1895 lines
68 KiB
Python
1895 lines
68 KiB
Python
|
import warnings
|
||
|
from warnings import catch_warnings
|
||
|
import operator
|
||
|
from itertools import product
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from numpy.random import randn, rand, randint
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.common import is_bool, is_list_like, is_scalar
|
||
|
import pandas as pd
|
||
|
from pandas.core import common as com
|
||
|
from pandas.errors import PerformanceWarning
|
||
|
from pandas import DataFrame, Series, Panel, date_range
|
||
|
from pandas.util.testing import makeCustomDataframe as mkdf
|
||
|
|
||
|
from pandas.core.computation import pytables
|
||
|
from pandas.core.computation.engines import _engines, NumExprClobberingError
|
||
|
from pandas.core.computation.expr import PythonExprVisitor, PandasExprVisitor
|
||
|
from pandas.core.computation.expressions import (
|
||
|
_USE_NUMEXPR, _NUMEXPR_INSTALLED)
|
||
|
from pandas.core.computation.ops import (
|
||
|
_binary_ops_dict,
|
||
|
_special_case_arith_ops_syms,
|
||
|
_arith_ops_syms, _bool_ops_syms,
|
||
|
_unary_math_ops, _binary_math_ops)
|
||
|
|
||
|
import pandas.core.computation.expr as expr
|
||
|
import pandas.util.testing as tm
|
||
|
import pandas.util._test_decorators as td
|
||
|
from pandas.util.testing import (assert_frame_equal, randbool,
|
||
|
assert_numpy_array_equal, assert_series_equal,
|
||
|
assert_produces_warning)
|
||
|
from pandas.compat import PY3, reduce
|
||
|
|
||
|
_series_frame_incompatible = _bool_ops_syms
|
||
|
_scalar_skip = 'in', 'not in'
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=(
|
||
|
pytest.param(engine,
|
||
|
marks=pytest.mark.skipif(
|
||
|
engine == 'numexpr' and not _USE_NUMEXPR,
|
||
|
reason='numexpr enabled->{enabled}, '
|
||
|
'installed->{installed}'.format(
|
||
|
enabled=_USE_NUMEXPR,
|
||
|
installed=_NUMEXPR_INSTALLED)))
|
||
|
for engine in _engines)) # noqa
|
||
|
def engine(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=expr._parsers)
|
||
|
def parser(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
def engine_has_neg_frac(engine):
|
||
|
return _engines[engine].has_neg_frac
|
||
|
|
||
|
|
||
|
def _eval_single_bin(lhs, cmp1, rhs, engine):
|
||
|
c = _binary_ops_dict[cmp1]
|
||
|
if engine_has_neg_frac(engine):
|
||
|
try:
|
||
|
return c(lhs, rhs)
|
||
|
except ValueError as e:
|
||
|
if str(e).startswith('negative number cannot be '
|
||
|
'raised to a fractional power'):
|
||
|
return np.nan
|
||
|
raise
|
||
|
return c(lhs, rhs)
|
||
|
|
||
|
|
||
|
def _series_and_2d_ndarray(lhs, rhs):
|
||
|
return ((isinstance(lhs, Series) and
|
||
|
isinstance(rhs, np.ndarray) and rhs.ndim > 1) or
|
||
|
(isinstance(rhs, Series) and
|
||
|
isinstance(lhs, np.ndarray) and lhs.ndim > 1))
|
||
|
|
||
|
|
||
|
def _series_and_frame(lhs, rhs):
|
||
|
return ((isinstance(lhs, Series) and isinstance(rhs, DataFrame)) or
|
||
|
(isinstance(rhs, Series) and isinstance(lhs, DataFrame)))
|
||
|
|
||
|
|
||
|
def _bool_and_frame(lhs, rhs):
|
||
|
return isinstance(lhs, bool) and isinstance(rhs, pd.core.generic.NDFrame)
|
||
|
|
||
|
|
||
|
def _is_py3_complex_incompat(result, expected):
|
||
|
return (PY3 and isinstance(expected, (complex, np.complexfloating)) and
|
||
|
np.isnan(result))
|
||
|
|
||
|
|
||
|
_good_arith_ops = com.difference(_arith_ops_syms, _special_case_arith_ops_syms)
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestEvalNumexprPandas(object):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
import numexpr as ne
|
||
|
cls.ne = ne
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'pandas'
|
||
|
|
||
|
@classmethod
|
||
|
def teardown_class(cls):
|
||
|
del cls.engine, cls.parser
|
||
|
if hasattr(cls, 'ne'):
|
||
|
del cls.ne
|
||
|
|
||
|
def setup_data(self):
|
||
|
nan_df1 = DataFrame(rand(10, 5))
|
||
|
nan_df1[nan_df1 > 0.5] = np.nan
|
||
|
nan_df2 = DataFrame(rand(10, 5))
|
||
|
nan_df2[nan_df2 > 0.5] = np.nan
|
||
|
|
||
|
self.pandas_lhses = (DataFrame(randn(10, 5)), Series(randn(5)),
|
||
|
Series([1, 2, np.nan, np.nan, 5]), nan_df1)
|
||
|
self.pandas_rhses = (DataFrame(randn(10, 5)), Series(randn(5)),
|
||
|
Series([1, 2, np.nan, np.nan, 5]), nan_df2)
|
||
|
self.scalar_lhses = randn(),
|
||
|
self.scalar_rhses = randn(),
|
||
|
|
||
|
self.lhses = self.pandas_lhses + self.scalar_lhses
|
||
|
self.rhses = self.pandas_rhses + self.scalar_rhses
|
||
|
|
||
|
def setup_ops(self):
|
||
|
self.cmp_ops = expr._cmp_ops_syms
|
||
|
self.cmp2_ops = self.cmp_ops[::-1]
|
||
|
self.bin_ops = expr._bool_ops_syms
|
||
|
self.special_case_ops = _special_case_arith_ops_syms
|
||
|
self.arith_ops = _good_arith_ops
|
||
|
self.unary_ops = '-', '~', 'not '
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
self.setup_ops()
|
||
|
self.setup_data()
|
||
|
self.current_engines = filter(lambda x: x != self.engine, _engines)
|
||
|
|
||
|
def teardown_method(self, method):
|
||
|
del self.lhses, self.rhses, self.scalar_rhses, self.scalar_lhses
|
||
|
del self.pandas_rhses, self.pandas_lhses, self.current_engines
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_complex_cmp_ops(self):
|
||
|
cmp_ops = ('!=', '==', '<=', '>=', '<', '>')
|
||
|
cmp2_ops = ('>', '<')
|
||
|
for lhs, cmp1, rhs, binop, cmp2 in product(self.lhses, cmp_ops,
|
||
|
self.rhses, self.bin_ops,
|
||
|
cmp2_ops):
|
||
|
self.check_complex_cmp_op(lhs, cmp1, rhs, binop, cmp2)
|
||
|
|
||
|
def test_simple_cmp_ops(self):
|
||
|
bool_lhses = (DataFrame(randbool(size=(10, 5))),
|
||
|
Series(randbool((5,))), randbool())
|
||
|
bool_rhses = (DataFrame(randbool(size=(10, 5))),
|
||
|
Series(randbool((5,))), randbool())
|
||
|
for lhs, rhs, cmp_op in product(bool_lhses, bool_rhses, self.cmp_ops):
|
||
|
self.check_simple_cmp_op(lhs, cmp_op, rhs)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_binary_arith_ops(self):
|
||
|
for lhs, op, rhs in product(self.lhses, self.arith_ops, self.rhses):
|
||
|
self.check_binary_arith_op(lhs, op, rhs)
|
||
|
|
||
|
def test_modulus(self):
|
||
|
for lhs, rhs in product(self.lhses, self.rhses):
|
||
|
self.check_modulus(lhs, '%', rhs)
|
||
|
|
||
|
def test_floor_division(self):
|
||
|
for lhs, rhs in product(self.lhses, self.rhses):
|
||
|
self.check_floor_division(lhs, '//', rhs)
|
||
|
|
||
|
@td.skip_if_windows
|
||
|
def test_pow(self):
|
||
|
# odd failure on win32 platform, so skip
|
||
|
for lhs, rhs in product(self.lhses, self.rhses):
|
||
|
self.check_pow(lhs, '**', rhs)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_single_invert_op(self):
|
||
|
for lhs, op, rhs in product(self.lhses, self.cmp_ops, self.rhses):
|
||
|
self.check_single_invert_op(lhs, op, rhs)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_compound_invert_op(self):
|
||
|
for lhs, op, rhs in product(self.lhses, self.cmp_ops, self.rhses):
|
||
|
self.check_compound_invert_op(lhs, op, rhs)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_chained_cmp_op(self):
|
||
|
mids = self.lhses
|
||
|
cmp_ops = '<', '>'
|
||
|
for lhs, cmp1, mid, cmp2, rhs in product(self.lhses, cmp_ops,
|
||
|
mids, cmp_ops, self.rhses):
|
||
|
self.check_chained_cmp_op(lhs, cmp1, mid, cmp2, rhs)
|
||
|
|
||
|
def check_equal(self, result, expected):
|
||
|
if isinstance(result, DataFrame):
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
elif isinstance(result, Series):
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
elif isinstance(result, np.ndarray):
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
else:
|
||
|
assert result == expected
|
||
|
|
||
|
def check_complex_cmp_op(self, lhs, cmp1, rhs, binop, cmp2):
|
||
|
skip_these = _scalar_skip
|
||
|
ex = '(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)'.format(cmp1=cmp1,
|
||
|
binop=binop,
|
||
|
cmp2=cmp2)
|
||
|
scalar_with_in_notin = (is_scalar(rhs) and (cmp1 in skip_these or
|
||
|
cmp2 in skip_these))
|
||
|
if scalar_with_in_notin:
|
||
|
with pytest.raises(TypeError):
|
||
|
pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
with pytest.raises(TypeError):
|
||
|
pd.eval(ex, engine=self.engine, parser=self.parser,
|
||
|
local_dict={'lhs': lhs, 'rhs': rhs})
|
||
|
else:
|
||
|
lhs_new = _eval_single_bin(lhs, cmp1, rhs, self.engine)
|
||
|
rhs_new = _eval_single_bin(lhs, cmp2, rhs, self.engine)
|
||
|
if (isinstance(lhs_new, Series) and
|
||
|
isinstance(rhs_new, DataFrame) and
|
||
|
binop in _series_frame_incompatible):
