1268 lines
42 KiB
Python
1268 lines
42 KiB
Python
|
"""
|
||
|
Module for applying conditional formatting to
|
||
|
DataFrames and Series.
|
||
|
"""
|
||
|
from functools import partial
|
||
|
from itertools import product
|
||
|
from contextlib import contextmanager
|
||
|
from uuid import uuid1
|
||
|
import copy
|
||
|
from collections import defaultdict, MutableMapping
|
||
|
|
||
|
try:
|
||
|
from jinja2 import (
|
||
|
PackageLoader, Environment, ChoiceLoader, FileSystemLoader
|
||
|
)
|
||
|
except ImportError:
|
||
|
msg = "pandas.Styler requires jinja2. "\
|
||
|
"Please install with `conda install Jinja2`\n"\
|
||
|
"or `pip install Jinja2`"
|
||
|
raise ImportError(msg)
|
||
|
|
||
|
from pandas.core.dtypes.common import is_float, is_string_like
|
||
|
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from pandas.api.types import is_list_like
|
||
|
from pandas.compat import range
|
||
|
from pandas.core.config import get_option
|
||
|
from pandas.core.generic import _shared_docs
|
||
|
import pandas.core.common as com
|
||
|
from pandas.core.indexing import _maybe_numeric_slice, _non_reducing_slice
|
||
|
from pandas.util._decorators import Appender
|
||
|
try:
|
||
|
import matplotlib.pyplot as plt
|
||
|
from matplotlib import colors
|
||
|
has_mpl = True
|
||
|
except ImportError:
|
||
|
has_mpl = False
|
||
|
no_mpl_message = "{0} requires matplotlib."
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def _mpl(func):
|
||
|
if has_mpl:
|
||
|
yield plt, colors
|
||
|
else:
|
||
|
raise ImportError(no_mpl_message.format(func.__name__))
|
||
|
|
||
|
|
||
|
class Styler(object):
|
||
|
"""
|
||
|
Helps style a DataFrame or Series according to the
|
||
|
data with HTML and CSS.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data: Series or DataFrame
|
||
|
precision: int
|
||
|
precision to round floats to, defaults to pd.options.display.precision
|
||
|
table_styles: list-like, default None
|
||
|
list of {selector: (attr, value)} dicts; see Notes
|
||
|
uuid: str, default None
|
||
|
a unique identifier to avoid CSS collisons; generated automatically
|
||
|
caption: str, default None
|
||
|
caption to attach to the table
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
env : Jinja2 Environment
|
||
|
template : Jinja2 Template
|
||
|
loader : Jinja2 Loader
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Most styling will be done by passing style functions into
|
||
|
``Styler.apply`` or ``Styler.applymap``. Style functions should
|
||
|
return values with strings containing CSS ``'attr: value'`` that will
|
||
|
be applied to the indicated cells.
|
||
|
|
||
|
If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
|
||
|
to automatically render itself. Otherwise call Styler.render to get
|
||
|
the genterated HTML.
|
||
|
|
||
|
CSS classes are attached to the generated HTML
|
||
|
|
||
|
* Index and Column names include ``index_name`` and ``level<k>``
|
||
|
where `k` is its level in a MultiIndex
|
||
|
* Index label cells include
|
||
|
|
||
|
* ``row_heading``
|
||
|
* ``row<n>`` where `n` is the numeric position of the row
|
||
|
* ``level<k>`` where `k` is the level in a MultiIndex
|
||
|
|
||
|
* Column label cells include
|
||
|
* ``col_heading``
|
||
|
* ``col<n>`` where `n` is the numeric position of the column
|
||
|
* ``evel<k>`` where `k` is the level in a MultiIndex
|
||
|
|
||
|
* Blank cells include ``blank``
|
||
|
* Data cells include ``data``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.DataFrame.style
|
||
|
"""
|
||
|
loader = PackageLoader("pandas", "io/formats/templates")
|
||
|
env = Environment(
|
||
|
loader=loader,
|
||
|
trim_blocks=True,
|
||
|
)
|
||
|
template = env.get_template("html.tpl")
|
||
|
|
||
|
def __init__(self, data, precision=None, table_styles=None, uuid=None,
|
||
|
caption=None, table_attributes=None):
|
||
|
self.ctx = defaultdict(list)
|
||
|
self._todo = []
|
||
|
|
||
|
if not isinstance(data, (pd.Series, pd.DataFrame)):
|
||
|
raise TypeError("``data`` must be a Series or DataFrame")
|
||
|
if data.ndim == 1:
|
||
|
data = data.to_frame()
|
||
|
if not data.index.is_unique or not data.columns.is_unique:
|
||
|
raise ValueError("style is not supported for non-unique indicies.")
|
||
|
|
||
|
self.data = data
|
||
|
self.index = data.index
|
||
|
self.columns = data.columns
|
||
|
|
||
|
self.uuid = uuid
|
||
|
self.table_styles = table_styles
|
||
|
self.caption = caption
|
||
|
if precision is None:
|
||
|
precision = get_option('display.precision')
|
||
|
self.precision = precision
|
||
|
self.table_attributes = table_attributes
|
||
|
self.hidden_index = False
|
||
|
self.hidden_columns = []
|
||
|
|
||
|
# display_funcs maps (row, col) -> formatting function
|
||
|
|
||
|
def default_display_func(x):
|
||
|
if is_float(x):
|
||
|
return '{:>.{precision}g}'.format(x, precision=self.precision)
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
self._display_funcs = defaultdict(lambda: default_display_func)
|
||
|
|
||
|
def _repr_html_(self):
|
||
|
"""Hooks into Jupyter notebook rich display system."""
