1570 lines
54 KiB
Python
1570 lines
54 KiB
Python
|
"""
|
||
|
Contains data structures designed for manipulating panel (3-dimensional) data
|
||
|
"""
|
||
|
# pylint: disable=E1103,W0231,W0212,W0621
|
||
|
from __future__ import division
|
||
|
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
from pandas.core.dtypes.cast import (
|
||
|
infer_dtype_from_scalar,
|
||
|
cast_scalar_to_array,
|
||
|
maybe_cast_item)
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_integer, is_list_like,
|
||
|
is_string_like, is_scalar)
|
||
|
from pandas.core.dtypes.missing import notna
|
||
|
|
||
|
import pandas.core.ops as ops
|
||
|
import pandas.core.common as com
|
||
|
from pandas import compat
|
||
|
from pandas.compat import (map, zip, range, u, OrderedDict)
|
||
|
from pandas.compat.numpy import function as nv
|
||
|
from pandas.core.frame import DataFrame
|
||
|
from pandas.core.generic import NDFrame, _shared_docs
|
||
|
from pandas.core.index import (Index, MultiIndex, _ensure_index,
|
||
|
_get_objs_combined_axis)
|
||
|
from pandas.io.formats.printing import pprint_thing
|
||
|
from pandas.core.indexing import maybe_droplevels
|
||
|
from pandas.core.internals import (BlockManager,
|
||
|
create_block_manager_from_arrays,
|
||
|
create_block_manager_from_blocks)
|
||
|
from pandas.core.series import Series
|
||
|
from pandas.core.reshape.util import cartesian_product
|
||
|
from pandas.util._decorators import Appender, Substitution
|
||
|
from pandas.util._validators import validate_axis_style_args
|
||
|
|
||
|
_shared_doc_kwargs = dict(
|
||
|
axes='items, major_axis, minor_axis',
|
||
|
klass="Panel",
|
||
|
axes_single_arg="{0, 1, 2, 'items', 'major_axis', 'minor_axis'}",
|
||
|
optional_mapper='', optional_axis='', optional_labels='')
|
||
|
_shared_doc_kwargs['args_transpose'] = (
|
||
|
"three positional arguments: each one of\n{ax_single}".format(
|
||
|
ax_single=_shared_doc_kwargs['axes_single_arg']))
|
||
|
|
||
|
|
||
|
def _ensure_like_indices(time, panels):
|
||
|
"""
|
||
|
Makes sure that time and panels are conformable
|
||
|
"""
|
||
|
n_time = len(time)
|
||
|
n_panel = len(panels)
|
||
|
u_panels = np.unique(panels) # this sorts!
|
||
|
u_time = np.unique(time)
|
||
|
if len(u_time) == n_time:
|
||
|
time = np.tile(u_time, len(u_panels))
|
||
|
if len(u_panels) == n_panel:
|
||
|
panels = np.repeat(u_panels, len(u_time))
|
||
|
return time, panels
|
||
|
|
||
|
|
||
|
def panel_index(time, panels, names=None):
|
||
|
"""
|
||
|
Returns a multi-index suitable for a panel-like DataFrame
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
time : array-like
|
||
|
Time index, does not have to repeat
|
||
|
panels : array-like
|
||
|
Panel index, does not have to repeat
|
||
|
names : list, optional
|
||
|
List containing the names of the indices
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
multi_index : MultiIndex
|
||
|
Time index is the first level, the panels are the second level.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> years = range(1960,1963)
|
||
|
>>> panels = ['A', 'B', 'C']
|
||
|
>>> panel_idx = panel_index(years, panels)
|
||
|
>>> panel_idx
|
||
|
MultiIndex([(1960, 'A'), (1961, 'A'), (1962, 'A'), (1960, 'B'),
|
||
|
(1961, 'B'), (1962, 'B'), (1960, 'C'), (1961, 'C'),
|
||
|
(1962, 'C')], dtype=object)
|
||
|
|
||
|
or
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> years = np.repeat(range(1960,1963), 3)
|
||
|
>>> panels = np.tile(['A', 'B', 'C'], 3)
|
||
|
>>> panel_idx = panel_index(years, panels)
|
||
|
>>> panel_idx
|
||
|
MultiIndex([(1960, 'A'), (1960, 'B'), (1960, 'C'), (1961, 'A'),
|
||
|
(1961, 'B'), (1961, 'C'), (1962, 'A'), (1962, 'B'),
|
||
|
(1962, 'C')], dtype=object)
|
||
|
"""
|
||
|
if names is None:
|
||
|
names = ['time', 'panel']
|
||
|
time, panels = _ensure_like_indices(time, panels)
|
||
|
return MultiIndex.from_arrays([time, panels], sortorder=None, names=names)
|
||
|
|
||
|
|
||
|
class Panel(NDFrame):
|
||
|
"""
|
||
|
Represents wide format panel data, stored as 3-dimensional array
|
||
|
|
||
|
.. deprecated:: 0.20.0
|
||
|
The recommended way to represent 3-D data are with a MultiIndex on a
|
||
|
DataFrame via the :attr:`~Panel.to_frame()` method or with the
|
||
|
`xarray package <http://xarray.pydata.org/en/stable/>`__.