|
||
|
pass
|
||
|
# TODO: the code below should be added back when left and right
|
||
|
# hand side bool ops are fixed.
|
||
|
#
|
||
|
# try:
|
||
|
# pytest.raises(Exception, pd.eval, ex,
|
||
|
# local_dict={'lhs': lhs, 'rhs': rhs},
|
||
|
# engine=self.engine, parser=self.parser)
|
||
|
# except AssertionError:
|
||
|
# import ipdb
|
||
|
#
|
||
|
# ipdb.set_trace()
|
||
|
# raise
|
||
|
else:
|
||
|
expected = _eval_single_bin(
|
||
|
lhs_new, binop, rhs_new, self.engine)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
self.check_equal(result, expected)
|
||
|
|
||
|
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
|
||
|
|
||
|
def check_operands(left, right, cmp_op):
|
||
|
return _eval_single_bin(left, cmp_op, right, self.engine)
|
||
|
|
||
|
lhs_new = check_operands(lhs, mid, cmp1)
|
||
|
rhs_new = check_operands(mid, rhs, cmp2)
|
||
|
|
||
|
if lhs_new is not None and rhs_new is not None:
|
||
|
ex1 = 'lhs {0} mid {1} rhs'.format(cmp1, cmp2)
|
||
|
ex2 = 'lhs {0} mid and mid {1} rhs'.format(cmp1, cmp2)
|
||
|
ex3 = '(lhs {0} mid) & (mid {1} rhs)'.format(cmp1, cmp2)
|
||
|
expected = _eval_single_bin(lhs_new, '&', rhs_new, self.engine)
|
||
|
|
||
|
for ex in (ex1, ex2, ex3):
|
||
|
result = pd.eval(ex, engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def check_simple_cmp_op(self, lhs, cmp1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(cmp1)
|
||
|
if cmp1 in ('in', 'not in') and not is_list_like(rhs):
|
||
|
pytest.raises(TypeError, pd.eval, ex, engine=self.engine,
|
||
|
parser=self.parser, local_dict={'lhs': lhs,
|
||
|
'rhs': rhs})
|
||
|
else:
|
||
|
expected = _eval_single_bin(lhs, cmp1, rhs, self.engine)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
self.check_equal(result, expected)
|
||
|
|
||
|
def check_binary_arith_op(self, lhs, arith1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(arith1)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
expected = _eval_single_bin(lhs, arith1, rhs, self.engine)
|
||
|
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
ex = 'lhs {0} rhs {0} rhs'.format(arith1)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
nlhs = _eval_single_bin(lhs, arith1, rhs,
|
||
|
self.engine)
|
||
|
self.check_alignment(result, nlhs, rhs, arith1)
|
||
|
|
||
|
def check_alignment(self, result, nlhs, ghs, op):
|
||
|
try:
|
||
|
nlhs, ghs = nlhs.align(ghs)
|
||
|
except (ValueError, TypeError, AttributeError):
|
||
|
# ValueError: series frame or frame series align
|
||
|
# TypeError, AttributeError: series or frame with scalar align
|
||
|
pass
|
||
|
else:
|
||
|
|
||
|
# direct numpy comparison
|
||
|
expected = self.ne.evaluate('nlhs {0} ghs'.format(op))
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
# modulus, pow, and floor division require special casing
|
||
|
|
||
|
def check_modulus(self, lhs, arith1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(arith1)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
expected = lhs % rhs
|
||
|
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
expected = self.ne.evaluate('expected {0} rhs'.format(arith1))
|
||
|
if isinstance(result, (DataFrame, Series)):
|
||
|
tm.assert_almost_equal(result.values, expected)
|
||
|
else:
|
||
|
tm.assert_almost_equal(result, expected.item())
|
||
|
|
||
|
def check_floor_division(self, lhs, arith1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(arith1)
|
||
|
|
||
|
if self.engine == 'python':
|
||
|
res = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
expected = lhs // rhs
|
||
|
self.check_equal(res, expected)
|
||
|
else:
|
||
|
pytest.raises(TypeError, pd.eval, ex,
|
||
|
local_dict={'lhs': lhs, 'rhs': rhs},
|
||
|
engine=self.engine, parser=self.parser)
|
||
|
|
||
|
def get_expected_pow_result(self, lhs, rhs):
|
||
|
try:
|
||
|
expected = _eval_single_bin(lhs, '**', rhs, self.engine)
|
||
|
except ValueError as e:
|
||
|
if str(e).startswith('negative number cannot be '
|
||
|
'raised to a fractional power'):
|
||
|
if self.engine == 'python':
|
||
|
pytest.skip(str(e))
|
||
|
else:
|
||
|
expected = np.nan
|
||
|
else:
|
||
|
raise
|
||
|
return expected
|
||
|
|
||
|
def check_pow(self, lhs, arith1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(arith1)
|
||
|
expected = self.get_expected_pow_result(lhs, rhs)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
if (is_scalar(lhs) and is_scalar(rhs) and
|
||
|
_is_py3_complex_incompat(result, expected)):
|
||
|
pytest.raises(AssertionError, tm.assert_numpy_array_equal,
|
||
|
result, expected)
|
||
|
else:
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
ex = '(lhs {0} rhs) {0} rhs'.format(arith1)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
expected = self.get_expected_pow_result(
|
||
|
self.get_expected_pow_result(lhs, rhs), rhs)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def check_single_invert_op(self, lhs, cmp1, rhs):
|
||
|
# simple
|
||
|
for el in (lhs, rhs):
|
||
|
try:
|
||
|
elb = el.astype(bool)
|
||
|
except AttributeError:
|
||
|
elb = np.array([bool(el)])
|
||
|
expected = ~elb
|
||
|
result = pd.eval('~elb', engine=self.engine, parser=self.parser)
|
||
|
tm.assert_almost_equal(expected, result)
|
||
|
|
||
|
for engine in self.current_engines:
|
||
|
tm.assert_almost_equal(result, pd.eval('~elb', engine=engine,
|
||
|
parser=self.parser))
|
||
|
|
||
|
def check_compound_invert_op(self, lhs, cmp1, rhs):
|
||
|
skip_these = 'in', 'not in'
|
||
|
ex = '~(lhs {0} rhs)'.format(cmp1)
|
||
|
|
||
|
if is_scalar(rhs) and cmp1 in skip_these:
|
||
|
pytest.raises(TypeError, pd.eval, ex, engine=self.engine,
|
||
|
parser=self.parser, local_dict={'lhs': lhs,
|
||
|
'rhs': rhs})
|
||
|
else:
|
||
|
# compound
|
||
|
if is_scalar(lhs) and is_scalar(rhs):
|
||
|
lhs, rhs = map(lambda x: np.array([x]), (lhs, rhs))
|
||
|
expected = _eval_single_bin(lhs, cmp1, rhs, self.engine)
|
||
|
if is_scalar(expected):
|
||
|
expected = not expected
|
||
|
else:
|
||
|
expected = ~expected
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
tm.assert_almost_equal(expected, result)
|
||
|
|
||
|
# make sure the other engines work the same as this one
|
||
|
for engine in self.current_engines:
|
||
|
ev = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
tm.assert_almost_equal(ev, result)
|
||
|
|
||
|
def ex(self, op, var_name='lhs'):
|
||
|
return '{0}{1}'.format(op, var_name)
|
||
|
|
||
|
def test_frame_invert(self):
|
||
|
expr = self.ex('~')
|
||
|
|
||
|
# ~ ##
|
||
|
# frame
|
||
|
# float always raises
|
||
|
lhs = DataFrame(randn(5, 2))
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
with pytest.raises(TypeError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
# int raises on numexpr
|
||
|
lhs = DataFrame(randint(5, size=(5, 2)))
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
expect = ~lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# bool always works
|
||
|
lhs = DataFrame(rand(5, 2) > 0.5)
|
||
|
expect = ~lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# object raises
|
||
|
lhs = DataFrame({'b': ['a', 1, 2.0], 'c': rand(3) > 0.5})
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(ValueError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
with pytest.raises(TypeError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
def test_series_invert(self):
|
||
|
# ~ ####
|
||
|
expr = self.ex('~')
|
||
|
|
||
|
# series
|
||
|
# float raises
|
||
|
lhs = Series(randn(5))
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
with pytest.raises(TypeError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
# int raises on numexpr
|
||
|
lhs = Series(randint(5, size=5))
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
expect = ~lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# bool
