1040 lines
40 KiB
Python
1040 lines
40 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import operator
|
||
|
import pytest
|
||
|
|
||
|
from pandas.compat import (zip, range, lrange, StringIO)
|
||
|
from pandas import DataFrame, Series, Index, MultiIndex, date_range
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
|
||
|
from numpy.random import randn
|
||
|
|
||
|
from pandas.util.testing import (assert_series_equal,
|
||
|
assert_frame_equal,
|
||
|
makeCustomDataframe as mkdf)
|
||
|
|
||
|
import pandas.util.testing as tm
|
||
|
import pandas.util._test_decorators as td
|
||
|
from pandas.core.computation.check import _NUMEXPR_INSTALLED
|
||
|
|
||
|
from pandas.tests.frame.common import TestData
|
||
|
|
||
|
|
||
|
PARSERS = 'python', 'pandas'
|
||
|
ENGINES = 'python', pytest.param('numexpr', marks=td.skip_if_no_ne)
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=PARSERS, ids=lambda x: x)
|
||
|
def parser(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=ENGINES, ids=lambda x: x)
|
||
|
def engine(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
def skip_if_no_pandas_parser(parser):
|
||
|
if parser != 'pandas':
|
||
|
pytest.skip("cannot evaluate with parser {0!r}".format(parser))
|
||
|
|
||
|
|
||
|
class TestCompat(object):
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
self.df = DataFrame({'A': [1, 2, 3]})
|
||
|
self.expected1 = self.df[self.df.A > 0]
|
||
|
self.expected2 = self.df.A + 1
|
||
|
|
||
|
def test_query_default(self):
|
||
|
|
||
|
# GH 12749
|
||
|
# this should always work, whether _NUMEXPR_INSTALLED or not
|
||
|
df = self.df
|
||
|
result = df.query('A>0')
|
||
|
assert_frame_equal(result, self.expected1)
|
||
|
result = df.eval('A+1')
|
||
|
assert_series_equal(result, self.expected2, check_names=False)
|
||
|
|
||
|
def test_query_None(self):
|
||
|
|
||
|
df = self.df
|
||
|
result = df.query('A>0', engine=None)
|
||
|
assert_frame_equal(result, self.expected1)
|
||
|
result = df.eval('A+1', engine=None)
|
||
|
assert_series_equal(result, self.expected2, check_names=False)
|
||
|
|
||
|
def test_query_python(self):
|
||
|
|
||
|
df = self.df
|
||
|
result = df.query('A>0', engine='python')
|
||
|
assert_frame_equal(result, self.expected1)
|
||
|
result = df.eval('A+1', engine='python')
|
||
|
assert_series_equal(result, self.expected2, check_names=False)
|
||
|
|
||
|
def test_query_numexpr(self):
|
||
|
|
||
|
df = self.df
|
||
|
if _NUMEXPR_INSTALLED:
|
||
|
result = df.query('A>0', engine='numexpr')
|
||
|
assert_frame_equal(result, self.expected1)
|
||
|
result = df.eval('A+1', engine='numexpr')
|
||
|
assert_series_equal(result, self.expected2, check_names=False)
|
||
|
else:
|
||
|
pytest.raises(ImportError,
|
||
|
lambda: df.query('A>0', engine='numexpr'))
|
||
|
pytest.raises(ImportError,
|
||
|
lambda: df.eval('A+1', engine='numexpr'))
|
||
|
|
||
|
|
||
|
class TestDataFrameEval(TestData):
|
||
|
|
||
|
def test_ops(self):
|
||
|
|
||
|
# tst ops and reversed ops in evaluation
|
||
|
# GH7198
|
||
|
|
||
|
# smaller hits python, larger hits numexpr
|
||
|
for n in [4, 4000]:
|
||
|
|
||
|
df = DataFrame(1, index=range(n), columns=list('abcd'))
|
||
|
df.iloc[0] = 2
|
||
|
m = df.mean()
|
||
|
|
||
|
for op_str, op, rop in [('+', '__add__', '__radd__'),
|
||
|
('-', '__sub__', '__rsub__'),
|
||
|
('*', '__mul__', '__rmul__'),
|
||
|
('/', '__truediv__', '__rtruediv__')]:
|
||
|
|
||
|
base = (DataFrame(np.tile(m.values, n) # noqa
|
||
|
.reshape(n, -1),
|
||
|
columns=list('abcd')))
|
||
|
|
||
|
expected = eval("base{op}df".format(op=op_str))
|
||
|
|
||
|
# ops as strings
|
||
|
result = eval("m{op}df".format(op=op_str))
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
# these are commutative
|
||
|
if op in ['+', '*']:
|
||
|
result = getattr(df, op)(m)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
# these are not
|
||
|
elif op in ['-', '/']:
|
||
|
result = getattr(df, rop)(m)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
# GH7192
|
||
|
df = DataFrame(dict(A=np.random.randn(25000)))
|
||
|
df.iloc[0:5] = np.nan
|
||
|
expected = (1 - np.isnan(df.iloc[0:25]))
|
||
|