|
||
|
Pandas provides a :attr:`~Panel.to_xarray()` method to automate this
|
||
|
conversion.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : ndarray (items x major x minor), or dict of DataFrames
|
||
|
items : Index or array-like
|
||
|
axis=0
|
||
|
major_axis : Index or array-like
|
||
|
axis=1
|
||
|
minor_axis : Index or array-like
|
||
|
axis=2
|
||
|
dtype : dtype, default None
|
||
|
Data type to force, otherwise infer
|
||
|
copy : boolean, default False
|
||
|
Copy data from inputs. Only affects DataFrame / 2d ndarray input
|
||
|
"""
|
||
|
|
||
|
@property
|
||
|
def _constructor(self):
|
||
|
return type(self)
|
||
|
|
||
|
_constructor_sliced = DataFrame
|
||
|
|
||
|
def __init__(self, data=None, items=None, major_axis=None, minor_axis=None,
|
||
|
copy=False, dtype=None):
|
||
|
# deprecation GH13563
|
||
|
warnings.warn("\nPanel is deprecated and will be removed in a "
|
||
|
"future version.\nThe recommended way to represent "
|
||
|
"these types of 3-dimensional data are with a "
|
||
|
"MultiIndex on a DataFrame, via the "
|
||
|
"Panel.to_frame() method\n"
|
||
|
"Alternatively, you can use the xarray package "
|
||
|
"http://xarray.pydata.org/en/stable/.\n"
|
||
|
"Pandas provides a `.to_xarray()` method to help "
|
||
|
"automate this conversion.\n",
|
||
|
FutureWarning, stacklevel=3)
|
||
|
|
||
|
self._init_data(data=data, items=items, major_axis=major_axis,
|
||
|
minor_axis=minor_axis, copy=copy, dtype=dtype)
|
||
|
|
||
|
def _init_data(self, data, copy, dtype, **kwargs):
|
||
|
"""
|
||
|
Generate ND initialization; axes are passed
|
||
|
as required objects to __init__
|
||
|
"""
|
||
|
if data is None:
|
||
|
data = {}
|
||
|
if dtype is not None:
|
||
|
dtype = self._validate_dtype(dtype)
|
||
|
|
||
|
passed_axes = [kwargs.pop(a, None) for a in self._AXIS_ORDERS]
|
||
|
|
||
|
if kwargs:
|
||
|
raise TypeError('_init_data() got an unexpected keyword '
|
||
|
'argument "{0}"'.format(list(kwargs.keys())[0]))
|
||
|
|
||
|
axes = None
|
||
|
if isinstance(data, BlockManager):
|
||
|
if com._any_not_none(*passed_axes):
|
||
|
axes = [x if x is not None else y
|
||
|
for x, y in zip(passed_axes, data.axes)]
|
||
|
mgr = data
|
||
|
elif isinstance(data, dict):
|
||
|
mgr = self._init_dict(data, passed_axes, dtype=dtype)
|
||
|
copy = False
|
||
|
dtype = None
|
||
|
elif isinstance(data, (np.ndarray, list)):
|
||
|
mgr = self._init_matrix(data, passed_axes, dtype=dtype, copy=copy)
|
||
|
copy = False
|
||
|
dtype = None
|
||
|
elif is_scalar(data) and com._all_not_none(*passed_axes):
|
||
|
values = cast_scalar_to_array([len(x) for x in passed_axes],
|
||
|
data, dtype=dtype)
|
||
|
mgr = self._init_matrix(values, passed_axes, dtype=values.dtype,
|
||
|
copy=False)
|
||
|
copy = False
|
||
|
else: # pragma: no cover
|
||
|
raise ValueError('Panel constructor not properly called!')