|
||
|
lhs = Series(rand(5) > 0.5)
|
||
|
expect = ~lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# float
|
||
|
# int
|
||
|
# bool
|
||
|
|
||
|
# object
|
||
|
lhs = Series(['a', 1, 2.0])
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(ValueError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
with pytest.raises(TypeError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
def test_frame_negate(self):
|
||
|
expr = self.ex('-')
|
||
|
|
||
|
# float
|
||
|
lhs = DataFrame(randn(5, 2))
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# int
|
||
|
lhs = DataFrame(randint(5, size=(5, 2)))
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# bool doesn't work with numexpr but works elsewhere
|
||
|
lhs = DataFrame(rand(5, 2) > 0.5)
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
def test_series_negate(self):
|
||
|
expr = self.ex('-')
|
||
|
|
||
|
# float
|
||
|
lhs = Series(randn(5))
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# int
|
||
|
lhs = Series(randint(5, size=5))
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# bool doesn't work with numexpr but works elsewhere
|
||
|
lhs = Series(rand(5) > 0.5)
|
||
|
if self.engine == 'numexpr':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
expect = -lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
def test_frame_pos(self):
|
||
|
expr = self.ex('+')
|
||
|
|
||
|
# float
|
||
|
lhs = DataFrame(randn(5, 2))
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# int
|
||
|
lhs = DataFrame(randint(5, size=(5, 2)))
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
# bool doesn't work with numexpr but works elsewhere
|
||
|
lhs = DataFrame(rand(5, 2) > 0.5)
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_frame_equal(expect, result)
|
||
|
|
||
|
def test_series_pos(self):
|
||
|
expr = self.ex('+')
|
||
|
|
||
|
# float
|
||
|
lhs = Series(randn(5))
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# int
|
||
|
lhs = Series(randint(5, size=5))
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
# bool doesn't work with numexpr but works elsewhere
|
||
|
lhs = Series(rand(5) > 0.5)
|
||
|
expect = lhs
|
||
|
result = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert_series_equal(expect, result)
|
||
|
|
||
|
def test_scalar_unary(self):
|
||
|
with pytest.raises(TypeError):
|
||
|
pd.eval('~1.0', engine=self.engine, parser=self.parser)
|
||
|
|
||
|
assert pd.eval('-1.0', parser=self.parser,
|
||
|
engine=self.engine) == -1.0
|
||
|
assert pd.eval('+1.0', parser=self.parser,
|
||
|
engine=self.engine) == +1.0
|
||
|
assert pd.eval('~1', parser=self.parser,
|
||
|
engine=self.engine) == ~1
|
||
|
assert pd.eval('-1', parser=self.parser,
|
||
|
engine=self.engine) == -1
|
||
|
assert pd.eval('+1', parser=self.parser,
|
||
|
engine=self.engine) == +1
|
||
|
assert pd.eval('~True', parser=self.parser,
|
||
|
engine=self.engine) == ~True
|
||
|
assert pd.eval('~False', parser=self.parser,
|
||
|
engine=self.engine) == ~False
|
||
|
assert pd.eval('-True', parser=self.parser,
|
||
|
engine=self.engine) == -True
|
||
|
assert pd.eval('-False', parser=self.parser,
|
||
|
engine=self.engine) == -False
|
||
|
assert pd.eval('+True', parser=self.parser,
|
||
|
engine=self.engine) == +True
|
||
|
assert pd.eval('+False', parser=self.parser,
|
||
|
engine=self.engine) == +False
|
||
|
|
||
|
def test_unary_in_array(self):
|
||
|
# GH 11235
|
||
|
assert_numpy_array_equal(
|
||
|
pd.eval('[-True, True, ~True, +True,'
|
||
|
'-False, False, ~False, +False,'
|
||
|
'-37, 37, ~37, +37]'),
|
||
|
np.array([-True, True, ~True, +True,
|
||
|
-False, False, ~False, +False,
|
||
|
-37, 37, ~37, +37], dtype=np.object_))
|
||
|
|
||
|
def test_disallow_scalar_bool_ops(self):
|
||
|
exprs = '1 or 2', '1 and 2'
|
||
|
exprs += 'a and b', 'a or b'
|
||
|
exprs += '1 or 2 and (3 + 2) > 3',
|
||
|
exprs += '2 * x > 2 or 1 and 2',
|
||
|
exprs += '2 * df > 3 and 1 or a',
|
||
|
|
||
|
x, a, b, df = np.random.randn(3), 1, 2, DataFrame(randn(3, 2)) # noqa
|
||
|
for ex in exprs:
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
def test_identical(self):
|
||
|
# see gh-10546
|
||
|
x = 1
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
assert result == 1
|
||
|
assert is_scalar(result)
|
||
|
|
||
|
x = 1.5
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
assert result == 1.5
|
||
|
assert is_scalar(result)
|
||
|
|
||
|
x = False
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
assert not result
|
||
|
assert is_bool(result)
|
||
|
assert is_scalar(result)
|
||
|
|
||
|
x = np.array([1])
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
tm.assert_numpy_array_equal(result, np.array([1]))
|
||
|
assert result.shape == (1, )
|
||
|
|
||
|
x = np.array([1.5])
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
tm.assert_numpy_array_equal(result, np.array([1.5]))
|
||
|
assert result.shape == (1, )
|
||
|
|
||
|
x = np.array([False]) # noqa
|
||
|
result = pd.eval('x', engine=self.engine, parser=self.parser)
|
||
|
tm.assert_numpy_array_equal(result, np.array([False]))
|
||
|
assert result.shape == (1, )
|
||
|
|
||
|
def test_line_continuation(self):
|
||
|
# GH 11149
|
||
|
exp = """1 + 2 * \
|
||
|
5 - 1 + 2 """
|
||
|
result = pd.eval(exp, engine=self.engine, parser=self.parser)
|
||
|
assert result == 12
|
||
|
|
||
|
def test_float_truncation(self):
|
||
|
# GH 14241
|
||
|
exp = '1000000000.006'
|
||
|
result = pd.eval(exp, engine=self.engine, parser=self.parser)
|
||
|
expected = np.float64(exp)
|
||
|
assert result == expected
|
||
|
|
||
|
df = pd.DataFrame({'A': [1000000000.0009,
|
||
|
1000000000.0011,
|
||
|
1000000000.0015]})
|
||
|
cutoff = 1000000000.0006
|
||
|
result = df.query("A < %.4f" % cutoff)
|
||
|
assert result.empty
|
||
|
|
||
|
cutoff = 1000000000.0010
|
||
|
result = df.query("A > %.4f" % cutoff)
|
||
|
expected = df.loc[[1, 2], :]
|
||
|
tm.assert_frame_equal(expected, result)
|
||
|
|
||
|
exact = 1000000000.0011
|
||
|
result = df.query('A == %.4f' % exact)
|
||
|
expected = df.loc[[1], :]
|
||
|
tm.assert_frame_equal(expected, result)
|
||
|
|
||
|
def test_disallow_python_keywords(self):
|
||
|
# GH 18221
|
||
|
df = pd.DataFrame([[0, 0, 0]], columns=['foo', 'bar', 'class'])
|
||
|
msg = "Python keyword not valid identifier in numexpr query"
|
||
|
with tm.assert_raises_regex(SyntaxError, msg):
|
||
|
df.query('class == 0')
|
||
|
|
||
|
df = pd.DataFrame()
|
||
|
df.index.name = 'lambda'
|
||
|
with tm.assert_raises_regex(SyntaxError, msg):
|
||
|
df.query('lambda == 0')
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestEvalNumexprPython(TestEvalNumexprPandas):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestEvalNumexprPython, cls).setup_class()
|
||
|
import numexpr as ne
|
||
|
cls.ne = ne
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'python'
|
||
|
|
||
|
def setup_ops(self):
|
||
|
self.cmp_ops = list(filter(lambda x: x not in ('in', 'not in'),
|
||
|
expr._cmp_ops_syms))
|
||
|
self.cmp2_ops = self.cmp_ops[::-1]
|
||
|
self.bin_ops = [s for s in expr._bool_ops_syms
|
||
|
if s not in ('and', 'or')]
|
||
|
self.special_case_ops = _special_case_arith_ops_syms
|
||
|
self.arith_ops = _good_arith_ops
|
||
|
self.unary_ops = '+', '-', '~'
|
||
|
|
||
|
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
|
||
|
ex1 = 'lhs {0} mid {1} rhs'.format(cmp1, cmp2)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex1, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
|
||
|
class TestEvalPythonPython(TestEvalNumexprPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestEvalPythonPython, cls).setup_class()
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'python'
|
||
|