|
||
|
return self.render()
|
||
|
|
||
|
@Appender(_shared_docs['to_excel'] % dict(
|
||
|
axes='index, columns', klass='Styler',
|
||
|
axes_single_arg="{0 or 'index', 1 or 'columns'}",
|
||
|
optional_by="""
|
||
|
by : str or list of str
|
||
|
Name or list of names which refer to the axis items.""",
|
||
|
versionadded_to_excel='\n .. versionadded:: 0.20'))
|
||
|
def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='',
|
||
|
float_format=None, columns=None, header=True, index=True,
|
||
|
index_label=None, startrow=0, startcol=0, engine=None,
|
||
|
merge_cells=True, encoding=None, inf_rep='inf', verbose=True,
|
||
|
freeze_panes=None):
|
||
|
|
||
|
from pandas.io.formats.excel import ExcelFormatter
|
||
|
formatter = ExcelFormatter(self, na_rep=na_rep, cols=columns,
|
||
|
header=header,
|
||
|
float_format=float_format, index=index,
|
||
|
index_label=index_label,
|
||
|
merge_cells=merge_cells,
|
||
|
inf_rep=inf_rep)
|
||
|
formatter.write(excel_writer, sheet_name=sheet_name, startrow=startrow,
|
||
|
startcol=startcol, freeze_panes=freeze_panes,
|
||
|
engine=engine)
|
||
|
|
||
|
def _translate(self):
|
||
|
"""
|
||
|
Convert the DataFrame in `self.data` and the attrs from `_build_styles`
|
||
|
into a dictionary of {head, body, uuid, cellstyle}
|
||
|
"""
|
||
|
table_styles = self.table_styles or []
|
||
|
caption = self.caption
|
||
|
ctx = self.ctx
|
||
|
precision = self.precision
|
||
|
hidden_index = self.hidden_index
|
||
|
hidden_columns = self.hidden_columns
|
||
|
uuid = self.uuid or str(uuid1()).replace("-", "_")
|
||
|
ROW_HEADING_CLASS = "row_heading"
|
||
|
COL_HEADING_CLASS = "col_heading"
|
||
|
INDEX_NAME_CLASS = "index_name"
|
||
|
|
||
|
DATA_CLASS = "data"
|
||
|
BLANK_CLASS = "blank"
|
||
|
BLANK_VALUE = ""
|
||
|
|
||
|
def format_attr(pair):
|
||
|
return "{key}={value}".format(**pair)
|
||
|
|
||
|
# for sparsifying a MultiIndex
|
||
|
idx_lengths = _get_level_lengths(self.index)
|
||
|
col_lengths = _get_level_lengths(self.columns, hidden_columns)
|
||
|
|
||
|
cell_context = dict()
|
||
|
|
||
|
n_rlvls = self.data.index.nlevels
|
||
|
n_clvls = self.data.columns.nlevels
|
||
|
rlabels = self.data.index.tolist()
|
||
|
clabels = self.data.columns.tolist()
|
||
|
|
||
|
if n_rlvls == 1:
|
||
|
rlabels = [[x] for x in rlabels]
|
||
|
if n_clvls == 1:
|
||
|
clabels = [[x] for x in clabels]
|
||
|
clabels = list(zip(*clabels))
|
||
|
|
||
|
cellstyle = []
|
||
|
head = []
|
||
|
|
||
|
for r in range(n_clvls):
|
||
|
# Blank for Index columns...
|
||
|
row_es = [{"type": "th",
|
||
|
"value": BLANK_VALUE,
|
||
|
"display_value": BLANK_VALUE,
|
||
|
"is_visible": not hidden_index,
|
||
|
"class": " ".join([BLANK_CLASS])}] * (n_rlvls - 1)
|
||
|
|
||
|
# ... except maybe the last for columns.names
|
||
|
name = self.data.columns.names[r]
|
||
|
cs = [BLANK_CLASS if name is None else INDEX_NAME_CLASS,
|
||
|
"level{lvl}".format(lvl=r)]
|
||
|
name = BLANK_VALUE if name is None else name
|
||
|
row_es.append({"type": "th",
|
||
|
"value": name,
|
||
|
"display_value": name,
|
||
|
"class": " ".join(cs),
|
||
|
"is_visible": not hidden_index})
|
||
|
|
||
|
if clabels:
|
||
|
for c, value in enumerate(clabels[r]):
|
||
|
cs = [COL_HEADING_CLASS, "level{lvl}".format(lvl=r),
|
||
|
"col{col}".format(col=c)]
|
||
|
cs.extend(cell_context.get(
|
||
|
"col_headings", {}).get(r, {}).get(c, []))
|
||
|
es = {
|
||
|
"type": "th",
|
||
|
"value": value,
|
||
|
"display_value": value,
|
||
|
"class": " ".join(cs),
|
||
|
"is_visible": _is_visible(c, r, col_lengths),
|
||
|
}
|
||
|
colspan = col_lengths.get((r, c), 0)
|
||
|
if colspan > 1:
|
||
|
es["attributes"] = [
|
||
|
format_attr({"key": "colspan", "value": colspan})
|
||
|
]
|
||
|
row_es.append(es)
|
||
|
head.append(row_es)
|
||
|
|
||
|
if (self.data.index.names and
|
||
|
com._any_not_none(*self.data.index.names) and
|
||
|
not hidden_index):
|
||
|
index_header_row = []
|
||
|
|
||
|
for c, name in enumerate(self.data.index.names):
|
||
|
cs = [INDEX_NAME_CLASS,
|
||
|
"level{lvl}".format(lvl=c)]
|
||
|
name = '' if name is None else name
|
||
|
index_header_row.append({"type": "th", "value": name,
|
||
|
"class": " ".join(cs)})
|
||
|
|
||
|
index_header_row.extend(
|
||
|
[{"type": "th",
|
||
|
"value": BLANK_VALUE,
|
||
|
"class": " ".join([BLANK_CLASS])
|
||
|
}] * (len(clabels[0]) - len(hidden_columns)))
|
||
|
|
||
|
head.append(index_header_row)