|
||
|
|
||
|
NDFrame.__init__(self, mgr, axes=axes, copy=copy, dtype=dtype)
|
||
|
|
||
|
def _init_dict(self, data, axes, dtype=None):
|
||
|
haxis = axes.pop(self._info_axis_number)
|
||
|
|
||
|
# prefilter if haxis passed
|
||
|
if haxis is not None:
|
||
|
haxis = _ensure_index(haxis)
|
||
|
data = OrderedDict((k, v)
|
||
|
for k, v in compat.iteritems(data)
|
||
|
if k in haxis)
|
||
|
else:
|
||
|
keys = com._dict_keys_to_ordered_list(data)
|
||
|
haxis = Index(keys)
|
||
|
|
||
|
for k, v in compat.iteritems(data):
|
||
|
if isinstance(v, dict):
|
||
|
data[k] = self._constructor_sliced(v)
|
||
|
|
||
|
# extract axis for remaining axes & create the slicemap
|
||
|
raxes = [self._extract_axis(self, data, axis=i) if a is None else a
|
||
|
for i, a in enumerate(axes)]
|
||
|
raxes_sm = self._extract_axes_for_slice(self, raxes)
|
||
|
|
||
|
# shallow copy
|
||
|
arrays = []
|
||
|
haxis_shape = [len(a) for a in raxes]
|
||
|
for h in haxis:
|
||
|
v = values = data.get(h)
|
||
|
if v is None:
|
||
|
values = np.empty(haxis_shape, dtype=dtype)
|
||
|
values.fill(np.nan)
|
||
|
elif isinstance(v, self._constructor_sliced):
|
||
|
d = raxes_sm.copy()
|
||
|
d['copy'] = False
|
||
|
v = v.reindex(**d)
|
||
|
if dtype is not None:
|
||
|
v = v.astype(dtype)
|
||
|
values = v.values
|
||
|
arrays.append(values)
|
||
|
|
||
|
return self._init_arrays(arrays, haxis, [haxis] + raxes)
|
||
|
|
||
|
def _init_arrays(self, arrays, arr_names, axes):
|
||
|
return create_block_manager_from_arrays(arrays, arr_names, axes)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, data, intersect=False, orient='items', dtype=None):
|
||
|
"""
|
||
|
Construct Panel from dict of DataFrame objects
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : dict
|
||
|
{field : DataFrame}
|
||
|
intersect : boolean
|
||
|
Intersect indexes of input DataFrames
|
||
|
orient : {'items', 'minor'}, default 'items'
|
||
|
The "orientation" of the data. If the keys of the passed dict
|
||
|
should be the items of the result panel, pass 'items'
|
||
|
(default). Otherwise if the columns of the values of the passed
|
||
|
DataFrame objects should be the items (which in the case of
|
||
|
mixed-dtype data you should do), instead pass 'minor'
|
||
|
dtype : dtype, default None
|
||
|
Data type to force, otherwise infer
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Panel
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
|
||
|
orient = orient.lower()
|
||
|
if orient == 'minor':
|
||
|
new_data = defaultdict(OrderedDict)
|
||
|
for col, df in compat.iteritems(data):
|
||
|
for item, s in compat.iteritems(df):
|
||
|
new_data[item][col] = s
|
||
|
data = new_data
|
||
|
elif orient != 'items': # pragma: no cover
|
||
|
raise ValueError('Orientation must be one of {items, minor}.')