|
||
|
def check_modulus(self, lhs, arith1, rhs):
|
||
|
ex = 'lhs {0} rhs'.format(arith1)
|
||
|
result = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
|
||
|
expected = lhs % rhs
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
expected = _eval_single_bin(expected, arith1, rhs, self.engine)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def check_alignment(self, result, nlhs, ghs, op):
|
||
|
try:
|
||
|
nlhs, ghs = nlhs.align(ghs)
|
||
|
except (ValueError, TypeError, AttributeError):
|
||
|
# ValueError: series frame or frame series align
|
||
|
# TypeError, AttributeError: series or frame with scalar align
|
||
|
pass
|
||
|
else:
|
||
|
expected = eval('nlhs {0} ghs'.format(op))
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestEvalPythonPandas(TestEvalPythonPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestEvalPythonPandas, cls).setup_class()
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'pandas'
|
||
|
|
||
|
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
|
||
|
TestEvalNumexprPandas.check_chained_cmp_op(self, lhs, cmp1, mid, cmp2,
|
||
|
rhs)
|
||
|
|
||
|
|
||
|
f = lambda *args, **kwargs: np.random.randn()
|
||
|
|
||
|
|
||
|
# -------------------------------------
|
||
|
# gh-12388: Typecasting rules consistency with python
|
||
|
|
||
|
|
||
|
class TestTypeCasting(object):
|
||
|
@pytest.mark.parametrize('op', ['+', '-', '*', '**', '/'])
|
||
|
# maybe someday... numexpr has too many upcasting rules now
|
||
|
# chain(*(np.sctypes[x] for x in ['uint', 'int', 'float']))
|
||
|
@pytest.mark.parametrize('dt', [np.float32, np.float64])
|
||
|
def test_binop_typecasting(self, engine, parser, op, dt):
|
||
|
df = mkdf(5, 3, data_gen_f=f, dtype=dt)
|
||
|
s = 'df {} 3'.format(op)
|
||
|
res = pd.eval(s, engine=engine, parser=parser)
|
||
|
assert df.values.dtype == dt
|
||
|
assert res.values.dtype == dt
|
||
|
assert_frame_equal(res, eval(s))
|
||
|
|
||
|
s = '3 {} df'.format(op)
|
||
|
res = pd.eval(s, engine=engine, parser=parser)
|
||
|
assert df.values.dtype == dt
|
||
|
assert res.values.dtype == dt
|
||
|
assert_frame_equal(res, eval(s))
|
||
|
|
||
|
|
||
|
# -------------------------------------
|
||
|
# Basic and complex alignment
|
||
|
|
||
|
def _is_datetime(x):
|
||
|
return issubclass(x.dtype.type, np.datetime64)
|
||
|
|
||
|
|
||
|
def should_warn(*args):
|
||
|
not_mono = not any(map(operator.attrgetter('is_monotonic'), args))
|
||
|
only_one_dt = reduce(operator.xor, map(_is_datetime, args))
|
||
|
return not_mono and only_one_dt
|
||
|
|
||
|
|
||
|
class TestAlignment(object):
|
||
|
|
||
|
index_types = 'i', 'u', 'dt'
|
||
|
lhs_index_types = index_types + ('s',) # 'p'
|
||
|
|
||
|
def test_align_nested_unary_op(self, engine, parser):
|
||
|
s = 'df * ~2'
|
||
|
df = mkdf(5, 3, data_gen_f=f)
|
||
|
res = pd.eval(s, engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, df * ~2)
|
||
|
|
||
|
def test_basic_frame_alignment(self, engine, parser):
|
||
|
args = product(self.lhs_index_types, self.index_types,
|
||
|
self.index_types)
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter('always', RuntimeWarning)
|
||
|
for lr_idx_type, rr_idx_type, c_idx_type in args:
|
||
|
df = mkdf(10, 10, data_gen_f=f, r_idx_type=lr_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
df2 = mkdf(20, 10, data_gen_f=f, r_idx_type=rr_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
# only warns if not monotonic and not sortable
|
||
|
if should_warn(df.index, df2.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
res = pd.eval('df + df2', engine=engine, parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('df + df2', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, df + df2)
|
||
|
|
||
|
def test_frame_comparison(self, engine, parser):
|
||
|
args = product(self.lhs_index_types, repeat=2)
|
||
|
for r_idx_type, c_idx_type in args:
|
||
|
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
res = pd.eval('df < 2', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, df < 2)
|
||
|
|
||
|
df3 = DataFrame(randn(*df.shape), index=df.index,
|
||
|
columns=df.columns)
|
||
|
res = pd.eval('df < df3', engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, df < df3)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_medium_complex_frame_alignment(self, engine, parser):
|
||
|
args = product(self.lhs_index_types, self.index_types,
|
||
|
self.index_types, self.index_types)
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter('always', RuntimeWarning)
|
||
|
|
||
|
for r1, c1, r2, c2 in args:
|
||
|
df = mkdf(3, 2, data_gen_f=f, r_idx_type=r1, c_idx_type=c1)
|
||
|
df2 = mkdf(4, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2)
|
||
|
df3 = mkdf(5, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2)
|
||
|
if should_warn(df.index, df2.index, df3.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
res = pd.eval('df + df2 + df3', engine=engine,
|
||
|
parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('df + df2 + df3',
|
||
|
engine=engine, parser=parser)
|
||
|
assert_frame_equal(res, df + df2 + df3)
|
||
|
|
||
|
def test_basic_frame_series_alignment(self, engine, parser):
|
||
|
def testit(r_idx_type, c_idx_type, index_name):
|
||
|
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
index = getattr(df, index_name)
|
||
|
s = Series(np.random.randn(5), index[:5])
|
||
|
|
||
|
if should_warn(df.index, s.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
res = pd.eval('df + s', engine=engine, parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('df + s', engine=engine, parser=parser)
|
||
|
|
||
|
if r_idx_type == 'dt' or c_idx_type == 'dt':
|
||
|
expected = df.add(s) if engine == 'numexpr' else df + s
|
||
|
else:
|
||
|
expected = df + s
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
args = product(self.lhs_index_types, self.index_types,
|
||
|
('index', 'columns'))
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter('always', RuntimeWarning)
|
||
|
for r_idx_type, c_idx_type, index_name in args:
|
||
|
testit(r_idx_type, c_idx_type, index_name)
|
||
|
|
||
|
def test_basic_series_frame_alignment(self, engine, parser):
|
||
|
def testit(r_idx_type, c_idx_type, index_name):
|
||
|
df = mkdf(10, 7, data_gen_f=f, r_idx_type=r_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
index = getattr(df, index_name)
|
||
|
s = Series(np.random.randn(5), index[:5])
|
||
|
if should_warn(s.index, df.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
res = pd.eval('s + df', engine=engine, parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('s + df', engine=engine, parser=parser)
|
||
|
|
||
|
if r_idx_type == 'dt' or c_idx_type == 'dt':
|
||
|
expected = df.add(s) if engine == 'numexpr' else s + df
|
||
|
else:
|
||
|
expected = s + df
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
# only test dt with dt, otherwise weird joins result
|
||
|
args = product(['i', 'u', 's'], ['i', 'u', 's'], ('index', 'columns'))
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
for r_idx_type, c_idx_type, index_name in args:
|
||
|
testit(r_idx_type, c_idx_type, index_name)
|
||
|
|
||
|
# dt with dt
|
||
|
args = product(['dt'], ['dt'], ('index', 'columns'))
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
for r_idx_type, c_idx_type, index_name in args:
|
||
|
testit(r_idx_type, c_idx_type, index_name)
|
||
|
|
||
|
def test_series_frame_commutativity(self, engine, parser):
|
||
|
args = product(self.lhs_index_types, self.index_types, ('+', '*'),
|
||
|
('index', 'columns'))
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter('always', RuntimeWarning)
|
||
|
for r_idx_type, c_idx_type, op, index_name in args:
|
||
|
df = mkdf(10, 10, data_gen_f=f, r_idx_type=r_idx_type,