|
||
|
|
||
|
body = []
|
||
|
for r, idx in enumerate(self.data.index):
|
||
|
row_es = []
|
||
|
for c, value in enumerate(rlabels[r]):
|
||
|
rid = [ROW_HEADING_CLASS, "level{lvl}".format(lvl=c),
|
||
|
"row{row}".format(row=r)]
|
||
|
es = {
|
||
|
"type": "th",
|
||
|
"is_visible": (_is_visible(r, c, idx_lengths) and
|
||
|
not hidden_index),
|
||
|
"value": value,
|
||
|
"display_value": value,
|
||
|
"id": "_".join(rid[1:]),
|
||
|
"class": " ".join(rid)
|
||
|
}
|
||
|
rowspan = idx_lengths.get((c, r), 0)
|
||
|
if rowspan > 1:
|
||
|
es["attributes"] = [
|
||
|
format_attr({"key": "rowspan", "value": rowspan})
|
||
|
]
|
||
|
row_es.append(es)
|
||
|
|
||
|
for c, col in enumerate(self.data.columns):
|
||
|
cs = [DATA_CLASS, "row{row}".format(row=r),
|
||
|
"col{col}".format(col=c)]
|
||
|
cs.extend(cell_context.get("data", {}).get(r, {}).get(c, []))
|
||
|
formatter = self._display_funcs[(r, c)]
|
||
|
value = self.data.iloc[r, c]
|
||
|
row_es.append({
|
||
|
"type": "td",
|
||
|
"value": value,
|
||
|
"class": " ".join(cs),
|
||
|
"id": "_".join(cs[1:]),
|
||
|
"display_value": formatter(value),
|
||
|
"is_visible": (c not in hidden_columns)
|
||
|
})
|
||
|
props = []
|
||
|
for x in ctx[r, c]:
|
||
|
# have to handle empty styles like ['']
|
||
|
if x.count(":"):
|
||
|
props.append(x.split(":"))
|
||
|
else:
|
||
|
props.append(['', ''])
|
||
|
cellstyle.append({'props': props,
|
||
|
'selector': "row{row}_col{col}"
|
||
|
.format(row=r, col=c)})
|
||
|
body.append(row_es)
|
||
|
|
||
|
table_attr = self.table_attributes
|
||
|
use_mathjax = get_option("display.html.use_mathjax")
|
||
|
if not use_mathjax:
|
||
|
table_attr = table_attr or ''
|
||
|
if 'class="' in table_attr:
|
||
|
table_attr = table_attr.replace('class="',
|
||
|
'class="tex2jax_ignore ')
|
||
|
else:
|
||
|
table_attr += ' class="tex2jax_ignore"'
|
||
|
|
||
|
return dict(head=head, cellstyle=cellstyle, body=body, uuid=uuid,
|
||
|
precision=precision, table_styles=table_styles,
|
||
|
caption=caption, table_attributes=table_attr)
|
||
|
|
||
|
def format(self, formatter, subset=None):
|
||
|
"""
|
||
|
Format the text display value of cells.
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
formatter: str, callable, or dict
|
||
|
subset: IndexSlice
|
||
|
An argument to ``DataFrame.loc`` that restricts which elements
|
||
|
``formatter`` is applied to.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
``formatter`` is either an ``a`` or a dict ``{column name: a}`` where
|
||
|
``a`` is one of
|
||
|
|
||
|
- str: this will be wrapped in: ``a.format(x)``
|
||
|
- callable: called with the value of an individual cell
|
||
|
|
||
|
The default display value for numeric values is the "general" (``g``)
|
||
|
format with ``pd.options.display.precision`` precision.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
|
||
|
>>> df.style.format("{:.2%}")
|
||
|
>>> df['c'] = ['a', 'b', 'c', 'd']
|
||
|
>>> df.style.format({'c': str.upper})
|
||
|
"""
|
||
|
if subset is None:
|
||
|
row_locs = range(len(self.data))
|
||
|
col_locs = range(len(self.data.columns))
|
||
|
else:
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
if len(subset) == 1:
|
||
|
subset = subset, self.data.columns
|
||
|
|
||
|
sub_df = self.data.loc[subset]
|
||
|
row_locs = self.data.index.get_indexer_for(sub_df.index)
|
||
|
col_locs = self.data.columns.get_indexer_for(sub_df.columns)
|
||
|
|
||
|
if isinstance(formatter, MutableMapping):
|
||
|
for col, col_formatter in formatter.items():
|
||
|
# formatter must be callable, so '{}' are converted to lambdas
|
||
|
col_formatter = _maybe_wrap_formatter(col_formatter)
|
||
|
col_num = self.data.columns.get_indexer_for([col])[0]
|
||
|
|
||
|
for row_num in row_locs:
|
||
|
self._display_funcs[(row_num, col_num)] = col_formatter
|
||
|
else:
|
||
|
# single scalar to format all cells with
|
||
|
locs = product(*(row_locs, col_locs))
|
||
|
for i, j in locs:
|
||
|
formatter = _maybe_wrap_formatter(formatter)
|
||
|
self._display_funcs[(i, j)] = formatter
|
||
|
return self
|
||
|
|
||
|
def render(self, **kwargs):
|
||
|
"""Render the built up styles to HTML
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
`**kwargs`:
|
||
|
Any additional keyword arguments are passed through
|
||
|
to ``self.template.render``. This is useful when you
|
||
|
need to provide additional variables for a custom
|
||
|
template.
