laywerrobot/lib/python3.6/site-packages/pandas/tests/frame/test_block_internals.py

561 lines
19 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# -*- coding: utf-8 -*-
from __future__ import print_function
import pytest
from datetime import datetime, timedelta
import itertools
from numpy import nan
import numpy as np
from pandas import (DataFrame, Series, Timestamp, date_range, compat,
option_context)
from pandas.compat import StringIO
import pandas as pd
from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal)
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
# Segregated collection of methods that require the BlockManager internal data
# structure
class TestDataFrameBlockInternals(TestData):
def test_cast_internals(self):
casted = DataFrame(self.frame._data, dtype=int)
expected = DataFrame(self.frame._series, dtype=int)
assert_frame_equal(casted, expected)
casted = DataFrame(self.frame._data, dtype=np.int32)
expected = DataFrame(self.frame._series, dtype=np.int32)
assert_frame_equal(casted, expected)
def test_consolidate(self):
self.frame['E'] = 7.
consolidated = self.frame._consolidate()
assert len(consolidated._data.blocks) == 1
# Ensure copy, do I want this?
recons = consolidated._consolidate()
assert recons is not consolidated
tm.assert_frame_equal(recons, consolidated)
self.frame['F'] = 8.
assert len(self.frame._data.blocks) == 3
self.frame._consolidate(inplace=True)
assert len(self.frame._data.blocks) == 1
def test_consolidate_deprecation(self):
self.frame['E'] = 7
with tm.assert_produces_warning(FutureWarning):
self.frame.consolidate()
def test_consolidate_inplace(self):
frame = self.frame.copy() # noqa
# triggers in-place consolidation
for letter in range(ord('A'), ord('Z')):
self.frame[chr(letter)] = chr(letter)
def test_values_consolidate(self):
self.frame['E'] = 7.
assert not self.frame._data.is_consolidated()
_ = self.frame.values # noqa
assert self.frame._data.is_consolidated()
def test_modify_values(self):
self.frame.values[5] = 5
assert (self.frame.values[5] == 5).all()
# unconsolidated
self.frame['E'] = 7.
self.frame.values[6] = 6
assert (self.frame.values[6] == 6).all()
def test_boolean_set_uncons(self):
self.frame['E'] = 7.
expected = self.frame.values.copy()
expected[expected > 1] = 2
self.frame[self.frame > 1] = 2
assert_almost_equal(expected, self.frame.values)
def test_values_numeric_cols(self):
self.frame['foo'] = 'bar'
values = self.frame[['A', 'B', 'C', 'D']].values
assert values.dtype == np.float64
def test_values_lcd(self):
# mixed lcd
values = self.mixed_float[['A', 'B', 'C', 'D']].values
assert values.dtype == np.float64
values = self.mixed_float[['A', 'B', 'C']].values
assert values.dtype == np.float32
values = self.mixed_float[['C']].values
assert values.dtype == np.float16
# GH 10364
# B uint64 forces float because there are other signed int types
values = self.mixed_int[['A', 'B', 'C', 'D']].values
assert values.dtype == np.float64
values = self.mixed_int[['A', 'D']].values
assert values.dtype == np.int64
# B uint64 forces float because there are other signed int types
values = self.mixed_int[['A', 'B', 'C']].values
assert values.dtype == np.float64
# as B and C are both unsigned, no forcing to float is needed
values = self.mixed_int[['B', 'C']].values
assert values.dtype == np.uint64
values = self.mixed_int[['A', 'C']].values
assert values.dtype == np.int32
values = self.mixed_int[['C', 'D']].values
assert values.dtype == np.int64
values = self.mixed_int[['A']].values
assert values.dtype == np.int32
values = self.mixed_int[['C']].values
assert values.dtype == np.uint8
def test_constructor_with_convert(self):
# this is actually mostly a test of lib.maybe_convert_objects
# #2845
df = DataFrame({'A': [2 ** 63 - 1]})
result = df['A']
expected = Series(np.asarray([2 ** 63 - 1], np.int64), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2 ** 63]})
result = df['A']