|
||
|
c_idx_type=c_idx_type)
|
||
|
index = getattr(df, index_name)
|
||
|
s = Series(np.random.randn(5), index[:5])
|
||
|
|
||
|
lhs = 's {0} df'.format(op)
|
||
|
rhs = 'df {0} s'.format(op)
|
||
|
if should_warn(df.index, s.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
a = pd.eval(lhs, engine=engine, parser=parser)
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
b = pd.eval(rhs, engine=engine, parser=parser)
|
||
|
else:
|
||
|
a = pd.eval(lhs, engine=engine, parser=parser)
|
||
|
b = pd.eval(rhs, engine=engine, parser=parser)
|
||
|
|
||
|
if r_idx_type != 'dt' and c_idx_type != 'dt':
|
||
|
if engine == 'numexpr':
|
||
|
assert_frame_equal(a, b)
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_complex_series_frame_alignment(self, engine, parser):
|
||
|
import random
|
||
|
args = product(self.lhs_index_types, self.index_types,
|
||
|
self.index_types, self.index_types)
|
||
|
n = 3
|
||
|
m1 = 5
|
||
|
m2 = 2 * m1
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter('always', RuntimeWarning)
|
||
|
for r1, r2, c1, c2 in args:
|
||
|
index_name = random.choice(['index', 'columns'])
|
||
|
obj_name = random.choice(['df', 'df2'])
|
||
|
|
||
|
df = mkdf(m1, n, data_gen_f=f, r_idx_type=r1, c_idx_type=c1)
|
||
|
df2 = mkdf(m2, n, data_gen_f=f, r_idx_type=r2, c_idx_type=c2)
|
||
|
index = getattr(locals().get(obj_name), index_name)
|
||
|
s = Series(np.random.randn(n), index[:n])
|
||
|
|
||
|
if r2 == 'dt' or c2 == 'dt':
|
||
|
if engine == 'numexpr':
|
||
|
expected2 = df2.add(s)
|
||
|
else:
|
||
|
expected2 = df2 + s
|
||
|
else:
|
||
|
expected2 = df2 + s
|
||
|
|
||
|
if r1 == 'dt' or c1 == 'dt':
|
||
|
if engine == 'numexpr':
|
||
|
expected = expected2.add(df)
|
||
|
else:
|
||
|
expected = expected2 + df
|
||
|
else:
|
||
|
expected = expected2 + df
|
||
|
|
||
|
if should_warn(df2.index, s.index, df.index):
|
||
|
with tm.assert_produces_warning(RuntimeWarning):
|
||
|
res = pd.eval('df2 + s + df', engine=engine,
|
||
|
parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('df2 + s + df', engine=engine, parser=parser)
|
||
|
assert res.shape == expected.shape
|
||
|
assert_frame_equal(res, expected)
|
||
|
|
||
|
def test_performance_warning_for_poor_alignment(self, engine, parser):
|
||
|
df = DataFrame(randn(1000, 10))
|
||
|
s = Series(randn(10000))
|
||
|
if engine == 'numexpr':
|
||
|
seen = PerformanceWarning
|
||
|
else:
|
||
|
seen = False
|
||
|
|
||
|
with assert_produces_warning(seen):
|
||
|
pd.eval('df + s', engine=engine, parser=parser)
|
||
|
|
||
|
s = Series(randn(1000))
|
||
|
with assert_produces_warning(False):
|
||
|
pd.eval('df + s', engine=engine, parser=parser)
|
||
|
|
||
|
df = DataFrame(randn(10, 10000))
|
||
|
s = Series(randn(10000))
|
||
|
with assert_produces_warning(False):
|
||
|
pd.eval('df + s', engine=engine, parser=parser)
|
||
|
|
||
|
df = DataFrame(randn(10, 10))
|
||
|
s = Series(randn(10000))
|
||
|
|
||
|
is_python_engine = engine == 'python'
|
||
|
|
||
|
if not is_python_engine:
|
||
|
wrn = PerformanceWarning
|
||
|
else:
|
||
|
wrn = False
|
||
|
|
||
|
with assert_produces_warning(wrn) as w:
|
||
|
pd.eval('df + s', engine=engine, parser=parser)
|
||
|
|
||
|
if not is_python_engine:
|
||
|
assert len(w) == 1
|
||
|
msg = str(w[0].message)
|
||
|
expected = ("Alignment difference on axis {0} is larger"
|
||
|
" than an order of magnitude on term {1!r}, "
|
||
|
"by more than {2:.4g}; performance may suffer"
|
||
|
"".format(1, 'df', np.log10(s.size - df.shape[1])))
|
||
|
assert msg == expected
|
||
|
|
||
|
|
||
|
# ------------------------------------
|
||
|
# Slightly more complex ops
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestOperationsNumExprPandas(object):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'pandas'
|
||
|
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
|
||
|
|
||
|
@classmethod
|
||
|
def teardown_class(cls):
|
||
|
del cls.engine, cls.parser
|
||
|
|
||
|
def eval(self, *args, **kwargs):
|
||
|
kwargs['engine'] = self.engine
|
||
|
kwargs['parser'] = self.parser
|
||
|
kwargs['level'] = kwargs.pop('level', 0) + 1
|
||
|
return pd.eval(*args, **kwargs)
|
||
|
|
||
|
def test_simple_arith_ops(self):
|
||
|
ops = self.arith_ops
|
||
|
|
||
|
for op in filter(lambda x: x != '//', ops):
|
||
|
ex = '1 {0} 1'.format(op)
|
||
|
ex2 = 'x {0} 1'.format(op)
|
||
|
ex3 = '1 {0} (x + 1)'.format(op)
|
||
|
|
||
|
if op in ('in', 'not in'):
|
||
|
pytest.raises(TypeError, pd.eval, ex,
|
||
|
engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
expec = _eval_single_bin(1, op, 1, self.engine)
|
||
|
x = self.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
assert x == expec
|
||
|
|
||
|
expec = _eval_single_bin(x, op, 1, self.engine)
|
||
|
y = self.eval(ex2, local_dict={'x': x}, engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert y == expec
|
||
|
|
||
|
expec = _eval_single_bin(1, op, x + 1, self.engine)
|
||
|
y = self.eval(ex3, local_dict={'x': x},
|
||
|
engine=self.engine, parser=self.parser)
|
||
|
assert y == expec
|
||
|
|
||
|
def test_simple_bool_ops(self):
|
||
|
for op, lhs, rhs in product(expr._bool_ops_syms, (True, False),
|
||
|
(True, False)):
|
||
|
ex = '{0} {1} {2}'.format(lhs, op, rhs)
|
||
|
res = self.eval(ex)
|
||
|
exp = eval(ex)
|
||
|
assert res == exp
|
||
|
|
||
|
def test_bool_ops_with_constants(self):
|
||
|
for op, lhs, rhs in product(expr._bool_ops_syms, ('True', 'False'),
|
||
|
('True', 'False')):
|
||
|
ex = '{0} {1} {2}'.format(lhs, op, rhs)
|
||
|
res = self.eval(ex)
|
||
|
exp = eval(ex)
|
||
|
assert res == exp
|
||
|
|
||
|
def test_panel_fails(self):
|
||
|
with catch_warnings(record=True):
|
||
|
x = Panel(randn(3, 4, 5))
|
||
|
y = Series(randn(10))
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
self.eval('x + y',
|
||
|
local_dict={'x': x, 'y': y})
|
||
|
|
||
|
def test_4d_ndarray_fails(self):
|
||
|
x = randn(3, 4, 5, 6)
|
||
|
y = Series(randn(10))
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
self.eval('x + y',
|
||
|
local_dict={'x': x, 'y': y})
|
||
|
|
||
|
def test_constant(self):
|
||
|
x = self.eval('1')
|
||
|
assert x == 1
|
||
|
|
||
|
def test_single_variable(self):
|
||
|
df = DataFrame(randn(10, 2))
|
||
|
df2 = self.eval('df', local_dict={'df': df})
|
||
|
assert_frame_equal(df, df2)
|
||
|
|
||
|
def test_truediv(self):
|
||
|
s = np.array([1])
|
||
|
ex = 's / 1'
|
||
|
d = {'s': s} # noqa
|
||
|
|
||
|
if PY3:
|
||
|
res = self.eval(ex, truediv=False)
|
||
|
tm.assert_numpy_array_equal(res, np.array([1.0]))
|
||
|
|
||
|
res = self.eval(ex, truediv=True)
|
||
|
tm.assert_numpy_array_equal(res, np.array([1.0]))
|
||
|
|
||
|
res = self.eval('1 / 2', truediv=True)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('1 / 2', truediv=False)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('s / 2', truediv=False)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('s / 2', truediv=True)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
else:
|
||
|
res = self.eval(ex, truediv=False)
|
||
|
tm.assert_numpy_array_equal(res, np.array([1]))
|
||
|
|
||
|
res = self.eval(ex, truediv=True)
|
||
|
tm.assert_numpy_array_equal(res, np.array([1.0]))
|
||
|
|
||
|
res = self.eval('1 / 2', truediv=True)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('1 / 2', truediv=False)
|
||
|
expec = 0
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('s / 2', truediv=False)
|
||
|
expec = 0
|
||
|
assert res == expec
|
||
|
|
||
|
res = self.eval('s / 2', truediv=True)
|
||
|
expec = 0.5
|
||
|
assert res == expec
|
||
|
|
||
|
def test_failing_subscript_with_name_error(self):
|
||
|
df = DataFrame(np.random.randn(5, 3)) # noqa
|
||
|
with pytest.raises(NameError):