result = (1 - np.isnan(df)).iloc[0:25]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_query_non_str(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'b']})
|
||
|
|
||
|
msg = "expr must be a string to be evaluated"
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
df.query(lambda x: x.B == "b")
|
||
|
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
df.query(111)
|
||
|
|
||
|
def test_query_empty_string(self):
|
||
|
# GH 13139
|
||
|
df = pd.DataFrame({'A': [1, 2, 3]})
|
||
|
|
||
|
msg = "expr cannot be an empty string"
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
df.query('')
|
||
|
|
||
|
def test_eval_resolvers_as_list(self):
|
||
|
# GH 14095
|
||
|
df = DataFrame(randn(10, 2), columns=list('ab'))
|
||
|
dict1 = {'a': 1}
|
||
|
dict2 = {'b': 2}
|
||
|
assert (df.eval('a + b', resolvers=[dict1, dict2]) ==
|
||
|
dict1['a'] + dict2['b'])
|
||
|
assert (pd.eval('a + b', resolvers=[dict1, dict2]) ==
|
||
|
dict1['a'] + dict2['b'])
|
||
|
|
||
|
|
||
|
class TestDataFrameQueryWithMultiIndex(object):
|
||
|
|
||
|
def test_query_with_named_multiindex(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
a = np.random.choice(['red', 'green'], size=10)
|
||
|
b = np.random.choice(['eggs', 'ham'], size=10)
|
||
|
index = MultiIndex.from_arrays([a, b], names=['color', 'food'])
|
||
|
df = DataFrame(randn(10, 2), index=index)
|
||
|
ind = Series(df.index.get_level_values('color').values, index=index,
|
||
|
name='color')
|
||
|
|
||
|
# equality
|
||
|
res1 = df.query('color == "red"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" == color', parser=parser, engine=engine)
|
||
|
exp = df[ind == 'red']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# inequality
|
||
|
res1 = df.query('color != "red"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" != color', parser=parser, engine=engine)
|
||
|
exp = df[ind != 'red']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# list equality (really just set membership)
|
||
|
res1 = df.query('color == ["red"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["red"] == color', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('color != ["red"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["red"] != color', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# in/not in ops
|
||
|
res1 = df.query('["red"] in color', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" in color', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('["red"] not in color', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" not in color', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
def test_query_with_unnamed_multiindex(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
a = np.random.choice(['red', 'green'], size=10)
|
||
|
b = np.random.choice(['eggs', 'ham'], size=10)
|
||
|
index = MultiIndex.from_arrays([a, b])
|
||
|
df = DataFrame(randn(10, 2), index=index)
|
||
|
ind = Series(df.index.get_level_values(0).values, index=index)
|
||
|
|
||
|
res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[ind == 'red']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# inequality
|
||
|
res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[ind != 'red']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# list equality (really just set membership)
|
||
|
res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# in/not in ops
|
||
|
res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine)
|
||
|
res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('["red"] not in ilevel_0', parser=parser,
|
||
|
engine=engine)
|
||
|
res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['red'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# ## LEVEL 1
|
||
|
ind = Series(df.index.get_level_values(1).values, index=index)
|
||
|
res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[ind == 'eggs']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# inequality
|
||
|
res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine)
|
||
|
res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[ind != 'eggs']
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# list equality (really just set membership)