expected = Series(np.asarray([2 ** 63], np.uint64), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [datetime(2005, 1, 1), True]})
result = df['A']
expected = Series(np.asarray([datetime(2005, 1, 1), True], np.object_),
name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [None, 1]})
result = df['A']
expected = Series(np.asarray([np.nan, 1], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0, 2]})
result = df['A']
expected = Series(np.asarray([1.0, 2], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, 3]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, 3.0]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, True]})
result = df['A']
expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0, None]})
result = df['A']
expected = Series(np.asarray([1.0, np.nan], np.float_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [1.0 + 2.0j, None]})
result = df['A']
expected = Series(np.asarray(
[1.0 + 2.0j, np.nan], np.complex_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2.0, 1, True, None]})
result = df['A']
expected = Series(np.asarray(
[2.0, 1, True, None], np.object_), name='A')
assert_series_equal(result, expected)
df = DataFrame({'A': [2.0, 1, datetime(2006, 1, 1), None]})
result = df['A']
expected = Series(np.asarray([2.0, 1, datetime(2006, 1, 1),
None], np.object_), name='A')
assert_series_equal(result, expected)
def test_construction_with_mixed(self):
# test construction edge cases with mixed types
# f7u12, this does not work without extensive workaround
data = [[datetime(2001, 1, 5), nan, datetime(2001, 1, 2)],
[datetime(2000, 1, 2), datetime(2000, 1, 3),
datetime(2000, 1, 1)]]
df = DataFrame(data)
# check dtypes
result = df.get_dtype_counts().sort_values()
expected = Series({'datetime64[ns]': 3})
# mixed-type frames
self.mixed_frame['datetime'] = datetime.now()
self.mixed_frame['timedelta'] = timedelta(days=1, seconds=1)
assert self.mixed_frame['datetime'].dtype == 'M8[ns]'
assert self.mixed_frame['timedelta'].dtype == 'm8[ns]'
result = self.mixed_frame.get_dtype_counts().sort_values()
expected = Series({'float64': 4,
'object': 1,
'datetime64[ns]': 1,
'timedelta64[ns]': 1}).sort_values()
assert_series_equal(result, expected)
def test_construction_with_conversions(self):
# convert from a numpy array of non-ns timedelta64
arr = np.array([1, 2, 3], dtype='timedelta64[s]')
df = DataFrame(index=range(3))
df['A'] = arr
expected = DataFrame({'A': pd.timedelta_range('00:00:01', periods=3,
freq='s')},
index=range(3))
assert_frame_equal(df, expected)
expected = DataFrame({
'dt1': Timestamp('20130101'),
'dt2': date_range('20130101', periods=3),
# 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'),
}, index=range(3))
df = DataFrame(index=range(3))
df['dt1'] = np.datetime64('2013-01-01')
df['dt2'] = np.array(['2013-01-01', '2013-01-02', '2013-01-03'],
dtype='datetime64[D]')
# df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01
# 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')
assert_frame_equal(df, expected)
def test_constructor_compound_dtypes(self):
# GH 5191
# compound dtypes should raise not-implementederror
def f(dtype):
data = list(itertools.repeat((datetime(2001, 1, 1),
"aa", 20), 9))
return DataFrame(data=data,
columns=["A", "B", "C"],
dtype=dtype)
pytest.raises(NotImplementedError, f,
[("A", "datetime64[h]"),
("B", "str"),
("C", "int32")])
# these work (though results may be unexpected)
f('int64')
f('float64')
# 10822
# invalid error message on dt inference
if not compat.is_platform_windows():
f('M8[ns]')
def test_equals_different_blocks(self):
# GH 9330
df0 = pd.DataFrame({"A": ["x", "y"], "B": [1, 2],
"C": ["w", "z"]})
df1 = df0.reset_index()[["A", "B", "C"]]
# this assert verifies that the above operations have
# induced a block rearrangement
assert (df0._data.blocks[0].dtype != df1._data.blocks[0].dtype)
# do the real tests
assert_frame_equal(df0, df1)
assert df0.equals(df1)
assert df1.equals(df0)
def test_copy_blocks(self):