|
||
|
|
||
|
d = cls._homogenize_dict(cls, data, intersect=intersect, dtype=dtype)
|
||
|
ks = list(d['data'].keys())
|
||
|
if not isinstance(d['data'], OrderedDict):
|
||
|
ks = list(sorted(ks))
|
||
|
d[cls._info_axis_name] = Index(ks)
|
||
|
return cls(**d)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
key = com._apply_if_callable(key, self)
|
||
|
|
||
|
if isinstance(self._info_axis, MultiIndex):
|
||
|
return self._getitem_multilevel(key)
|
||
|
if not (is_list_like(key) or isinstance(key, slice)):
|
||
|
return super(Panel, self).__getitem__(key)
|
||
|
return self.loc[key]
|
||
|
|
||
|
def _getitem_multilevel(self, key):
|
||
|
info = self._info_axis
|
||
|
loc = info.get_loc(key)
|
||
|
if isinstance(loc, (slice, np.ndarray)):
|
||
|
new_index = info[loc]
|
||
|
result_index = maybe_droplevels(new_index, key)
|
||
|
slices = [loc] + [slice(None) for x in range(self._AXIS_LEN - 1)]
|
||
|
new_values = self.values[slices]
|
||
|
|
||
|
d = self._construct_axes_dict(self._AXIS_ORDERS[1:])
|
||
|
d[self._info_axis_name] = result_index
|
||
|
result = self._constructor(new_values, **d)
|
||
|
return result
|
||
|
else:
|
||
|
return self._get_item_cache(key)
|
||
|
|
||
|
def _init_matrix(self, data, axes, dtype=None, copy=False):
|
||
|
values = self._prep_ndarray(self, data, copy=copy)
|
||
|
|
||
|
if dtype is not None:
|
||
|
try:
|
||
|
values = values.astype(dtype)
|
||
|
except Exception:
|
||
|
raise ValueError('failed to cast to '
|
||
|
'{datatype}'.format(datatype=dtype))
|
||
|
|
||
|
shape = values.shape
|
||
|
fixed_axes = []
|
||
|
for i, ax in enumerate(axes):
|
||
|
if ax is None:
|
||
|
ax = com._default_index(shape[i])
|
||
|
else:
|
||
|
ax = _ensure_index(ax)
|
||
|
fixed_axes.append(ax)
|
||
|
|
||
|
return create_block_manager_from_blocks([values], fixed_axes)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Comparison methods
|
||
|
|
||
|
def _compare_constructor(self, other, func, try_cast=True):
|
||
|
if not self._indexed_same(other):
|
||
|
raise Exception('Can only compare identically-labeled '
|
||
|
'same type objects')
|
||
|
|
||
|
new_data = {}
|
||
|
for col in self._info_axis:
|
||
|
new_data[col] = func(self[col], other[col])
|
||
|
|
||
|
d = self._construct_axes_dict(copy=False)
|
||
|
return self._constructor(data=new_data, **d)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Magic methods
|
||
|
|
||
|
def __unicode__(self):
|
||
|
"""
|
||
|
Return a string representation for a particular Panel
|
||
|
|
||
|
Invoked by unicode(df) in py2 only.
|
||
|
Yields a Unicode String in both py2/py3.
|
||
|
"""
|
||
|
|
||
|
class_name = str(self.__class__)
|
||
|
|
||
|
dims = u('Dimensions: {dimensions}'.format(dimensions=' x '.join(
|
||
|
["{shape} ({axis})".format(shape=shape, axis=axis) for axis, shape
|
||
|
in zip(self._AXIS_ORDERS, self.shape)])))
|
||
|
|
||
|
def axis_pretty(a):
|
||
|
v = getattr(self, a)
|
||
|
if len(v) > 0:
|
||
|
return u('{ax} axis: {x} to {y}'.format(ax=a.capitalize(),
|
||
|
x=pprint_thing(v[0]),
|
||
|
y=pprint_thing(v[-1])))
|
||
|
else:
|
||
|
return u('{ax} axis: None'.format(ax=a.capitalize()))
|
||
|
|
||
|
output = '\n'.join(
|
||
|
[class_name, dims] + [axis_pretty(a) for a in self._AXIS_ORDERS])
|
||
|
return output
|
||
|
|
||
|
def _get_plane_axes_index(self, axis):
|
||
|
"""
|
||
|
Get my plane axes indexes: these are already
|
||
|
(as compared with higher level planes),
|
||
|
as we are returning a DataFrame axes indexes
|
||
|
"""
|
||
|
axis_name = self._get_axis_name(axis)
|
||
|
|
||
|
if axis_name == 'major_axis':
|
||
|
index = 'minor_axis'
|
||
|
columns = 'items'
|
||
|
if axis_name == 'minor_axis':
|
||
|
index = 'major_axis'
|
||
|
columns = 'items'
|
||
|
elif axis_name == 'items':
|
||
|
index = 'major_axis'
|
||
|
columns = 'minor_axis'
|
||
|
|
||
|
return index, columns
|
||
|
|
||
|
def _get_plane_axes(self, axis):
|
||
|
"""
|
||
|
Get my plane axes indexes: these are already
|
||
|
(as compared with higher level planes),
|
||
|
as we are returning a DataFrame axes
|
||
|
"""
|
||
|
return [self._get_axis(axi)
|
||
|
for axi in self._get_plane_axes_index(axis)]
|
||
|
|
||
|
fromDict = from_dict
|
||
|
|
||
|
def to_sparse(self, *args, **kwargs):
|
||
|
"""
|
||
|
NOT IMPLEMENTED: do not call this method, as sparsifying is not
|
||
|
supported for Panel objects and will raise an error.