|
||
|
res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['eggs'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine)
|
||
|
res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['eggs'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
# in/not in ops
|
||
|
res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine)
|
||
|
res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[ind.isin(['eggs'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
res1 = df.query('["eggs"] not in ilevel_1', parser=parser,
|
||
|
engine=engine)
|
||
|
res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine)
|
||
|
exp = df[~ind.isin(['eggs'])]
|
||
|
assert_frame_equal(res1, exp)
|
||
|
assert_frame_equal(res2, exp)
|
||
|
|
||
|
def test_query_with_partially_named_multiindex(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
a = np.random.choice(['red', 'green'], size=10)
|
||
|
b = np.arange(10)
|
||
|
index = MultiIndex.from_arrays([a, b])
|
||
|
index.names = [None, 'rating']
|
||
|
df = DataFrame(randn(10, 2), index=index)
|
||
|
res = df.query('rating == 1', parser=parser, engine=engine)
|
||
|
ind = Series(df.index.get_level_values('rating').values, index=index,
|
||
|
name='rating')
|
||
|
exp = df[ind == 1]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.query('rating != 1', parser=parser, engine=engine)
|
||
|
ind = Series(df.index.get_level_values('rating').values, index=index,
|
||
|
name='rating')
|
||
|
exp = df[ind != 1]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
|
||
|
ind = Series(df.index.get_level_values(0).values, index=index)
|
||
|
exp = df[ind == "red"]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
|
||
|
ind = Series(df.index.get_level_values(0).values, index=index)
|
||
|
exp = df[ind != "red"]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
def test_query_multiindex_get_index_resolvers(self):
|
||
|
df = mkdf(10, 3, r_idx_nlevels=2, r_idx_names=['spam', 'eggs'])
|
||
|
resolvers = df._get_index_resolvers()
|
||
|
|
||
|
def to_series(mi, level):
|
||
|
level_values = mi.get_level_values(level)
|
||
|
s = level_values.to_series()
|
||
|
s.index = mi
|
||
|
return s
|
||
|
|
||
|
col_series = df.columns.to_series()
|
||
|
expected = {'index': df.index,
|
||
|
'columns': col_series,
|
||
|
'spam': to_series(df.index, 'spam'),
|
||
|
'eggs': to_series(df.index, 'eggs'),
|
||
|
'C0': col_series}
|
||
|
for k, v in resolvers.items():
|
||
|
if isinstance(v, Index):
|
||
|
assert v.is_(expected[k])
|
||
|
elif isinstance(v, Series):
|
||
|
assert_series_equal(v, expected[k])
|
||
|
else:
|
||
|
raise AssertionError("object must be a Series or Index")
|
||
|
|
||
|
def test_raise_on_panel_with_multiindex(self, parser, engine):
|
||
|
p = tm.makePanel(7)
|
||
|
p.items = tm.makeCustomIndex(len(p.items), nlevels=2)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('p + 1', parser=parser, engine=engine)
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestDataFrameQueryNumExprPandas(object):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'pandas'
|
||
|
|
||
|
@classmethod
|
||
|
def teardown_class(cls):
|
||
|
del cls.engine, cls.parser
|
||
|
|
||
|
def test_date_query_with_attribute_access(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
df = DataFrame(randn(5, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=5)
|
||
|
df['dates2'] = date_range('1/1/2013', periods=5)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=5)
|
||
|
res = df.query('@df.dates1 < 20130101 < @df.dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_query_no_attribute_access(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(randn(5, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=5)
|
||
|
df['dates2'] = date_range('1/1/2013', periods=5)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=5)
|
||
|
res = df.query('dates1 < 20130101 < dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_query_with_NaT(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates2'] = date_range('1/1/2013', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT
|
||
|
res = df.query('dates1 < 20130101 < dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