# API/ENH 9607
df = DataFrame(self.frame, copy=True)
column = df.columns[0]
# use the default copy=True, change a column
# deprecated 0.21.0
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
blocks = df.as_blocks()
for dtype, _df in blocks.items():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did not change the original DataFrame
assert not _df[column].equals(df[column])
def test_no_copy_blocks(self):
# API/ENH 9607
df = DataFrame(self.frame, copy=True)
column = df.columns[0]
# use the copy=False, change a column
# deprecated 0.21.0
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
blocks = df.as_blocks(copy=False)
for dtype, _df in blocks.items():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did change the original DataFrame
assert _df[column].equals(df[column])
def test_copy(self):
cop = self.frame.copy()
cop['E'] = cop['A']
assert 'E' not in self.frame
# copy objects
copy = self.mixed_frame.copy()
assert copy._data is not self.mixed_frame._data
def test_pickle(self):
unpickled = tm.round_trip_pickle(self.mixed_frame)
assert_frame_equal(self.mixed_frame, unpickled)
# buglet
self.mixed_frame._data.ndim
# empty
unpickled = tm.round_trip_pickle(self.empty)
repr(unpickled)
# tz frame
unpickled = tm.round_trip_pickle(self.tzframe)
assert_frame_equal(self.tzframe, unpickled)
def test_consolidate_datetime64(self):
# numpy vstack bug
data = """\
starting,ending,measure
2012-06-21 00:00,2012-06-23 07:00,77
2012-06-23 07:00,2012-06-23 16:30,65
2012-06-23 16:30,2012-06-25 08:00,77
2012-06-25 08:00,2012-06-26 12:00,0
2012-06-26 12:00,2012-06-27 08:00,77
"""
df = pd.read_csv(StringIO(data), parse_dates=[0, 1])
ser_starting = df.starting
ser_starting.index = ser_starting.values
ser_starting = ser_starting.tz_localize('US/Eastern')
ser_starting = ser_starting.tz_convert('UTC')
ser_starting.index.name = 'starting'
ser_ending = df.ending
ser_ending.index = ser_ending.values
ser_ending = ser_ending.tz_localize('US/Eastern')
ser_ending = ser_ending.tz_convert('UTC')
ser_ending.index.name = 'ending'
df.starting = ser_starting.index
df.ending = ser_ending.index
tm.assert_index_equal(pd.DatetimeIndex(
df.starting), ser_starting.index)
tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index)
def test_is_mixed_type(self):
assert not self.frame._is_mixed_type
assert self.mixed_frame._is_mixed_type
def test_get_numeric_data(self):
# TODO(wesm): unused?
intname = np.dtype(np.int_).name # noqa
floatname = np.dtype(np.float_).name # noqa
datetime64name = np.dtype('M8[ns]').name
objectname = np.dtype(np.object_).name
df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
'f': Timestamp('20010102')},
index=np.arange(10))
result = df.get_dtype_counts()
expected = Series({'int64': 1, 'float64': 1,
datetime64name: 1, objectname: 1})
result = result.sort_index()
expected = expected.sort_index()
assert_series_equal(result, expected)
df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
'd': np.array([1.] * 10, dtype='float32'),
'e': np.array([1] * 10, dtype='int32'),
'f': np.array([1] * 10, dtype='int16'),
'g': Timestamp('20010102')},
index=np.arange(10))
result = df._get_numeric_data()
expected = df.loc[:, ['a', 'b', 'd', 'e', 'f']]
assert_frame_equal(result, expected)
only_obj = df.loc[:, ['c', 'g']]
result = only_obj._get_numeric_data()
expected = df.loc[:, []]
assert_frame_equal(result, expected)
df = DataFrame.from_dict(
{'a': [1, 2], 'b': ['foo', 'bar'], 'c': [np.pi, np.e]})
result = df._get_numeric_data()
expected = DataFrame.from_dict({'a': [1, 2], 'c': [np.pi, np.e]})
assert_frame_equal(result, expected)
df = result.copy()
result = df._get_numeric_data()
expected = df
assert_frame_equal(result, expected)
def test_convert_objects(self):
oops = self.mixed_frame.T.T
converted = oops._convert(datetime=True)
assert_frame_equal(converted, self.mixed_frame)
assert converted['A'].dtype == np.float64
# force numeric conversion
self.mixed_frame['H'] = '1.'