|
||
|
|
||
|
.. versionadded:: 0.20
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rendered: str
|
||
|
the rendered HTML
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
``Styler`` objects have defined the ``_repr_html_`` method
|
||
|
which automatically calls ``self.render()`` when it's the
|
||
|
last item in a Notebook cell. When calling ``Styler.render()``
|
||
|
directly, wrap the result in ``IPython.display.HTML`` to view
|
||
|
the rendered HTML in the notebook.
|
||
|
|
||
|
Pandas uses the following keys in render. Arguments passed
|
||
|
in ``**kwargs`` take precedence, so think carefully if you want
|
||
|
to override them:
|
||
|
|
||
|
* head
|
||
|
* cellstyle
|
||
|
* body
|
||
|
* uuid
|
||
|
* precision
|
||
|
* table_styles
|
||
|
* caption
|
||
|
* table_attributes
|
||
|
"""
|
||
|
self._compute()
|
||
|
# TODO: namespace all the pandas keys
|
||
|
d = self._translate()
|
||
|
# filter out empty styles, every cell will have a class
|
||
|
# but the list of props may just be [['', '']].
|
||
|
# so we have the neested anys below
|
||
|
trimmed = [x for x in d['cellstyle']
|
||
|
if any(any(y) for y in x['props'])]
|
||
|
d['cellstyle'] = trimmed
|
||
|
d.update(kwargs)
|
||
|
return self.template.render(**d)
|
||
|
|
||
|
def _update_ctx(self, attrs):
|
||
|
"""
|
||
|
update the state of the Styler. Collects a mapping
|
||
|
of {index_label: ['<property>: <value>']}
|
||
|
|
||
|
attrs: Series or DataFrame
|
||
|
should contain strings of '<property>: <value>;<prop2>: <val2>'
|
||
|
Whitespace shouldn't matter and the final trailing ';' shouldn't
|
||
|
matter.
|
||
|
"""
|
||
|
for row_label, v in attrs.iterrows():
|
||
|
for col_label, col in v.iteritems():
|
||
|
i = self.index.get_indexer([row_label])[0]
|
||
|
j = self.columns.get_indexer([col_label])[0]
|
||
|
for pair in col.rstrip(";").split(";"):
|
||
|
self.ctx[(i, j)].append(pair)
|
||
|
|
||
|
def _copy(self, deepcopy=False):
|
||
|
styler = Styler(self.data, precision=self.precision,
|
||
|
caption=self.caption, uuid=self.uuid,
|
||
|
table_styles=self.table_styles)
|
||
|
if deepcopy:
|
||
|
styler.ctx = copy.deepcopy(self.ctx)
|
||
|
styler._todo = copy.deepcopy(self._todo)
|
||
|
else:
|
||
|
styler.ctx = self.ctx
|
||
|
styler._todo = self._todo
|
||
|
return styler
|
||
|
|
||
|
def __copy__(self):
|
||
|
"""
|
||
|
Deep copy by default.
|
||
|
"""
|
||
|
return self._copy(deepcopy=False)
|
||
|
|
||
|
def __deepcopy__(self, memo):
|
||
|
return self._copy(deepcopy=True)
|
||
|
|
||
|
def clear(self):
|
||
|
""""Reset" the styler, removing any previously applied styles.
|
||
|
Returns None.
|
||
|
"""
|
||
|
self.ctx.clear()
|
||
|
self._todo = []
|
||
|
|
||
|
def _compute(self):
|
||
|
"""
|
||
|
Execute the style functions built up in `self._todo`.
|
||
|
|
||
|
Relies on the conventions that all style functions go through
|
||
|
.apply or .applymap. The append styles to apply as tuples of
|
||
|
|
||
|
(application method, *args, **kwargs)
|
||
|
"""
|
||
|
r = self
|
||
|
for func, args, kwargs in self._todo:
|
||
|
r = func(self)(*args, **kwargs)
|
||
|
return r
|
||
|
|
||
|
def _apply(self, func, axis=0, subset=None, **kwargs):
|
||
|
subset = slice(None) if subset is None else subset
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
data = self.data.loc[subset]
|
||
|
if axis is not None:
|
||
|
result = data.apply(func, axis=axis,
|
||
|
result_type='expand', **kwargs)
|
||
|
result.columns = data.columns
|
||
|
else:
|
||
|
result = func(data, **kwargs)
|
||
|
if not isinstance(result, pd.DataFrame):
|
||
|
raise TypeError(
|
||
|
"Function {func!r} must return a DataFrame when "
|
||
|
"passed to `Styler.apply` with axis=None"
|
||
|
.format(func=func))
|
||
|
if not (result.index.equals(data.index) and
|
||
|
result.columns.equals(data.columns)):
|
||
|
msg = ('Result of {func!r} must have identical index and '
|
||
|
'columns as the input'.format(func=func))
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
result_shape = result.shape
|
||
|
expected_shape = self.data.loc[subset].shape
|
||
|
if result_shape != expected_shape:
|
||
|
msg = ("Function {func!r} returned the wrong shape.\n"
|
||
|
"Result has shape: {res}\n"
|
||
|
"Expected shape: {expect}".format(func=func,
|
||
|
res=result.shape,
|
||
|
expect=expected_shape))
|
||
|
raise ValueError(msg)
|
||
|
self._update_ctx(result)
|
||
|
return self
|
||
|
|
||
|
def apply(self, func, axis=0, subset=None, **kwargs):
|
||
|
"""
|
||
|
Apply a function column-wise, row-wise, or table-wase,
|
||
|
updating the HTML representation with the result.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
``func`` should take a Series or DataFrame (depending
|
||
|
on ``axis``), and return an object with the same shape.