|
||
|
|
||
|
Convert to SparsePanel
|
||
|
"""
|
||
|
raise NotImplementedError("sparsifying is not supported "
|
||
|
"for Panel objects")
|
||
|
|
||
|
def to_excel(self, path, na_rep='', engine=None, **kwargs):
|
||
|
"""
|
||
|
Write each DataFrame in Panel to a separate excel sheet
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path : string or ExcelWriter object
|
||
|
File path or existing ExcelWriter
|
||
|
na_rep : string, default ''
|
||
|
Missing data representation
|
||
|
engine : string, default None
|
||
|
write engine to use - you can also set this via the options
|
||
|
``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
|
||
|
``io.excel.xlsm.writer``.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
float_format : string, default None
|
||
|
Format string for floating point numbers
|
||
|
cols : sequence, optional
|
||
|
Columns to write
|
||
|
header : boolean or list of string, default True
|
||
|
Write out column names. If a list of string is given it is
|
||
|
assumed to be aliases for the column names
|
||
|
index : boolean, default True
|
||
|
Write row names (index)
|
||
|
index_label : string or sequence, default None
|
||
|
Column label for index column(s) if desired. If None is given, and
|
||
|
`header` and `index` are True, then the index names are used. A
|
||
|
sequence should be given if the DataFrame uses MultiIndex.
|
||
|
startrow : upper left cell row to dump data frame
|
||
|
startcol : upper left cell column to dump data frame
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Keyword arguments (and na_rep) are passed to the ``to_excel`` method
|
||
|
for each DataFrame written.
|
||
|
"""
|
||
|
from pandas.io.excel import ExcelWriter
|
||
|
|
||
|
if isinstance(path, compat.string_types):
|
||
|
writer = ExcelWriter(path, engine=engine)
|
||
|
else:
|
||
|
writer = path
|
||
|
kwargs['na_rep'] = na_rep
|
||
|
|
||
|
for item, df in self.iteritems():
|
||
|
name = str(item)
|
||
|
df.to_excel(writer, name, **kwargs)
|
||
|
writer.save()
|
||
|
|
||
|
def as_matrix(self):
|
||
|
self._consolidate_inplace()
|
||
|
return self._data.as_array()
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Getting and setting elements
|
||
|
|
||
|
def get_value(self, *args, **kwargs):
|
||
|
"""Quickly retrieve single value at (item, major, minor) location
|
||
|
|
||
|
.. deprecated:: 0.21.0
|
||
|
|
||
|
Please use .at[] or .iat[] accessors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
item : item label (panel item)
|
||
|
major : major axis label (panel item row)
|
||
|
minor : minor axis label (panel item column)
|
||
|
takeable : interpret the passed labels as indexers, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : scalar value
|
||
|
"""
|
||
|
warnings.warn("get_value is deprecated and will be removed "
|
||
|
"in a future release. Please use "
|
||
|
".at[] or .iat[] accessors instead", FutureWarning,
|
||
|
stacklevel=2)
|
||
|
return self._get_value(*args, **kwargs)
|
||
|
|
||
|
def _get_value(self, *args, **kwargs):
|
||
|
nargs = len(args)
|
||
|
nreq = self._AXIS_LEN
|
||
|
|
||
|
# require an arg for each axis
|
||
|
if nargs != nreq:
|
||
|
raise TypeError('There must be an argument for each axis, you gave'
|
||
|
' {0} args, but {1} are required'.format(nargs,
|