res = df.query('index < 20130101 < dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query_with_NaT(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.iloc[0, 0] = pd.NaT
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
res = df.query('index < 20130101 < dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query_with_NaT_duplicates(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
d = {}
|
||
|
d['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
d['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df = DataFrame(d)
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
res = df.query('dates1 < 20130101 < dates3', engine=engine,
|
||
|
parser=parser)
|
||
|
expec = df[(df.index.to_series() < '20130101') &
|
||
|
('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_query_with_non_date(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
|
||
|
n = 10
|
||
|
df = DataFrame({'dates': date_range('1/1/2012', periods=n),
|
||
|
'nondate': np.arange(n)})
|
||
|
|
||
|
ops = '==', '!=', '<', '>', '<=', '>='
|
||
|
|
||
|
for op in ops:
|
||
|
with pytest.raises(TypeError):
|
||
|
df.query('dates %s nondate' % op, parser=parser, engine=engine)
|
||
|
|
||
|
def test_query_syntax_error(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame({"i": lrange(10), "+": lrange(3, 13),
|
||
|
"r": lrange(4, 14)})
|
||
|
with pytest.raises(SyntaxError):
|
||
|
df.query('i - +', engine=engine, parser=parser)
|
||
|
|
||
|
def test_query_scope(self):
|
||
|
from pandas.core.computation.ops import UndefinedVariableError
|
||
|
engine, parser = self.engine, self.parser
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
|
||
|
df = DataFrame(np.random.randn(20, 2), columns=list('ab'))
|
||
|
|
||
|
a, b = 1, 2 # noqa
|
||
|
res = df.query('a > b', engine=engine, parser=parser)
|
||
|
expected = df[df.a > df.b]
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
res = df.query('@a > b', engine=engine, parser=parser)
|
||
|
expected = df[a > df.b]
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
# no local variable c
|
||
|
with pytest.raises(UndefinedVariableError):
|
||
|
df.query('@a > b > @c', engine=engine, parser=parser)
|
||
|
|
||
|
# no column named 'c'
|
||
|
with pytest.raises(UndefinedVariableError):
|
||
|
df.query('@a > b > c', engine=engine, parser=parser)
|
||
|
|
||
|
def test_query_doesnt_pickup_local(self):
|
||
|
from pandas.core.computation.ops import UndefinedVariableError
|
||
|
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = m = 10
|
||
|
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
|
||
|
|
||
|
# we don't pick up the local 'sin'
|
||
|
with pytest.raises(UndefinedVariableError):
|
||
|
df.query('sin > 5', engine=engine, parser=parser)
|
||
|
|
||
|
def test_query_builtin(self):
|
||
|
from pandas.core.computation.engines import NumExprClobberingError
|
||
|
engine, parser = self.engine, self.parser
|
||
|
|
||
|
n = m = 10
|
||
|
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
|
||
|
|
||
|
df.index.name = 'sin'
|
||
|
with tm.assert_raises_regex(NumExprClobberingError,
|
||
|
'Variables in expression.+'):
|
||
|
df.query('sin > 5', engine=engine, parser=parser)
|
||
|
|
||
|
def test_query(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c'])
|
||
|
|
||
|
assert_frame_equal(df.query('a < b', engine=engine, parser=parser),
|
||
|
df[df.a < df.b])
|
||
|
assert_frame_equal(df.query('a + b > b * c', engine=engine,
|
||
|
parser=parser),
|
||
|
df[df.a + df.b > df.b * df.c])
|
||
|
|
||
|
def test_query_index_with_name(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(np.random.randint(10, size=(10, 3)),
|
||
|
index=Index(range(10), name='blob'),
|
||
|
columns=['a', 'b', 'c'])
|
||
|
res = df.query('(blob < 5) & (a < b)', engine=engine, parser=parser)
|
||
|
expec = df[(df.index < 5) & (df.a < df.b)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
res = df.query('blob < b', engine=engine, parser=parser)
|
||
|
expec = df[df.index < df.b]
|
||
|
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_query_index_without_name(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(np.random.randint(10, size=(10, 3)),