|
||
|
Must return a DataFrame with identical index and
|
||
|
column labels when ``axis=None``
|
||
|
axis : int, str or None
|
||
|
apply to each column (``axis=0`` or ``'index'``)
|
||
|
or to each row (``axis=1`` or ``'columns'``) or
|
||
|
to the entire DataFrame at once with ``axis=None``
|
||
|
subset : IndexSlice
|
||
|
a valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice
|
||
|
kwargs : dict
|
||
|
pass along to ``func``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The output shape of ``func`` should match the input, i.e. if
|
||
|
``x`` is the input row, column, or table (depending on ``axis``),
|
||
|
then ``func(x.shape) == x.shape`` should be true.
|
||
|
|
||
|
This is similar to ``DataFrame.apply``, except that ``axis=None``
|
||
|
applies the function to the entire DataFrame at once,
|
||
|
rather than column-wise or row-wise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def highlight_max(x):
|
||
|
... return ['background-color: yellow' if v == x.max() else ''
|
||
|
for v in x]
|
||
|
...
|
||
|
>>> df = pd.DataFrame(np.random.randn(5, 2))
|
||
|
>>> df.style.apply(highlight_max)
|
||
|
"""
|
||
|
self._todo.append((lambda instance: getattr(instance, '_apply'),
|
||
|
(func, axis, subset), kwargs))
|
||
|
return self
|
||
|
|
||
|
def _applymap(self, func, subset=None, **kwargs):
|
||
|
func = partial(func, **kwargs) # applymap doesn't take kwargs?
|
||
|
if subset is None:
|
||
|
subset = pd.IndexSlice[:]
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
result = self.data.loc[subset].applymap(func)
|
||
|
self._update_ctx(result)
|
||
|
return self
|
||
|
|
||
|
def applymap(self, func, subset=None, **kwargs):
|
||
|
"""
|
||
|
Apply a function elementwise, updating the HTML
|
||
|
representation with the result.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
``func`` should take a scalar and return a scalar
|
||
|
subset : IndexSlice
|
||
|
a valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice
|
||
|
kwargs : dict
|
||
|
pass along to ``func``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.where
|
||
|
|
||
|
"""
|
||
|
self._todo.append((lambda instance: getattr(instance, '_applymap'),
|
||
|
(func, subset), kwargs))
|
||
|
return self
|
||
|
|
||
|
def where(self, cond, value, other=None, subset=None, **kwargs):
|
||
|
"""
|
||
|
Apply a function elementwise, updating the HTML
|
||
|
representation with a style which is selected in
|
||
|
accordance with the return value of a function.
|
||
|
|
||
|
.. versionadded:: 0.21.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cond : callable
|
||
|
``cond`` should take a scalar and return a boolean
|
||
|
value : str
|
||
|
applied when ``cond`` returns true
|
||
|
other : str
|
||
|
applied when ``cond`` returns false
|
||
|
subset : IndexSlice
|
||
|
a valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice
|
||
|
kwargs : dict
|
||
|
pass along to ``cond``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.applymap
|
||
|
|
||
|
"""
|
||
|
|
||
|
if other is None:
|
||
|
other = ''
|
||
|
|
||
|
return self.applymap(lambda val: value if cond(val) else other,
|
||
|
subset=subset, **kwargs)
|
||
|
|
||
|
def set_precision(self, precision):
|
||
|
"""
|
||
|
Set the precision used to render.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
precision: int
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.precision = precision
|
||
|
return self
|
||
|
|
||
|
def set_table_attributes(self, attributes):
|
||
|
"""
|
||
|
Set the table attributes. These are the items
|
||
|
that show up in the opening ``<table>`` tag in addition
|
||
|
to to automatic (by default) id.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
attributes : string
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4))
|
||
|
>>> df.style.set_table_attributes('class="pure-table"')
|
||
|
# ... <table class="pure-table"> ...
|
||
|
"""
|
||
|
self.table_attributes = attributes
|
||
|
return self
|
||
|
|
||
|
def export(self):
|
||
|
"""
|
||
|
Export the styles to applied to the current Styler.
|
||
|
Can be applied to a second style with ``Styler.use``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
styles: list
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.use
|
||
|
"""
|
||
|
return self._todo
|
||
|
|
||
|
def use(self, styles):
|
||
|
"""
|
||
|
Set the styles on the current Styler, possibly using styles
|
||
|
from ``Styler.export``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
styles: list
|
||
|
list of style functions
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.export
|
||
|
"""
|
||
|
self._todo.extend(styles)
|
||
|
return self
|
||
|
|
||
|
def set_uuid(self, uuid):
|
||
|
"""
|
||
|
Set the uuid for a Styler.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
uuid: str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.uuid = uuid
|
||
|
return self
|
||
|
|
||
|
def set_caption(self, caption):
|
||
|
"""
|
||
|
Set the caption on a Styler
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
caption: str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.caption = caption
|
||
|
return self
|
||
|
|
||
|
def set_table_styles(self, table_styles):
|
||
|
"""
|
||
|
Set the table styles on a Styler. These are placed in a
|
||
|
``<style>`` tag before the generated HTML table.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
table_styles: list
|
||
|
Each individual table_style should be a dictionary with
|
||
|
``selector`` and ``props`` keys. ``selector`` should be a CSS
|
||
|
selector that the style will be applied to (automatically
|
||
|
prefixed by the table's UUID) and ``props`` should be a list of
|
||
|
tuples with ``(attribute, value)``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4))
|
||
|
>>> df.style.set_table_styles(
|
||
|
... [{'selector': 'tr:hover',
|
||
|
... 'props': [('background-color', 'yellow')]}]
|
||
|
... )
|
||
|
"""
|
||
|
self.table_styles = table_styles
|
||
|
return self
|
||
|
|
||
|
def hide_index(self):
|
||
|
"""
|
||
|
Hide any indices from rendering.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.hidden_index = True
|
||
|
return self
|
||
|
|
||
|
def hide_columns(self, subset):
|
||
|
"""
|
||
|
Hide columns from rendering.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset: IndexSlice
|
||
|
An argument to ``DataFrame.loc`` that identifies which columns
|
||
|
are hidden.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
hidden_df = self.data.loc[subset]
|
||
|
self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns)
|
||
|
return self
|
||
|
|
||
|
# -----------------------------------------------------------------------
|
||
|
# A collection of "builtin" styles
|
||
|
# -----------------------------------------------------------------------
|
||
|
|
||
|
@staticmethod
|
||
|
def _highlight_null(v, null_color):
|
||
|
return ('background-color: {color}'.format(color=null_color)
|
||
|
if pd.isna(v) else '')
|
||
|
|
||
|
def highlight_null(self, null_color='red'):
|
||
|
"""
|
||
|
Shade the background ``null_color`` for missing values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
null_color: str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.applymap(self._highlight_null, null_color=null_color)
|
||
|
return self
|
||
|
|
||
|
def background_gradient(self, cmap='PuBu', low=0, high=0, axis=0,
|
||
|
subset=None):
|
||
|
"""
|
||
|
Color the background in a gradient according to
|
||
|
the data in each column (optionally row).