||
|
nreq))
|
||
|
takeable = kwargs.pop('takeable', None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise TypeError('get_value() got an unexpected keyword '
|
||
|
'argument "{0}"'.format(list(kwargs.keys())[0]))
|
||
|
|
||
|
if takeable is True:
|
||
|
lower = self._iget_item_cache(args[0])
|
||
|
else:
|
||
|
lower = self._get_item_cache(args[0])
|
||
|
|
||
|
return lower._get_value(*args[1:], takeable=takeable)
|
||
|
_get_value.__doc__ = get_value.__doc__
|
||
|
|
||
|
def set_value(self, *args, **kwargs):
|
||
|
"""Quickly set single value at (item, major, minor) location
|
||
|
|
||
|
.. deprecated:: 0.21.0
|
||
|
|
||
|
Please use .at[] or .iat[] accessors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
item : item label (panel item)
|
||
|
major : major axis label (panel item row)
|
||
|
minor : minor axis label (panel item column)
|
||
|
value : scalar
|
||
|
takeable : interpret the passed labels as indexers, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
panel : Panel
|
||
|
If label combo is contained, will be reference to calling Panel,
|
||
|
otherwise a new object
|
||
|
"""
|
||
|
warnings.warn("set_value is deprecated and will be removed "
|
||
|
"in a future release. Please use "
|
||
|
".at[] or .iat[] accessors instead", FutureWarning,
|
||
|
stacklevel=2)
|
||
|
return self._set_value(*args, **kwargs)
|
||
|
|
||
|
def _set_value(self, *args, **kwargs):
|
||
|
# require an arg for each axis and the value
|
||
|
nargs = len(args)
|
||
|
nreq = self._AXIS_LEN + 1
|
||
|
|
||
|
if nargs != nreq:
|
||
|
raise TypeError('There must be an argument for each axis plus the '
|
||
|
'value provided, you gave {0} args, but {1} are '
|
||
|
'required'.format(nargs, nreq))
|
||
|
takeable = kwargs.pop('takeable', None)
|
||
|
|
||
|
if kwargs:
|
||
|
raise TypeError('set_value() got an unexpected keyword '
|
||
|
'argument "{0}"'.format(list(kwargs.keys())[0]))
|
||
|
|
||
|
try:
|
||
|
if takeable is True:
|
||
|
lower = self._iget_item_cache(args[0])
|
||
|
else:
|
||
|
lower = self._get_item_cache(args[0])
|
||
|
|
||
|
lower._set_value(*args[1:], takeable=takeable)
|
||
|
return self
|
||
|
except KeyError:
|
||
|
axes = self._expand_axes(args)
|
||
|
d = self._construct_axes_dict_from(self, axes, copy=False)
|
||
|
result = self.reindex(**d)
|
||
|
args = list(args)
|
||
|
likely_dtype, args[-1] = infer_dtype_from_scalar(args[-1])
|
||
|
made_bigger = not np.array_equal(axes[0], self._info_axis)
|
||
|
# how to make this logic simpler?
|
||
|
if made_bigger:
|
||
|
maybe_cast_item(result, args[0], likely_dtype)
|
||
|
|
||
|
return result._set_value(*args)
|
||
|
_set_value.__doc__ = set_value.__doc__
|
||
|
|
||
|
def _box_item_values(self, key, values):
|
||
|
if self.ndim == values.ndim:
|
||
|
result = self._constructor(values)
|
||
|
|
||
|
# a dup selection will yield a full ndim
|
||
|
if result._get_axis(0).is_unique:
|
||
|
result = result[key]
|
||
|
|
||
|
return result
|
||
|
|
||
|
d = self._construct_axes_dict_for_slice(self._AXIS_ORDERS[1:])
|
||
|
return self._constructor_sliced(values, **d)
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
key = com._apply_if_callable(key, self)
|
||
|
shape = tuple(self.shape)
|
||
|
if isinstance(value, self._constructor_sliced):
|
||
|