|
||
|
self.eval('df[x > 2] > 2')
|
||
|
|
||
|
def test_lhs_expression_subscript(self):
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
result = self.eval('(df + 1)[df > 2]', local_dict={'df': df})
|
||
|
expected = (df + 1)[df > 2]
|
||
|
assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_attr_expression(self):
|
||
|
df = DataFrame(np.random.randn(5, 3), columns=list('abc'))
|
||
|
expr1 = 'df.a < df.b'
|
||
|
expec1 = df.a < df.b
|
||
|
expr2 = 'df.a + df.b + df.c'
|
||
|
expec2 = df.a + df.b + df.c
|
||
|
expr3 = 'df.a + df.b + df.c[df.b < 0]'
|
||
|
expec3 = df.a + df.b + df.c[df.b < 0]
|
||
|
exprs = expr1, expr2, expr3
|
||
|
expecs = expec1, expec2, expec3
|
||
|
for e, expec in zip(exprs, expecs):
|
||
|
assert_series_equal(expec, self.eval(e, local_dict={'df': df}))
|
||
|
|
||
|
def test_assignment_fails(self):
|
||
|
df = DataFrame(np.random.randn(5, 3), columns=list('abc'))
|
||
|
df2 = DataFrame(np.random.randn(5, 3))
|
||
|
expr1 = 'df = df2'
|
||
|
pytest.raises(ValueError, self.eval, expr1,
|
||
|
local_dict={'df': df, 'df2': df2})
|
||
|
|
||
|
def test_assignment_column(self):
|
||
|
df = DataFrame(np.random.randn(5, 2), columns=list('ab'))
|
||
|
orig_df = df.copy()
|
||
|
|
||
|
# multiple assignees
|
||
|
pytest.raises(SyntaxError, df.eval, 'd c = a + b')
|
||
|
|
||
|
# invalid assignees
|
||
|
pytest.raises(SyntaxError, df.eval, 'd,c = a + b')
|
||
|
pytest.raises(SyntaxError, df.eval, 'Timestamp("20131001") = a + b')
|
||
|
|
||
|
# single assignment - existing variable
|
||
|
expected = orig_df.copy()
|
||
|
expected['a'] = expected['a'] + expected['b']
|
||
|
df = orig_df.copy()
|
||
|
df.eval('a = a + b', inplace=True)
|
||
|
assert_frame_equal(df, expected)
|
||
|
|
||
|
# single assignment - new variable
|
||
|
expected = orig_df.copy()
|
||
|
expected['c'] = expected['a'] + expected['b']
|
||
|
df = orig_df.copy()
|
||
|
df.eval('c = a + b', inplace=True)
|
||
|
assert_frame_equal(df, expected)
|
||
|
|
||
|
# with a local name overlap
|
||
|
def f():
|
||
|
df = orig_df.copy()
|
||
|
a = 1 # noqa
|
||
|
df.eval('a = 1 + b', inplace=True)
|
||
|
return df
|
||
|
|
||
|
df = f()
|
||
|
expected = orig_df.copy()
|
||
|
expected['a'] = 1 + expected['b']
|
||
|
assert_frame_equal(df, expected)
|
||
|
|
||
|
df = orig_df.copy()
|
||
|
|
||
|
def f():
|
||
|
a = 1 # noqa
|
||
|
old_a = df.a.copy()
|
||
|
df.eval('a = a + b', inplace=True)
|
||
|
result = old_a + df.b
|
||
|
assert_series_equal(result, df.a, check_names=False)
|
||
|
assert result.name is None
|
||
|
|
||
|
f()
|
||
|
|
||
|
# multiple assignment
|
||
|
df = orig_df.copy()
|
||
|
df.eval('c = a + b', inplace=True)
|
||
|
pytest.raises(SyntaxError, df.eval, 'c = a = b')
|
||
|
|
||
|
# explicit targets
|
||
|
df = orig_df.copy()
|
||
|
self.eval('c = df.a + df.b', local_dict={'df': df},
|
||
|
target=df, inplace=True)
|
||
|
expected = orig_df.copy()
|
||
|
expected['c'] = expected['a'] + expected['b']
|
||
|
assert_frame_equal(df, expected)
|
||
|
|
||
|
def test_column_in(self):
|
||
|
# GH 11235
|
||
|
df = DataFrame({'a': [11], 'b': [-32]})
|
||
|
result = df.eval('a in [11, -32]')
|
||
|
expected = Series([True])
|
||
|
assert_series_equal(result, expected)
|
||
|
|
||
|
def assignment_not_inplace(self):
|
||
|
# see gh-9297
|
||
|
df = DataFrame(np.random.randn(5, 2), columns=list('ab'))
|
||
|
|
||
|
actual = df.eval('c = a + b', inplace=False)
|
||
|
assert actual is not None
|
||
|
|
||
|
expected = df.copy()
|
||
|
expected['c'] = expected['a'] + expected['b']
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
def test_multi_line_expression(self):
|
||
|
# GH 11149
|
||
|
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
|
||
|
expected = df.copy()
|
||
|
|
||
|
expected['c'] = expected['a'] + expected['b']
|
||
|
expected['d'] = expected['c'] + expected['b']
|
||
|
ans = df.eval("""
|
||
|
c = a + b
|
||
|
d = c + b""", inplace=True)
|
||
|
assert_frame_equal(expected, df)
|
||
|
assert ans is None
|
||
|
|
||
|
expected['a'] = expected['a'] - 1
|
||
|
expected['e'] = expected['a'] + 2
|
||
|
ans = df.eval("""
|
||
|
a = a - 1
|
||
|
e = a + 2""", inplace=True)
|
||
|
assert_frame_equal(expected, df)
|
||
|
assert ans is None
|
||
|
|
||
|
# multi-line not valid if not all assignments
|
||
|
with pytest.raises(ValueError):
|
||
|
df.eval("""
|
||
|
a = b + 2
|
||
|
b - 2""", inplace=False)
|
||
|
|
||
|
def test_multi_line_expression_not_inplace(self):
|
||
|
# GH 11149
|
||
|
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
|
||
|
expected = df.copy()
|
||
|
|
||
|
expected['c'] = expected['a'] + expected['b']
|
||
|
expected['d'] = expected['c'] + expected['b']
|
||
|
df = df.eval("""
|
||
|
c = a + b
|
||
|
d = c + b""", inplace=False)
|
||
|
assert_frame_equal(expected, df)
|
||
|
|
||
|
expected['a'] = expected['a'] - 1
|
||
|
expected['e'] = expected['a'] + 2
|
||
|
df = df.eval("""
|
||
|
a = a - 1
|
||
|
e = a + 2""", inplace=False)
|
||
|
assert_frame_equal(expected, df)
|
||
|
|
||
|
def test_multi_line_expression_local_variable(self):
|
||
|
# GH 15342
|
||
|
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
|
||
|
expected = df.copy()
|
||
|
|
||
|
local_var = 7
|
||
|
expected['c'] = expected['a'] * local_var
|
||
|
expected['d'] = expected['c'] + local_var
|
||
|
ans = df.eval("""
|
||
|
c = a * @local_var
|
||
|
d = c + @local_var
|
||
|
""", inplace=True)
|
||
|
assert_frame_equal(expected, df)
|
||
|
assert ans is None
|
||
|
|
||
|
def test_assignment_in_query(self):
|
||
|
# GH 8664
|
||
|
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
|
||
|
df_orig = df.copy()
|
||
|
with pytest.raises(ValueError):
|
||
|
df.query('a = 1')
|
||
|
assert_frame_equal(df, df_orig)
|
||
|
|
||
|
def test_query_inplace(self):
|
||
|
# see gh-11149
|
||
|
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
|
||
|
expected = df.copy()
|
||
|
expected = expected[expected['a'] == 2]
|
||
|
df.query('a == 2', inplace=True)
|
||
|
assert_frame_equal(expected, df)
|
||
|
|
||
|
df = {}
|
||
|
expected = {"a": 3}
|
||
|
|
||
|
self.eval("a = 1 + 2", target=df, inplace=True)
|
||
|
tm.assert_dict_equal(df, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2],
|
||
|
np.array([]), (1, 3)])
|
||
|
def test_cannot_item_assign(self, invalid_target):
|
||
|
msg = "Cannot assign expression output to target"
|
||
|
expression = "a = 1 + 2"
|
||
|
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
self.eval(expression, target=invalid_target, inplace=True)
|
||
|
|
||
|
if hasattr(invalid_target, "copy"):
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
self.eval(expression, target=invalid_target, inplace=False)
|
||
|
|
||
|
@pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)])
|
||
|
def test_cannot_copy_item(self, invalid_target):
|
||
|
msg = "Cannot return a copy of the target"
|
||
|
expression = "a = 1 + 2"
|
||
|
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
self.eval(expression, target=invalid_target, inplace=False)
|
||
|
|
||
|
@pytest.mark.parametrize("target", [1, "cat", [1, 2],
|
||
|
np.array([]), (1, 3), {1: 2}])
|
||
|
def test_inplace_no_assignment(self, target):
|
||
|
expression = "1 + 2"
|
||
|
|
||
|
assert self.eval(expression, target=target, inplace=False) == 3
|
||
|
|
||
|
msg = "Cannot operate inplace if there is no assignment"
|
||
|
with tm.assert_raises_regex(ValueError, msg):
|
||
|
self.eval(expression, target=target, inplace=True)
|
||
|
|
||
|
def test_basic_period_index_boolean_expression(self):
|
||
|
df = mkdf(2, 2, data_gen_f=f, c_idx_type='p', r_idx_type='i')
|
||
|
|
||
|
e = df < 2
|
||
|
r = self.eval('df < 2', local_dict={'df': df})
|
||
|
x = df < 2
|
||
|
|
||
|