|
||
|
Requires matplotlib.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cmap: str or colormap
|
||
|
matplotlib colormap
|
||
|
low, high: float
|
||
|
compress the range by these values.
|
||
|
axis: int or str
|
||
|
1 or 'columns' for columnwise, 0 or 'index' for rowwise
|
||
|
subset: IndexSlice
|
||
|
a valid slice for ``data`` to limit the style application to
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Tune ``low`` and ``high`` to keep the text legible by
|
||
|
not using the entire range of the color map. These extend
|
||
|
the range of the data by ``low * (x.max() - x.min())``
|
||
|
and ``high * (x.max() - x.min())`` before normalizing.
|
||
|
"""
|
||
|
subset = _maybe_numeric_slice(self.data, subset)
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
self.apply(self._background_gradient, cmap=cmap, subset=subset,
|
||
|
axis=axis, low=low, high=high)
|
||
|
return self
|
||
|
|
||
|
@staticmethod
|
||
|
def _background_gradient(s, cmap='PuBu', low=0, high=0):
|
||
|
"""Color background in a range according to the data."""
|
||
|
with _mpl(Styler.background_gradient) as (plt, colors):
|
||
|
rng = s.max() - s.min()
|
||
|
# extend lower / upper bounds, compresses color range
|
||
|
norm = colors.Normalize(s.min() - (rng * low),
|
||
|
s.max() + (rng * high))
|
||
|
# matplotlib modifies inplace?
|
||
|
# https://github.com/matplotlib/matplotlib/issues/5427
|
||
|
normed = norm(s.values)
|
||
|
c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]
|
||
|
return ['background-color: {color}'.format(color=color)
|
||
|
for color in c]
|
||
|
|
||
|
def set_properties(self, subset=None, **kwargs):
|
||
|
"""
|
||
|
Convenience method for setting one or more non-data dependent
|
||
|
properties or each cell.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset: IndexSlice
|
||
|
a valid slice for ``data`` to limit the style application to
|
||
|
kwargs: dict
|
||
|
property: value pairs to be set for each cell
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4))
|
||
|
>>> df.style.set_properties(color="white", align="right")
|
||
|
>>> df.style.set_properties(**{'background-color': 'yellow'})
|
||
|
"""
|
||
|
values = ';'.join('{p}: {v}'.format(p=p, v=v)
|
||
|
for p, v in kwargs.items())
|
||
|
f = lambda x: values
|
||
|
return self.applymap(f, subset=subset)
|
||
|
|
||
|
@staticmethod
|
||
|
def _bar_left(s, color, width, base):
|
||
|
"""
|
||
|
The minimum value is aligned at the left of the cell
|
||
|
Parameters
|
||
|
----------
|
||
|
color: 2-tuple/list, of [``color_negative``, ``color_positive``]
|
||
|
width: float
|
||
|
A number between 0 or 100. The largest value will cover ``width``
|
||
|
percent of the cell's width
|
||
|
base: str
|
||
|
The base css format of the cell, e.g.:
|
||
|
``base = 'width: 10em; height: 80%;'``
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
normed = width * (s - s.min()) / (s.max() - s.min())
|
||
|
zero_normed = width * (0 - s.min()) / (s.max() - s.min())
|
||
|
attrs = (base + 'background: linear-gradient(90deg,{c} {w:.1f}%, '
|
||
|
'transparent 0%)')
|
||
|
|
||
|
return [base if x == 0 else attrs.format(c=color[0], w=x)
|
||
|
if x < zero_normed
|
||
|
else attrs.format(c=color[1], w=x) if x >= zero_normed
|
||
|
else base for x in normed]
|
||
|
|
||
|
@staticmethod
|
||
|
def _bar_center_zero(s, color, width, base):
|
||
|
"""
|
||
|
Creates a bar chart where the zero is centered in the cell
|
||
|
Parameters
|
||
|
----------
|
||
|
color: 2-tuple/list, of [``color_negative``, ``color_positive``]
|
||
|
width: float
|
||
|
A number between 0 or 100. The largest value will cover ``width``
|
||
|
percent of the cell's width
|
||
|
base: str
|
||
|
The base css format of the cell, e.g.:
|
||
|
``base = 'width: 10em; height: 80%;'``
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
|
||
|
# Either the min or the max should reach the edge
|
||
|
# (50%, centered on zero)
|
||
|
m = max(abs(s.min()), abs(s.max()))
|
||
|
|
||
|
normed = s * 50 * width / (100.0 * m)
|
||
|
|
||
|
attrs_neg = (base + 'background: linear-gradient(90deg, transparent 0%'
|
||
|
', transparent {w:.1f}%, {c} {w:.1f}%, '
|
||
|
'{c} 50%, transparent 50%)')
|
||
|
|
||
|
attrs_pos = (base + 'background: linear-gradient(90deg, transparent 0%'
|
||
|
', transparent 50%, {c} 50%, {c} {w:.1f}%, '
|
||
|
'transparent {w:.1f}%)')
|
||
|
|
||
|
return [attrs_pos.format(c=color[1], w=(50 + x)) if x >= 0
|
||
|