value = value.reindex(
|
||
|
**self._construct_axes_dict_for_slice(self._AXIS_ORDERS[1:]))
|
||
|
mat = value.values
|
||
|
elif isinstance(value, np.ndarray):
|
||
|
if value.shape != shape[1:]:
|
||
|
raise ValueError('shape of value must be {0}, shape of given '
|
||
|
'object was {1}'.format(
|
||
|
shape[1:], tuple(map(int, value.shape))))
|
||
|
mat = np.asarray(value)
|
||
|
elif is_scalar(value):
|
||
|
mat = cast_scalar_to_array(shape[1:], value)
|
||
|
else:
|
||
|
raise TypeError('Cannot set item of '
|
||
|
'type: {dtype!s}'.format(dtype=type(value)))
|
||
|
|
||
|
mat = mat.reshape(tuple([1]) + shape[1:])
|
||
|
NDFrame._set_item(self, key, mat)
|
||
|
|
||
|
def _unpickle_panel_compat(self, state): # pragma: no cover
|
||
|
"Unpickle the panel"
|
||
|
from pandas.io.pickle import _unpickle_array
|
||
|
|
||
|
_unpickle = _unpickle_array
|
||
|
vals, items, major, minor = state
|
||
|
|
||
|
items = _unpickle(items)
|
||
|
major = _unpickle(major)
|
||
|
minor = _unpickle(minor)
|
||
|
values = _unpickle(vals)
|
||
|
wp = Panel(values, items, major, minor)
|
||
|
self._data = wp._data
|
||
|
|
||
|
def conform(self, frame, axis='items'):
|
||
|
"""
|
||
|
Conform input DataFrame to align with chosen axis pair.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frame : DataFrame
|
||
|
axis : {'items', 'major', 'minor'}
|
||
|
|
||
|
Axis the input corresponds to. E.g., if axis='major', then
|
||
|
the frame's columns would be items, and the index would be
|
||
|
values of the minor axis
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
"""
|
||
|
axes = self._get_plane_axes(axis)
|
||
|
return frame.reindex(**self._extract_axes_for_slice(self, axes))
|
||
|
|
||
|
def head(self, n=5):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def tail(self, n=5):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def round(self, decimals=0, *args, **kwargs):
|
||
|
"""
|
||
|
Round each value in Panel to a specified number of decimal places.
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decimals : int
|
||
|
Number of decimal places to round to (default: 0).
|
||
|
If decimals is negative, it specifies the number of
|
||
|
positions to the left of the decimal point.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Panel object
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.around
|
||
|
"""
|
||
|
nv.validate_round(args, kwargs)
|
||
|
|
||
|
if is_integer(decimals):
|
||
|
result = np.apply_along_axis(np.round, 0, self.values)
|
||
|
return self._wrap_result(result, axis=0)
|
||
|
raise TypeError("decimals must be an integer")
|
||
|
|
||
|
def _needs_reindex_multi(self, axes, method, level):
|
||
|
""" don't allow a multi reindex on Panel or above ndim """
|
||
|
return False
|
||
|
|
||
|
def align(self, other, **kwargs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def dropna(self, axis=0, how='any', inplace=False):
|
||
|
"""
|
||
|
Drop 2D from panel, holding passed axis constant
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : int, default 0
|
||
|
Axis to hold constant. E.g. axis=1 will drop major_axis entries
|
||
|
having a certain amount of NA data
|
||
|
how : {'all', 'any'}, default 'any'
|
||
|
'any': one or more values are NA in the DataFrame along the
|
||
|
axis. For 'all' they all must be.