assert_frame_equal(r, e)
|
||
|
assert_frame_equal(x, e)
|
||
|
|
||
|
def test_basic_period_index_subscript_expression(self):
|
||
|
df = mkdf(2, 2, data_gen_f=f, c_idx_type='p', r_idx_type='i')
|
||
|
r = self.eval('df[df < 2 + 3]', local_dict={'df': df})
|
||
|
e = df[df < 2 + 3]
|
||
|
assert_frame_equal(r, e)
|
||
|
|
||
|
def test_nested_period_index_subscript_expression(self):
|
||
|
df = mkdf(2, 2, data_gen_f=f, c_idx_type='p', r_idx_type='i')
|
||
|
r = self.eval('df[df[df < 2] < 2] + df * 2', local_dict={'df': df})
|
||
|
e = df[df[df < 2] < 2] + df * 2
|
||
|
assert_frame_equal(r, e)
|
||
|
|
||
|
def test_date_boolean(self):
|
||
|
df = DataFrame(randn(5, 3))
|
||
|
df['dates1'] = date_range('1/1/2012', periods=5)
|
||
|
res = self.eval('df.dates1 < 20130101', local_dict={'df': df},
|
||
|
engine=self.engine, parser=self.parser)
|
||
|
expec = df.dates1 < '20130101'
|
||
|
assert_series_equal(res, expec, check_names=False)
|
||
|
|
||
|
def test_simple_in_ops(self):
|
||
|
if self.parser != 'python':
|
||
|
res = pd.eval('1 in [1, 2]', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('2 in (1, 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('3 in (1, 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert not res
|
||
|
|
||
|
res = pd.eval('3 not in (1, 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('[3] not in (1, 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('[3] in ([3], 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('[[3]] in [[[3]], 2]', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('(3,) in [(3,), 2]', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
|
||
|
res = pd.eval('(3,) not in [(3,), 2]', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert not res
|
||
|
|
||
|
res = pd.eval('[(3,)] in [[(3,)], 2]', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
assert res
|
||
|
else:
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('1 in [1, 2]', engine=self.engine, parser=self.parser)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('2 in (1, 2)', engine=self.engine, parser=self.parser)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('3 in (1, 2)', engine=self.engine, parser=self.parser)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('3 not in (1, 2)', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('[(3,)] in (1, 2, [(3,)])', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval('[3] not in (1, 2, [[3]])', engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestOperationsNumExprPython(TestOperationsNumExprPandas):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestOperationsNumExprPython, cls).setup_class()
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'python'
|
||
|
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
|
||
|
cls.arith_ops = filter(lambda x: x not in ('in', 'not in'),
|
||
|
cls.arith_ops)
|
||
|
|
||
|
def test_check_many_exprs(self):
|
||
|
a = 1 # noqa
|
||
|
expr = ' * '.join('a' * 33)
|
||
|
expected = 1
|
||
|
res = pd.eval(expr, engine=self.engine, parser=self.parser)
|
||
|
assert res == expected
|
||
|
|
||
|
def test_fails_and(self):
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
pytest.raises(NotImplementedError, pd.eval, 'df > 2 and df > 3',
|
||
|
local_dict={'df': df}, parser=self.parser,
|
||
|
engine=self.engine)
|
||
|
|
||
|
def test_fails_or(self):
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
pytest.raises(NotImplementedError, pd.eval, 'df > 2 or df > 3',
|
||
|
local_dict={'df': df}, parser=self.parser,
|
||
|
engine=self.engine)
|
||
|
|
||
|
def test_fails_not(self):
|
||
|
df = DataFrame(np.random.randn(5, 3))
|
||
|
pytest.raises(NotImplementedError, pd.eval, 'not df > 2',
|
||
|
local_dict={'df': df}, parser=self.parser,
|
||
|
engine=self.engine)
|
||
|
|
||
|
def test_fails_ampersand(self):
|
||
|
df = DataFrame(np.random.randn(5, 3)) # noqa
|
||
|
ex = '(df + 2)[df > 1] > 0 & (df > 0)'
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex, parser=self.parser, engine=self.engine)
|
||
|
|
||
|
def test_fails_pipe(self):
|
||
|
df = DataFrame(np.random.randn(5, 3)) # noqa
|
||
|
ex = '(df + 2)[df > 1] > 0 | (df > 0)'
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex, parser=self.parser, engine=self.engine)
|
||
|
|
||
|
def test_bool_ops_with_constants(self):
|
||
|
for op, lhs, rhs in product(expr._bool_ops_syms, ('True', 'False'),
|
||
|
('True', 'False')):
|
||
|
ex = '{0} {1} {2}'.format(lhs, op, rhs)
|
||
|
if op in ('and', 'or'):
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
self.eval(ex)
|
||
|
else:
|
||
|
res = self.eval(ex)
|
||
|
exp = eval(ex)
|
||
|
assert res == exp
|
||
|
|
||
|
def test_simple_bool_ops(self):
|
||
|
for op, lhs, rhs in product(expr._bool_ops_syms, (True, False),
|
||
|
(True, False)):
|
||
|
ex = 'lhs {0} rhs'.format(op)
|
||
|
if op in ('and', 'or'):
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
else:
|
||
|
res = pd.eval(ex, engine=self.engine, parser=self.parser)
|
||
|
exp = eval(ex)
|
||
|
assert res == exp
|
||
|
|
||
|
|
||
|
class TestOperationsPythonPython(TestOperationsNumExprPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestOperationsPythonPython, cls).setup_class()
|
||
|
cls.engine = cls.parser = 'python'
|
||
|
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
|
||
|
cls.arith_ops = filter(lambda x: x not in ('in', 'not in'),
|
||
|
cls.arith_ops)
|
||
|
|
||
|
|
||
|
class TestOperationsPythonPandas(TestOperationsNumExprPandas):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestOperationsPythonPandas, cls).setup_class()
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'pandas'
|
||
|
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
class TestMathPythonPython(object):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'pandas'
|
||
|
cls.unary_fns = _unary_math_ops
|
||
|
cls.binary_fns = _binary_math_ops
|
||
|
|
||
|
@classmethod
|
||
|
def teardown_class(cls):
|
||
|
del cls.engine, cls.parser
|
||
|
|
||
|
def eval(self, *args, **kwargs):
|
||
|
kwargs['engine'] = self.engine
|
||
|
kwargs['parser'] = self.parser
|
||
|
kwargs['level'] = kwargs.pop('level', 0) + 1
|
||
|
return pd.eval(*args, **kwargs)
|
||
|
|
||
|
def test_unary_functions(self):
|
||
|
df = DataFrame({'a': np.random.randn(10)})
|
||
|
a = df.a
|
||
|
for fn in self.unary_fns:
|
||
|
expr = "{0}(a)".format(fn)
|
||
|
got = self.eval(expr)
|
||
|
with np.errstate(all='ignore'):
|
||
|
expect = getattr(np, fn)(a)
|
||
|
tm.assert_series_equal(got, expect, check_names=False)
|
||
|
|
||
|
def test_binary_functions(self):
|
||
|
df = DataFrame({'a': np.random.randn(10),
|
||
|
'b': np.random.randn(10)})
|
||
|
a = df.a
|
||
|
b = df.b
|
||
|
for fn in self.binary_fns:
|
||
|
expr = "{0}(a, b)".format(fn)
|
||
|
got = self.eval(expr)
|
||
|
with np.errstate(all='ignore'):
|
||
|
expect = getattr(np, fn)(a, b)
|
||
|
tm.assert_almost_equal(got, expect, check_names=False)
|
||
|
|
||
|
def test_df_use_case(self):
|
||
|
df = DataFrame({'a': np.random.randn(10),
|
||
|
'b': np.random.randn(10)})
|
||
|
df.eval("e = arctan2(sin(a), b)",
|
||
|
engine=self.engine,
|
||
|
parser=self.parser, inplace=True)
|
||
|
got = df.e
|
||
|
expect = np.arctan2(np.sin(df.a), df.b)
|
||
|
tm.assert_series_equal(got, expect, check_names=False)
|
||
|
|
||
|
def test_df_arithmetic_subexpression(self):
|
||
|
df = DataFrame({'a': np.random.randn(10),
|
||
|
'b': np.random.randn(10)})
|
||
|
df.eval("e = sin(a + b)",
|
||
|
engine=self.engine,
|
||
|
parser=self.parser, inplace=True)
|
||
|
got = df.e
|
||
|
expect = np.sin(df.a + df.b)
|
||
|
tm.assert_series_equal(got, expect, check_names=False)
|
||
|
|
||
|
def check_result_type(self, dtype, expect_dtype):
|
||
|