else attrs_neg.format(c=color[0], w=(50 + x))
|
||
|
for x in normed]
|
||
|
|
||
|
@staticmethod
|
||
|
def _bar_center_mid(s, color, width, base):
|
||
|
"""
|
||
|
Creates a bar chart where the midpoint is centered in the cell
|
||
|
Parameters
|
||
|
----------
|
||
|
color: 2-tuple/list, of [``color_negative``, ``color_positive``]
|
||
|
width: float
|
||
|
A number between 0 or 100. The largest value will cover ``width``
|
||
|
percent of the cell's width
|
||
|
base: str
|
||
|
The base css format of the cell, e.g.:
|
||
|
``base = 'width: 10em; height: 80%;'``
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
|
||
|
if s.min() >= 0:
|
||
|
# In this case, we place the zero at the left, and the max() should
|
||
|
# be at width
|
||
|
zero = 0.0
|
||
|
slope = width / s.max()
|
||
|
elif s.max() <= 0:
|
||
|
# In this case, we place the zero at the right, and the min()
|
||
|
# should be at 100-width
|
||
|
zero = 100.0
|
||
|
slope = width / -s.min()
|
||
|
else:
|
||
|
slope = width / (s.max() - s.min())
|
||
|
zero = (100.0 + width) / 2.0 - slope * s.max()
|
||
|
|
||
|
normed = zero + slope * s
|
||
|
|
||
|
attrs_neg = (base + 'background: linear-gradient(90deg, transparent 0%'
|
||
|
', transparent {w:.1f}%, {c} {w:.1f}%, '
|
||
|
'{c} {zero:.1f}%, transparent {zero:.1f}%)')
|
||
|
|
||
|
attrs_pos = (base + 'background: linear-gradient(90deg, transparent 0%'
|
||
|
', transparent {zero:.1f}%, {c} {zero:.1f}%, '
|
||
|
'{c} {w:.1f}%, transparent {w:.1f}%)')
|
||
|
|
||
|
return [attrs_pos.format(c=color[1], zero=zero, w=x) if x > zero
|
||
|
else attrs_neg.format(c=color[0], zero=zero, w=x)
|
||
|
for x in normed]
|
||
|
|
||
|
def bar(self, subset=None, axis=0, color='#d65f5f', width=100,
|
||
|
align='left'):
|
||
|
"""
|
||
|
Color the background ``color`` proptional to the values in each column.
|
||
|
Excludes non-numeric data by default.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset: IndexSlice, default None
|
||
|
a valid slice for ``data`` to limit the style application to
|
||
|
axis: int
|
||
|
color: str or 2-tuple/list
|
||
|
If a str is passed, the color is the same for both
|
||
|
negative and positive numbers. If 2-tuple/list is used, the
|
||
|
first element is the color_negative and the second is the
|
||
|
color_positive (eg: ['#d65f5f', '#5fba7d'])
|
||
|
width: float
|
||
|
A number between 0 or 100. The largest value will cover ``width``
|
||
|
percent of the cell's width
|
||
|
align : {'left', 'zero',' mid'}, default 'left'
|
||
|
- 'left' : the min value starts at the left of the cell
|
||
|
- 'zero' : a value of zero is located at the center of the cell
|
||
|
- 'mid' : the center of the cell is at (max-min)/2, or
|
||
|
if values are all negative (positive) the zero is aligned
|
||
|
at the right (left) of the cell
|
||
|
|
||
|
.. versionadded:: 0.20.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
subset = _maybe_numeric_slice(self.data, subset)
|
||
|
subset = _non_reducing_slice(subset)
|
||
|
|
||
|
base = 'width: 10em; height: 80%;'
|
||
|
|
||
|
if not(is_list_like(color)):
|
||
|
color = [color, color]
|
||
|
elif len(color) == 1:
|
||
|
color = [color[0], color[0]]
|
||
|
elif len(color) > 2:
|
||
|
msg = ("Must pass `color` as string or a list-like"
|
||
|
" of length 2: [`color_negative`, `color_positive`]\n"
|
||
|
"(eg: color=['#d65f5f', '#5fba7d'])")
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if align == 'left':
|
||
|
self.apply(self._bar_left, subset=subset, axis=axis, color=color,
|
||
|
width=width, base=base)
|
||
|
elif align == 'zero':
|
||
|
self.apply(self._bar_center_zero, subset=subset, axis=axis,
|
||
|
color=color, width=width, base=base)
|
||
|
elif align == 'mid':
|
||
|
self.apply(self._bar_center_mid, subset=subset, axis=axis,
|
||
|
color=color, width=width, base=base)
|
||
|
else:
|
||
|
msg = ("`align` must be one of {'left', 'zero',' mid'}")
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def highlight_max(self, subset=None, color='yellow', axis=0):
|
||
|
"""
|
||
|
Highlight the maximum by shading the background
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset: IndexSlice, default None
|
||
|
a valid slice for ``data`` to limit the style application to
|
||
|
color: str, default 'yellow'
|
||
|
axis: int, str, or None; default 0
|
||
|
0 or 'index' for columnwise (default), 1 or 'columns' for rowwise,
|
||
|
or ``None`` for tablewise
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