self.mixed_frame['I'] = '1'
# add in some items that will be nan
length = len(self.mixed_frame)
self.mixed_frame['J'] = '1.'
self.mixed_frame['K'] = '1'
self.mixed_frame.loc[0:5, ['J', 'K']] = 'garbled'
converted = self.mixed_frame._convert(datetime=True, numeric=True)
assert converted['H'].dtype == 'float64'
assert converted['I'].dtype == 'int64'
assert converted['J'].dtype == 'float64'
assert converted['K'].dtype == 'float64'
assert len(converted['J'].dropna()) == length - 5
assert len(converted['K'].dropna()) == length - 5
# via astype
converted = self.mixed_frame.copy()
converted['H'] = converted['H'].astype('float64')
converted['I'] = converted['I'].astype('int64')
assert converted['H'].dtype == 'float64'
assert converted['I'].dtype == 'int64'
# via astype, but errors
converted = self.mixed_frame.copy()
with tm.assert_raises_regex(ValueError, 'invalid literal'):
converted['H'].astype('int32')
# mixed in a single column
df = DataFrame(dict(s=Series([1, 'na', 3, 4])))
result = df._convert(datetime=True, numeric=True)
expected = DataFrame(dict(s=Series([1, np.nan, 3, 4])))
assert_frame_equal(result, expected)
def test_convert_objects_no_conversion(self):
mixed1 = DataFrame(
{'a': [1, 2, 3], 'b': [4.0, 5, 6], 'c': ['x', 'y', 'z']})
mixed2 = mixed1._convert(datetime=True)
assert_frame_equal(mixed1, mixed2)
def test_infer_objects(self):
# GH 11221
df = DataFrame({'a': ['a', 1, 2, 3],
'b': ['b', 2.0, 3.0, 4.1],
'c': ['c', datetime(2016, 1, 1),
datetime(2016, 1, 2),
datetime(2016, 1, 3)],
'd': [1, 2, 3, 'd']},
columns=['a', 'b', 'c', 'd'])
df = df.iloc[1:].infer_objects()
assert df['a'].dtype == 'int64'
assert df['b'].dtype == 'float64'
assert df['c'].dtype == 'M8[ns]'
assert df['d'].dtype == 'object'
expected = DataFrame({'a': [1, 2, 3],
'b': [2.0, 3.0, 4.1],
'c': [datetime(2016, 1, 1),
datetime(2016, 1, 2),
datetime(2016, 1, 3)],
'd': [2, 3, 'd']},
columns=['a', 'b', 'c', 'd'])
# reconstruct frame to verify inference is same
tm.assert_frame_equal(df.reset_index(drop=True), expected)
def test_stale_cached_series_bug_473(self):
# this is chained, but ok
with option_context('chained_assignment', None):
Y = DataFrame(np.random.random((4, 4)), index=('a', 'b', 'c', 'd'),
columns=('e', 'f', 'g', 'h'))
repr(Y)
Y['e'] = Y['e'].astype('object')
Y['g']['c'] = np.NaN
repr(Y)
result = Y.sum() # noqa
exp = Y['g'].sum() # noqa
assert pd.isna(Y['g']['c'])
def test_get_X_columns(self):
# numeric and object columns
df = DataFrame({'a': [1, 2, 3],
'b': [True, False, True],
'c': ['foo', 'bar', 'baz'],
'd': [None, None, None],
'e': [3.14, 0.577, 2.773]})
tm.assert_index_equal(df._get_numeric_data().columns,
pd.Index(['a', 'b', 'e']))
def test_strange_column_corruption_issue(self):
# (wesm) Unclear how exactly this is related to internal matters
df = DataFrame(index=[0, 1])
df[0] = nan
wasCol = {}
# uncommenting these makes the results match
# for col in xrange(100, 200):
# wasCol[col] = 1
# df[col] = nan
for i, dt in enumerate(df.index):
for col in range(100, 200):
if col not in wasCol:
wasCol[col] = 1
df[col] = nan
df[col][dt] = i
myid = 100
first = len(df.loc[pd.isna(df[myid]), [myid]])
second = len(df.loc[pd.isna(df[myid]), [myid]])
assert first == second == 0