|
||
|
index=range(10), columns=['a', 'b', 'c'])
|
||
|
|
||
|
# "index" should refer to the index
|
||
|
res = df.query('index < b', engine=engine, parser=parser)
|
||
|
expec = df[df.index < df.b]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
# test against a scalar
|
||
|
res = df.query('index < 5', engine=engine, parser=parser)
|
||
|
expec = df[df.index < 5]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_nested_scope(self):
|
||
|
engine = self.engine
|
||
|
parser = self.parser
|
||
|
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
df2 = DataFrame(np.random.randn(5, 3))
|
||
|
expected = df[(df > 0) & (df2 > 0)]
|
||
|
|
||
|
result = df.query('(@df > 0) & (@df2 > 0)', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
result = pd.eval('df[df > 0 and df2 > 0]', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
result = pd.eval('df[df > 0 and df2 > 0 and df[df > 0] > 0]',
|
||
|
engine=engine, parser=parser)
|
||
|
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
result = pd.eval('df[(df>0) & (df2>0)]', engine=engine, parser=parser)
|
||
|
expected = df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_nested_raises_on_local_self_reference(self):
|
||
|
from pandas.core.computation.ops import UndefinedVariableError
|
||
|
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
|
||
|
# can't reference ourself b/c we're a local so @ is necessary
|
||
|
with pytest.raises(UndefinedVariableError):
|
||
|
df.query('df > 0', engine=self.engine, parser=self.parser)
|
||
|
|
||
|
def test_local_syntax(self):
|
||
|
skip_if_no_pandas_parser(self.parser)
|
||
|
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(randn(100, 10), columns=list('abcdefghij'))
|
||
|
b = 1
|
||
|
expect = df[df.a < b]
|
||
|
result = df.query('a < @b', engine=engine, parser=parser)
|
||
|
assert_frame_equal(result, expect)
|
||
|
|
||
|
expect = df[df.a < df.b]
|
||
|
result = df.query('a < b', engine=engine, parser=parser)
|
||
|
assert_frame_equal(result, expect)
|
||
|
|
||
|
def test_chained_cmp_and_in(self):
|
||
|
skip_if_no_pandas_parser(self.parser)
|
||
|
engine, parser = self.engine, self.parser
|
||
|
cols = list('abc')
|
||
|
df = DataFrame(randn(100, len(cols)), columns=cols)
|
||
|
res = df.query('a < b < c and a not in b not in c', engine=engine,
|
||
|
parser=parser)
|
||
|
ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b) # noqa
|
||
|
expec = df[ind]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_local_variable_with_in(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
a = Series(np.random.randint(3, size=15), name='a')
|
||
|
b = Series(np.random.randint(10, size=15), name='b')
|
||
|
df = DataFrame({'a': a, 'b': b})
|
||
|
|
||
|
expected = df.loc[(df.b - 1).isin(a)]
|
||
|
result = df.query('b - 1 in a', engine=engine, parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
b = Series(np.random.randint(10, size=15), name='b')
|
||
|
expected = df.loc[(b - 1).isin(a)]
|
||
|
result = df.query('@b - 1 in a', engine=engine, parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
def test_at_inside_string(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
c = 1 # noqa
|
||
|
df = DataFrame({'a': ['a', 'a', 'b', 'b', '@c', '@c']})
|
||
|
result = df.query('a == "@c"', engine=engine, parser=parser)
|
||
|
expected = df[df.a == "@c"]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_query_undefined_local(self):
|
||
|
from pandas.core.computation.ops import UndefinedVariableError
|
||
|
engine, parser = self.engine, self.parser
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
df = DataFrame(np.random.rand(10, 2), columns=list('ab'))
|
||
|
with tm.assert_raises_regex(UndefinedVariableError,
|
||
|
"local variable 'c' is not defined"):
|
||
|
df.query('a == @c', engine=engine, parser=parser)
|
||
|
|
||
|
def test_index_resolvers_come_after_columns_with_the_same_name(self):
|
||
|
n = 1 # noqa
|
||
|
a = np.r_[20:101:20]
|
||
|
|
||
|
df = DataFrame({'index': a, 'b': np.random.randn(a.size)})
|
||
|
df.index.name = 'index'
|
||
|
result = df.query('index > 5', engine=self.engine, parser=self.parser)
