):
df.query(ex, engine=engine, parser=parser)
else:
res = df.query('strings == ["a", "b"]', engine=engine,
parser=parser)
assert_frame_equal(res, expect)
res = df.query('["a", "b"] == strings', engine=engine,
parser=parser)
assert_frame_equal(res, expect)
expect = df[~df.strings.isin(['a', 'b'])]
res = df.query('strings != ["a", "b"]', engine=engine,
parser=parser)
assert_frame_equal(res, expect)
res = df.query('["a", "b"] != strings', engine=engine,
parser=parser)
assert_frame_equal(res, expect)
def test_query_with_string_columns(self, parser, engine):
df = DataFrame({'a': list('aaaabbbbcccc'),
'b': list('aabbccddeeff'),
'c': np.random.randint(5, size=12),
'd': np.random.randint(9, size=12)})
if parser == 'pandas':
res = df.query('a in b', parser=parser, engine=engine)
expec = df[df.a.isin(df.b)]
assert_frame_equal(res, expec)
res = df.query('a in b and c < d', parser=parser, engine=engine)
expec = df[df.a.isin(df.b) & (df.c < df.d)]
assert_frame_equal(res, expec)
else:
with pytest.raises(NotImplementedError):
df.query('a in b', parser=parser, engine=engine)
with pytest.raises(NotImplementedError):
df.query('a in b and c < d', parser=parser, engine=engine)
def test_object_array_eq_ne(self, parser, engine):
df = DataFrame({'a': list('aaaabbbbcccc'),
'b': list('aabbccddeeff'),
'c': np.random.randint(5, size=12),
'd': np.random.randint(9, size=12)})
res = df.query('a == b', parser=parser, engine=engine)
exp = df[df.a == df.b]
assert_frame_equal(res, exp)
res = df.query('a != b', parser=parser, engine=engine)
exp = df[df.a != df.b]
assert_frame_equal(res, exp)
def test_query_with_nested_strings(self, parser, engine):
skip_if_no_pandas_parser(parser)
raw = """id event timestamp
1 "page 1 load" 1/1/2014 0:00:01
1 "page 1 exit" 1/1/2014 0:00:31
2 "page 2 load" 1/1/2014 0:01:01
2 "page 2 exit" 1/1/2014 0:01:31
3 "page 3 load" 1/1/2014 0:02:01
3 "page 3 exit" 1/1/2014 0:02:31
4 "page 1 load" 2/1/2014 1:00:01
4 "page 1 exit" 2/1/2014 1:00:31
5 "page 2 load" 2/1/2014 1:01:01
5 "page 2 exit" 2/1/2014 1:01:31
6 "page 3 load" 2/1/2014 1:02:01
6 "page 3 exit" 2/1/2014 1:02:31
"""
df = pd.read_csv(StringIO(raw), sep=r'\s{2,}', engine='python',
parse_dates=['timestamp'])
expected = df[df.event == '"page 1 load"']
res = df.query("""'"page 1 load"' in event""", parser=parser,
engine=engine)
assert_frame_equal(expected, res)
def test_query_with_nested_special_character(self, parser, engine):
skip_if_no_pandas_parser(parser)
df = DataFrame({'a': ['a', 'b', 'test & test'],
'b': [1, 2, 3]})
res = df.query('a == "test & test"', parser=parser, engine=engine)
expec = df[df.a == 'test & test']
assert_frame_equal(res, expec)
def test_query_lex_compare_strings(self, parser, engine):
import operator as opr
a = Series(np.random.choice(list('abcde'), 20))
b = Series(np.arange(a.size))
df = DataFrame({'X': a, 'Y': b})
ops = {'<': opr.lt, '>': opr.gt, '<=': opr.le, '>=': opr.ge}
for op, func in ops.items():
res = df.query('X %s "d"' % op, engine=engine, parser=parser)
expected = df[func(df.X, 'd')]
assert_frame_equal(res, expected)
def test_query_single_element_booleans(self, parser, engine):
columns = 'bid', 'bidsize', 'ask', 'asksize'
data = np.random.randint(2, size=(1, len(columns))).astype(bool)
df = DataFrame(data, columns=columns)
res = df.query('bid & ask', engine=engine, parser=parser)
expected = df[df.bid & df.ask]
assert_frame_equal(res, expected)
def test_query_string_scalar_variable(self, parser, engine):
skip_if_no_pandas_parser(parser)
df = pd.DataFrame({'Symbol': ['BUD US', 'BUD US', 'IBM US', 'IBM US'],
'Price': [109.70, 109.72, 183.30, 183.35]})
e = df[df.Symbol == 'BUD US']
symb = 'BUD US' # noqa
r = df.query('Symbol == @symb', parser=parser, engine=engine)
assert_frame_equal(e, r)
class TestDataFrameEvalWithFrame(object):
def setup_method(self, method):
self.frame = DataFrame(randn(10, 3), columns=list('abc'))
def teardown_method(self, method):
del self.frame
def test_simple_expr(self, parser, engine):
res = self.frame.eval('a + b', engine=engine, parser=parser)
expect = self.frame.a + self.frame.b
assert_series_equal(res, expect)
def test_bool_arith_expr(self, parser, engine):
res = self.frame.eval('a[a < 1] + b', engine=engine, parser=parser)
expect = self.frame.a[self.frame.a < 1] + self.frame.b
assert_series_equal(res, expect)
def test_invalid_type_for_operator_raises(self, parser, engine):
df = DataFrame({'a': [1, 2], 'b': ['c', 'd']})
ops = '+', '-', '*', '/'
for op in ops:
with tm.assert_raises_regex(TypeError,
r"unsupported operand type\(s\) "
"for .+: '.+' and '.+'"):
df.eval('a {0} b'.format(op), engine=engine, parser=parser)