return self._highlight_handler(subset=subset, color=color, axis=axis,
|
||
|
max_=True)
|
||
|
|
||
|
def highlight_min(self, subset=None, color='yellow', axis=0):
|
||
|
"""
|
||
|
Highlight the minimum by shading the background
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset: IndexSlice, default None
|
||
|
a valid slice for ``data`` to limit the style application to
|
||
|
color: str, default 'yellow'
|
||
|
axis: int, str, or None; default 0
|
||
|
0 or 'index' for columnwise (default), 1 or 'columns' for rowwise,
|
||
|
or ``None`` for tablewise
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
return self._highlight_handler(subset=subset, color=color, axis=axis,
|
||
|
max_=False)
|
||
|
|
||
|
def _highlight_handler(self, subset=None, color='yellow', axis=None,
|
||
|
max_=True):
|
||
|
subset = _non_reducing_slice(_maybe_numeric_slice(self.data, subset))
|
||
|
self.apply(self._highlight_extrema, color=color, axis=axis,
|
||
|
subset=subset, max_=max_)
|
||
|
return self
|
||
|
|
||
|
@staticmethod
|
||
|
def _highlight_extrema(data, color='yellow', max_=True):
|
||
|
"""Highlight the min or max in a Series or DataFrame"""
|
||
|
attr = 'background-color: {0}'.format(color)
|
||
|
if data.ndim == 1: # Series from .apply
|
||
|
if max_:
|
||
|
extrema = data == data.max()
|
||
|
else:
|
||
|
extrema = data == data.min()
|
||
|
return [attr if v else '' for v in extrema]
|
||
|
else: # DataFrame from .tee
|
||
|
if max_:
|
||
|
extrema = data == data.max().max()
|
||
|
else:
|
||
|
extrema = data == data.min().min()
|
||
|
return pd.DataFrame(np.where(extrema, attr, ''),
|
||
|
index=data.index, columns=data.columns)
|
||
|
|
||
|
@classmethod
|
||
|
def from_custom_template(cls, searchpath, name):
|
||
|
"""
|
||
|
Factory function for creating a subclass of ``Styler``
|
||
|
with a custom template and Jinja environment.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
searchpath : str or list
|
||
|
Path or paths of directories containing the templates
|
||
|
name : str
|
||
|
Name of your custom template to use for rendering
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MyStyler : subclass of Styler
|
||
|
has the correct ``env`` and ``template`` class attributes set.
|
||
|
"""
|
||
|
loader = ChoiceLoader([
|
||
|
FileSystemLoader(searchpath),
|
||
|
cls.loader,
|
||
|
])
|
||
|
|
||
|
class MyStyler(cls):
|
||
|
env = Environment(loader=loader)
|
||
|
template = env.get_template(name)
|
||
|
|
||
|
return MyStyler
|
||
|
|
||
|
|
||
|
def _is_visible(idx_row, idx_col, lengths):
|
||
|
"""
|
||
|
Index -> {(idx_row, idx_col): bool})
|
||
|
"""
|
||
|
return (idx_col, idx_row) in lengths
|
||
|
|
||
|
|
||
|
def _get_level_lengths(index, hidden_elements=None):
|
||
|
"""
|
||
|
Given an index, find the level length for each element.
|
||
|
Optional argument is a list of index positions which
|
||
|
should not be visible.
|
||
|
|
||
|
Result is a dictionary of (level, inital_position): span
|
||
|
"""
|
||
|
sentinel = com.sentinel_factory()
|
||
|
levels = index.format(sparsify=sentinel, adjoin=False, names=False)
|
||
|
|
||
|
if hidden_elements is None:
|
||
|
hidden_elements = []
|
||
|
|
||
|
lengths = {}
|
||
|
if index.nlevels == 1:
|
||
|
for i, value in enumerate(levels):
|
||
|
if(i not in hidden_elements):
|
||
|
lengths[(0, i)] = 1
|
||
|
return lengths
|
||
|
|
||
|
for i, lvl in enumerate(levels):
|
||
|
for j, row in enumerate(lvl):
|
||
|
if not get_option('display.multi_sparse'):
|
||
|
lengths[(i, j)] = 1
|
||
|
elif (row != sentinel) and (j not in hidden_elements):
|
||
|
last_label = j
|
||
|
lengths[(i, last_label)] = 1
|
||
|
elif (row != sentinel):
|
||
|
# even if its hidden, keep track of it in case
|
||
|
# length >1 and later elements are visible
|
||
|
last_label = j
|
||
|
lengths[(i, last_label)] = 0
|
||
|
elif(j not in hidden_elements):
|
||
|
lengths[(i, last_label)] += 1
|
||
|
|
||
|
non_zero_lengths = {}
|
||
|
for element, length in lengths.items():
|
||
|
if(length >= 1):
|
||
|
non_zero_lengths[element] = length
|
||
|
|
||
|
return non_zero_lengths
|
||
|
|
||
|
|
||
|
def _maybe_wrap_formatter(formatter):
|
||
|
if is_string_like(formatter):
|
||
|
return lambda x: formatter.format(x)
|
||
|
elif callable(formatter):
|
||
|
return formatter
|
||
|
else:
|
||
|
msg = ("Expected a template string or callable, got {formatter} "
|
||
|
"instead".format(formatter=formatter))
|
||
|
raise TypeError(msg)
|