|
||
|
expected = df[df['index'] > 5]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame({'index': a,
|
||
|
'b': np.random.randn(a.size)})
|
||
|
result = df.query('ilevel_0 > 5', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
expected = df.loc[df.index[df.index > 5]]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
df = DataFrame({'a': a, 'b': np.random.randn(a.size)})
|
||
|
df.index.name = 'a'
|
||
|
result = df.query('a > 5', engine=self.engine, parser=self.parser)
|
||
|
expected = df[df.a > 5]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.query('index > 5', engine=self.engine, parser=self.parser)
|
||
|
expected = df.loc[df.index[df.index > 5]]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_inf(self):
|
||
|
n = 10
|
||
|
df = DataFrame({'a': np.random.rand(n), 'b': np.random.rand(n)})
|
||
|
df.loc[::2, 0] = np.inf
|
||
|
ops = '==', '!='
|
||
|
d = dict(zip(ops, (operator.eq, operator.ne)))
|
||
|
for op, f in d.items():
|
||
|
q = 'a %s inf' % op
|
||
|
expected = df[f(df.a, np.inf)]
|
||
|
result = df.query(q, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestDataFrameQueryNumExprPython, cls).setup_class()
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'python'
|
||
|
cls.frame = TestData().frame
|
||
|
|
||
|
def test_date_query_no_attribute_access(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
df = DataFrame(randn(5, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=5)
|
||
|
df['dates2'] = date_range('1/1/2013', periods=5)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=5)
|
||
|
res = df.query('(dates1 < 20130101) & (20130101 < dates3)',
|
||
|
engine=engine, parser=parser)
|
||
|
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_query_with_NaT(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates2'] = date_range('1/1/2013', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT
|
||
|
res = df.query('(dates1 < 20130101) & (20130101 < dates3)',
|
||
|
engine=engine, parser=parser)
|
||
|
expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
res = df.query('(index < 20130101) & (20130101 < dates3)',
|
||
|
engine=engine, parser=parser)
|
||
|
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query_with_NaT(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.iloc[0, 0] = pd.NaT
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
res = df.query('(index < 20130101) & (20130101 < dates3)',
|
||
|
engine=engine, parser=parser)
|
||
|
expec = df[(df.index < '20130101') & ('20130101' < df.dates3)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_date_index_query_with_NaT_duplicates(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
n = 10
|
||
|
df = DataFrame(randn(n, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=n)
|
||
|
df['dates3'] = date_range('1/1/2014', periods=n)
|
||
|
df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT
|
||
|
df.set_index('dates1', inplace=True, drop=True)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
df.query('index < 20130101 < dates3', engine=engine, parser=parser)
|
||
|
|
||
|
def test_nested_scope(self):
|
||
|
from pandas.core.computation.ops import UndefinedVariableError
|
||
|
engine = self.engine
|
||
|
parser = self.parser
|
||
|
# smoke test
|
||
|
x = 1 # noqa
|
||
|
result = pd.eval('x + 1', engine=engine, parser=parser)
|
||
|
assert result == 2
|
||
|
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
df2 = DataFrame(np.random.randn(5, 3))
|
||
|
|
||
|
# don't have the pandas parser
|
||
|
with pytest.raises(SyntaxError):
|
||
|
df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser)
|
||
|
|
||
|
with pytest.raises(UndefinedVariableError):
|
||
|
df.query('(df>0) & (df2>0)', engine=engine, parser=parser)
|
||
|
|
||
|
expected = df[(df > 0) & (df2 > 0)]
|
||
|
result = pd.eval('df[(df > 0) & (df2 > 0)]', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
|
||
|
result = pd.eval('df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]',
|
||
|
engine=engine, parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
|
||
|
class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestDataFrameQueryPythonPandas, cls).setup_class()