df = DataFrame({'a': np.random.randn(10).astype(dtype)})
|
||
|
assert df.a.dtype == dtype
|
||
|
df.eval("b = sin(a)",
|
||
|
engine=self.engine,
|
||
|
parser=self.parser, inplace=True)
|
||
|
got = df.b
|
||
|
expect = np.sin(df.a)
|
||
|
assert expect.dtype == got.dtype
|
||
|
assert expect_dtype == got.dtype
|
||
|
tm.assert_series_equal(got, expect, check_names=False)
|
||
|
|
||
|
def test_result_types(self):
|
||
|
self.check_result_type(np.int32, np.float64)
|
||
|
self.check_result_type(np.int64, np.float64)
|
||
|
self.check_result_type(np.float32, np.float32)
|
||
|
self.check_result_type(np.float64, np.float64)
|
||
|
|
||
|
def test_result_types2(self):
|
||
|
# xref https://github.com/pandas-dev/pandas/issues/12293
|
||
|
pytest.skip("unreliable tests on complex128")
|
||
|
|
||
|
# Did not test complex64 because DataFrame is converting it to
|
||
|
# complex128. Due to https://github.com/pandas-dev/pandas/issues/10952
|
||
|
self.check_result_type(np.complex128, np.complex128)
|
||
|
|
||
|
def test_undefined_func(self):
|
||
|
df = DataFrame({'a': np.random.randn(10)})
|
||
|
with tm.assert_raises_regex(
|
||
|
ValueError, "\"mysin\" is not a supported function"):
|
||
|
df.eval("mysin(a)",
|
||
|
engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
|
||
|
def test_keyword_arg(self):
|
||
|
df = DataFrame({'a': np.random.randn(10)})
|
||
|
with tm.assert_raises_regex(TypeError,
|
||
|
"Function \"sin\" does not support "
|
||
|
"keyword arguments"):
|
||
|
df.eval("sin(x=a)",
|
||
|
engine=self.engine,
|
||
|
parser=self.parser)
|
||
|
|
||
|
|
||
|
class TestMathPythonPandas(TestMathPythonPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestMathPythonPandas, cls).setup_class()
|
||
|
cls.engine = 'python'
|
||
|
cls.parser = 'pandas'
|
||
|
|
||
|
|
||
|
class TestMathNumExprPandas(TestMathPythonPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestMathNumExprPandas, cls).setup_class()
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'pandas'
|
||
|
|
||
|
|
||
|
class TestMathNumExprPython(TestMathPythonPython):
|
||
|
|
||
|
@classmethod
|
||
|
def setup_class(cls):
|
||
|
super(TestMathNumExprPython, cls).setup_class()
|
||
|
cls.engine = 'numexpr'
|
||
|
cls.parser = 'python'
|
||
|
|
||
|
|
||
|
_var_s = randn(10)
|
||
|
|
||
|
|
||
|
class TestScope(object):
|
||
|
|
||
|
def test_global_scope(self, engine, parser):
|
||
|
e = '_var_s * 2'
|
||
|
tm.assert_numpy_array_equal(_var_s * 2, pd.eval(e, engine=engine,
|
||
|
parser=parser))
|
||
|
|
||
|
def test_no_new_locals(self, engine, parser):
|
||
|
x = 1 # noqa
|
||
|
lcls = locals().copy()
|
||
|
pd.eval('x + 1', local_dict=lcls, engine=engine, parser=parser)
|
||
|
lcls2 = locals().copy()
|
||
|
lcls2.pop('lcls')
|
||
|
assert lcls == lcls2
|
||
|
|
||
|
def test_no_new_globals(self, engine, parser):
|
||
|
x = 1 # noqa
|
||
|
gbls = globals().copy()
|
||
|
pd.eval('x + 1', engine=engine, parser=parser)
|
||
|
gbls2 = globals().copy()
|
||
|
assert gbls == gbls2
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
def test_invalid_engine():
|
||
|
tm.assert_raises_regex(KeyError, 'Invalid engine \'asdf\' passed',
|
||
|
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
|
||
|
engine='asdf')
|
||
|
|
||
|
|
||
|
@td.skip_if_no_ne
|
||
|
def test_invalid_parser():
|
||
|
tm.assert_raises_regex(KeyError, 'Invalid parser \'asdf\' passed',
|
||
|
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
|
||
|
parser='asdf')
|
||
|
|
||
|
|
||
|
_parsers = {'python': PythonExprVisitor, 'pytables': pytables.ExprVisitor,
|
||
|
'pandas': PandasExprVisitor}
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('engine', _engines)
|
||
|
@pytest.mark.parametrize('parser', _parsers)
|
||
|
def test_disallowed_nodes(engine, parser):
|
||
|
VisitorClass = _parsers[parser]
|
||
|
uns_ops = VisitorClass.unsupported_nodes
|
||
|
inst = VisitorClass('x + 1', engine, parser)
|
||
|
|
||
|
for ops in uns_ops:
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
getattr(inst, ops)()
|
||
|
|
||
|
|
||
|
def test_syntax_error_exprs(engine, parser):
|
||
|
e = 's +'
|
||
|
with pytest.raises(SyntaxError):
|
||
|
pd.eval(e, engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
def test_name_error_exprs(engine, parser):
|
||
|
e = 's + t'
|
||
|
with pytest.raises(NameError):
|
||
|
pd.eval(e, engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
def test_invalid_local_variable_reference(engine, parser):
|
||
|
a, b = 1, 2 # noqa
|
||
|
exprs = 'a + @b', '@a + b', '@a + @b'
|
||
|
|
||
|
for _expr in exprs:
|
||
|
if parser != 'pandas':
|
||
|
with tm.assert_raises_regex(SyntaxError,
|
||
|
"The '@' prefix is only"):
|
||
|
pd.eval(_expr, engine=engine, parser=parser)
|
||
|
else:
|
||
|
with tm.assert_raises_regex(SyntaxError,
|
||
|
"The '@' prefix is not"):
|
||
|
pd.eval(_expr, engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
def test_numexpr_builtin_raises(engine, parser):
|
||
|
sin, dotted_line = 1, 2
|
||
|
if engine == 'numexpr':
|
||
|
with tm.assert_raises_regex(NumExprClobberingError,
|
||
|
'Variables in expression .+'):
|
||
|
pd.eval('sin + dotted_line', engine=engine, parser=parser)
|
||
|
else:
|
||
|
res = pd.eval('sin + dotted_line', engine=engine, parser=parser)
|
||
|
assert res == sin + dotted_line
|
||
|
|
||
|
|
||
|
def test_bad_resolver_raises(engine, parser):
|
||
|
cannot_resolve = 42, 3.0
|
||
|
with tm.assert_raises_regex(TypeError, 'Resolver of type .+'):
|
||
|
pd.eval('1 + 2', resolvers=cannot_resolve, engine=engine,
|
||
|
parser=parser)
|
||
|
|
||
|
|
||
|
def test_empty_string_raises(engine, parser):
|
||
|
# GH 13139
|
||
|
with tm.assert_raises_regex(ValueError,
|
||
|
'expr cannot be an empty string'):
|
||
|
pd.eval('', engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
def test_more_than_one_expression_raises(engine, parser):
|
||
|
with tm.assert_raises_regex(SyntaxError,
|
||
|
'only a single expression is allowed'):
|
||
|
pd.eval('1 + 1; 2 + 2', engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('cmp', ('and', 'or'))
|
||
|
@pytest.mark.parametrize('lhs', (int, float))
|
||
|
@pytest.mark.parametrize('rhs', (int, float))
|
||
|
def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
|
||
|
gen = {int: lambda: np.random.randint(10), float: np.random.randn}
|
||
|
|
||
|
mid = gen[lhs]() # noqa
|
||
|
lhs = gen[lhs]() # noqa
|
||
|
rhs = gen[rhs]() # noqa
|
||
|
|
||
|
ex1 = 'lhs {0} mid {1} rhs'.format(cmp, cmp)
|
||
|
ex2 = 'lhs {0} mid and mid {1} rhs'.format(cmp, cmp)
|
||
|
ex3 = '(lhs {0} mid) & (mid {1} rhs)'.format(cmp, cmp)
|
||
|
for ex in (ex1, ex2, ex3):
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
pd.eval(ex, engine=engine, parser=parser)
|
||
|
|
||
|
|
||
|
def test_inf(engine, parser):
|
||
|
s = 'inf + 1'
|
||
|
expected = np.inf
|
||
|
result = pd.eval(s, engine=engine, parser=parser)
|
||
|
assert result == expected
|
||
|
|
||
|
|
||
|
def test_negate_lt_eq_le(engine, parser):
|
||
|
df = pd.DataFrame([[0, 10], [1, 20]], columns=['cat', 'count'])
|
||
|
expected = df[~(df.cat > 0)]
|
||
|
|
||
|
result = df.query('~(cat > 0)', engine=engine, parser=parser)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
if parser == 'python':
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
df.query('not (cat > 0)', engine=engine, parser=parser)
|
||
|
else:
|
||
|
result = df.query('not (cat > 0)', engine=engine, parser=parser)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestValidate(object):
|
||
|
|
||
|
def test_validate_bool_args(self):
|
||
|
invalid_values = [1, "True", [1, 2, 3], 5.0]
|
||
|
|
||
|
for value in invalid_values:
|
||
|
with pytest.raises(ValueError):
|
||
|
pd.eval("2+2", inplace=value)
|