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'pandas'
|
||
|
cls.frame = TestData().frame
|
||
|
|
||
|
def test_query_builtin(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
|
||
|
n = m = 10
|
||
|
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
|
||
|
|
||
|
df.index.name = 'sin'
|
||
|
expected = df[df.index > 5]
|
||
|
result = df.query('sin > 5', engine=engine, parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
|
||
|
class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestDataFrameQueryPythonPython, cls).setup_class()
|
||
|
cls.engine = cls.parser = 'python'
|
||
|
cls.frame = TestData().frame
|
||
|
|
||
|
def test_query_builtin(self):
|
||
|
engine, parser = self.engine, self.parser
|
||
|
|
||
|
n = m = 10
|
||
|
df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc'))
|
||
|
|
||
|
df.index.name = 'sin'
|
||
|
expected = df[df.index > 5]
|
||
|
result = df.query('sin > 5', engine=engine, parser=parser)
|
||
|
assert_frame_equal(expected, result)
|
||
|
|
||
|
|
||
|
class TestDataFrameQueryStrings(object):
|
||
|
|
||
|
def test_str_query_method(self, parser, engine):
|
||
|
df = DataFrame(randn(10, 1), columns=['b'])
|
||
|
df['strings'] = Series(list('aabbccddee'))
|
||
|
expect = df[df.strings == 'a']
|
||
|
|
||
|
if parser != 'pandas':
|
||
|
col = 'strings'
|
||
|
lst = '"a"'
|
||
|
|
||
|
lhs = [col] * 2 + [lst] * 2
|
||
|
rhs = lhs[::-1]
|
||
|
|
||
|
eq, ne = '==', '!='
|
||
|
ops = 2 * ([eq] + [ne])
|
||
|
|
||
|
for lhs, op, rhs in zip(lhs, ops, rhs):
|
||
|
ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs)
|
||
|
pytest.raises(NotImplementedError, df.query, ex,
|
||
|
engine=engine, parser=parser,
|
||
|
local_dict={'strings': df.strings})
|
||
|
else:
|
||
|
res = df.query('"a" == strings', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
res = df.query('strings == "a"', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
assert_frame_equal(res, df[df.strings.isin(['a'])])
|
||
|
|
||
|
expect = df[df.strings != 'a']
|
||
|
res = df.query('strings != "a"', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
res = df.query('"a" != strings', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
assert_frame_equal(res, df[~df.strings.isin(['a'])])
|
||
|
|
||
|
def test_str_list_query_method(self, parser, engine):
|
||
|
df = DataFrame(randn(10, 1), columns=['b'])
|
||
|
df['strings'] = Series(list('aabbccddee'))
|
||
|
expect = df[df.strings.isin(['a', 'b'])]
|
||
|
|
||
|
if parser != 'pandas':
|
||
|
col = 'strings'
|
||
|
lst = '["a", "b"]'
|
||
|
|
||
|
lhs = [col] * 2 + [lst] * 2
|
||
|
rhs = lhs[::-1]
|
||
|
|
||
|
eq, ne = '==', '!='
|
||
|
ops = 2 * ([eq] + [ne])
|
||
|
|
||
|
for lhs, op, rhs in zip(lhs, ops, rhs):
|
||
|
ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
df.query(ex, engine=engine, parser=parser)
|
||
|
else:
|
||
|
res = df.query('strings == ["a", "b"]', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
res = df.query('["a", "b"] == strings', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
expect = df[~df.strings.isin(['a', 'b'])]
|
||
|
|
||
|
res = df.query('strings != ["a", "b"]', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
res = df.query('["a", "b"] != strings', engine=engine,
|
||
|
parser=parser)
|
||
|
assert_frame_equal(res, expect)
|
||
|
|
||
|
def test_query_with_string_columns(self, parser, engine):
|
||
|
df = DataFrame({'a': list('aaaabbbbcccc'),
|
||
|
'b': list('aabbccddeeff'),
|
||
|
'c': np.random.randint(5, size=12),
|
||
|
'd': np.random.randint(9, size=12)})
|
||
|
if parser == 'pandas':
|
||
|
res = df.query('a in b', parser=parser, engine=engine)
|
||
|
expec = df[df.a.isin(df.b)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
res = df.query('a in b and c < d', parser=parser, engine=engine)
|
||
|
expec = df[df.a.isin(df.b) & (df.c < df.d)]
|
||
|
assert_frame_equal(res, expec)
|
||
|
else:
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
df.query('a in b', parser=parser, engine=engine)
|
||
|
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
df.query('a in b and c < d', parser=parser, engine=engine)
|
||
|
|
||
|
def test_object_array_eq_ne(self, parser, engine):
|
||
|
df = DataFrame({'a': list('aaaabbbbcccc'),
|
||
|
'b': list('aabbccddeeff'),
|
||
|
'c': np.random.randint(5, size=12),
|
||
|
'd': np.random.randint(9, size=12)})
|
||
|
res = df.query('a == b', parser=parser, engine=engine)
|
||
|
exp = df[df.a == df.b]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.query('a != b', parser=parser, engine=engine)
|
||
|
exp = df[df.a != df.b]
|
||
|
assert_frame_equal(res, exp)
|
||
|
|
||
|
def test_query_with_nested_strings(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
raw = """id event timestamp
|
||
|
1 "page 1 load" 1/1/2014 0:00:01
|
||
|
1 "page 1 exit" 1/1/2014 0:00:31
|
||
|
2 "page 2 load" 1/1/2014 0:01:01
|
||
|
2 "page 2 exit" 1/1/2014 0:01:31
|
||
|
3 "page 3 load" 1/1/2014 0:02:01
|
||
|
3 "page 3 exit" 1/1/2014 0:02:31
|
||
|
4 "page 1 load" 2/1/2014 1:00:01
|
||
|
4 "page 1 exit" 2/1/2014 1:00:31
|
||
|
5 "page 2 load" 2/1/2014 1:01:01
|
||
|
5 "page 2 exit" 2/1/2014 1:01:31
|
||
|
6 "page 3 load" 2/1/2014 1:02:01
|
||
|
6 "page 3 exit" 2/1/2014 1:02:31
|
||
|
"""
|
||
|
df = pd.read_csv(StringIO(raw), sep=r'\s{2,}', engine='python',
|
||
|
parse_dates=['timestamp'])
|
||
|
expected = df[df.event == '"page 1 load"']
|
||
|
res = df.query("""'"page 1 load"' in event""", parser=parser,
|
||
|
engine=engine)
|
||
|
assert_frame_equal(expected, res)
|
||
|
|
||
|
def test_query_with_nested_special_character(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
df = DataFrame({'a': ['a', 'b', 'test & test'],
|
||
|
'b': [1, 2, 3]})
|
||
|
res = df.query('a == "test & test"', parser=parser, engine=engine)
|
||
|
expec = df[df.a == 'test & test']
|
||
|
assert_frame_equal(res, expec)
|
||
|
|
||
|
def test_query_lex_compare_strings(self, parser, engine):
|
||
|
import operator as opr
|
||
|
|
||
|
a = Series(np.random.choice(list('abcde'), 20))
|
||
|
b = Series(np.arange(a.size))
|
||
|
df = DataFrame({'X': a, 'Y': b})
|
||
|
|
||
|
ops = {'<': opr.lt, '>': opr.gt, '<=': opr.le, '>=': opr.ge}
|
||
|
|
||
|
for op, func in ops.items():
|
||
|
res = df.query('X %s "d"' % op, engine=engine, parser=parser)
|
||
|
expected = df[func(df.X, 'd')]
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
def test_query_single_element_booleans(self, parser, engine):
|
||
|
columns = 'bid', 'bidsize', 'ask', 'asksize'
|
||
|
data = np.random.randint(2, size=(1, len(columns))).astype(bool)
|
||
|
df = DataFrame(data, columns=columns)
|
||
|
res = df.query('bid & ask', engine=engine, parser=parser)
|
||
|
expected = df[df.bid & df.ask]
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
def test_query_string_scalar_variable(self, parser, engine):
|
||
|
skip_if_no_pandas_parser(parser)
|
||
|
df = pd.DataFrame({'Symbol': ['BUD US', 'BUD US', 'IBM US', 'IBM US'],
|
||
|
'Price': [109.70, 109.72, 183.30, 183.35]})
|
||
|
e = df[df.Symbol == 'BUD US']
|
||
|
symb = 'BUD US' # noqa
|
||
|
r = df.query('Symbol == @symb', parser=parser, engine=engine)
|
||
|
assert_frame_equal(e, r)
|
||
|
|
||
|
|
||
|
class TestDataFrameEvalWithFrame(object):
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
self.frame = DataFrame(randn(10, 3), columns=list('abc'))
|
||
|
|
||
|
def teardown_method(self, method):
|
||
|
del self.frame
|
||
|
|
||
|
def test_simple_expr(self, parser, engine):
|
||
|
res = self.frame.eval('a + b', engine=engine, parser=parser)
|
||
|
expect = self.frame.a + self.frame.b
|
||
|
assert_series_equal(res, expect)
|
||
|
|
||
|
def test_bool_arith_expr(self, parser, engine):
|
||
|
res = self.frame.eval('a[a < 1] + b', engine=engine, parser=parser)
|
||
|
expect = self.frame.a[self.frame.a < 1] + self.frame.b
|
||
|
assert_series_equal(res, expect)
|
||
|
|
||
|
def test_invalid_type_for_operator_raises(self, parser, engine):
|
||
|
df = DataFrame({'a': [1, 2], 'b': ['c', 'd']})
|
||
|
ops = '+', '-', '*', '/'
|
||
|
for op in ops:
|
||
|
with tm.assert_raises_regex(TypeError,
|
||
|
r"unsupported operand type\(s\) "
|
||
|
"for .+: '.+' and '.+'"):
|
||
|
df.eval('a {0} b'.format(op), engine=engine, parser=parser)
|