|
||
|
inplace : bool, default False
|
||
|
If True, do operation inplace and return None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dropped : Panel
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
|
||
|
values = self.values
|
||
|
mask = notna(values)
|
||
|
|
||
|
for ax in reversed(sorted(set(range(self._AXIS_LEN)) - set([axis]))):
|
||
|
mask = mask.sum(ax)
|
||
|
|
||
|
per_slice = np.prod(values.shape[:axis] + values.shape[axis + 1:])
|
||
|
|
||
|
if how == 'all':
|
||
|
cond = mask > 0
|
||
|
else:
|
||
|
cond = mask == per_slice
|
||
|
|
||
|
new_ax = self._get_axis(axis)[cond]
|
||
|
result = self.reindex_axis(new_ax, axis=axis)
|
||
|
if inplace:
|
||
|
self._update_inplace(result)
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def _combine(self, other, func, axis=0):
|
||
|
if isinstance(other, Panel):
|
||
|
return self._combine_panel(other, func)
|
||
|
elif isinstance(other, DataFrame):
|
||
|
return self._combine_frame(other, func, axis=axis)
|
||
|
elif is_scalar(other):
|
||
|
return self._combine_const(other, func)
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"{otype!s} is not supported in combine operation with "
|
||
|
"{selftype!s}".format(otype=type(other), selftype=type(self)))
|
||
|
|
||
|
def _combine_const(self, other, func, try_cast=True):
|
||
|
with np.errstate(all='ignore'):
|
||
|
new_values = func(self.values, other)
|
||
|
d = self._construct_axes_dict()
|
||
|
return self._constructor(new_values, **d)
|
||
|
|
||
|
def _combine_frame(self, other, func, axis=0, try_cast=True):
|
||
|
index, columns = self._get_plane_axes(axis)
|
||
|
axis = self._get_axis_number(axis)
|
||
|
|
||
|
other = other.reindex(index=index, columns=columns)
|
||
|
|
||
|
with np.errstate(all='ignore'):
|
||
|
if axis == 0:
|
||
|
new_values = func(self.values, other.values)
|
||
|
elif axis == 1:
|
||
|
new_values = func(self.values.swapaxes(0, 1), other.values.T)
|
||
|
new_values = new_values.swapaxes(0, 1)
|
||
|
elif axis == 2:
|
||
|
new_values = func(self.values.swapaxes(0, 2), other.values)
|
||
|
new_values = new_values.swapaxes(0, 2)
|
||
|
|
||
|
return self._constructor(new_values, self.items, self.major_axis,
|
||
|
self.minor_axis)
|
||
|
|
||
|
def _combine_panel(self, other, func, try_cast=True):
|
||
|
items = self.items.union(other.items)
|
||
|
major = self.major_axis.union(other.major_axis)
|
||
|
minor = self.minor_axis.union(other.minor_axis)
|
||
|
|
||
|
# could check that everything's the same size, but forget it
|
||
|
this = self.reindex(items=items, major=major, minor=minor)
|
||
|
other = other.reindex(items=items, major=major, minor=minor)
|
||
|
|
||
|
with np.errstate(all='ignore'):
|
||
|
result_values = func(this.values, other.values)
|
||
|
|
||
|
return self._constructor(result_values, items, major, minor)
|
||
|
|
||
|
def major_xs(self, key):
|
||
|
"""
|
||
|
Return slice of panel along major axis
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : object
|
||
|
Major axis label
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : DataFrame
|
||
|
index -> minor axis, columns -> items
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
major_xs is only for getting, not setting values.
|
||
|
|
||
|
MultiIndex Slicers is a generic way to get/set values on any level or
|
||
|
levels and is a superset of major_xs functionality, see
|
||
|
:ref:`MultiIndex Slicers <advanced.mi_slicers>`
|
||
|
|
||
|
"""
|
||
|
return self.xs(key, axis=self._AXIS_LEN - 2)
|
||
|
|
||
|
def minor_xs(self, key):
|
||
|
"""
|
||
|
Return slice of panel along minor axis
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : object
|
||
|
Minor axis label
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : DataFrame
|
||
|
index -> major axis, columns -> items
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
minor_xs is only for getting, not setting values.
|
||
|
|
||
|
MultiIndex Slicers is a generic way to get/set values on any level or
|
||
|
levels and is a superset of minor_xs functionality, see
|
||
|
:ref:`MultiIndex Slicers <advanced.mi_slicers>`
|
||
|
|
||
|
"""
|
||
|
return self.xs(key, axis=self._AXIS_LEN - 1)
|
||
|
|
||
|
def xs(self, key, axis=1):
|
||
|
"""
|
||
|
Return slice of panel along selected axis
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : object
|
||
|
Label
|
||
|
axis : {'items', 'major', 'minor}, default 1/'major'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : ndim(self)-1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
xs is only for getting, not setting values.
|
||
|
|
||
|
MultiIndex Slicers is a generic way to get/set values on any level or
|
||
|
levels and is a superset of xs functionality, see
|
||
|
:ref:`MultiIndex Slicers <advanced.mi_slicers>`
|
||
|
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if axis == 0:
|
||
|
return self[key]
|
||
|
|
||
|
self._consolidate_inplace()
|
||
|
axis_number = self._get_axis_number(axis)
|
||
|
new_data = self._data.xs(key, axis=axis_number, copy=False)
|
||
|
result = self._construct_return_type(new_data)
|
||
|
copy = new_data.is_mixed_type
|
||
|
result._set_is_copy(self, copy=copy)
|
||
|
return result
|
||
|
|
||
|
_xs = xs
|
||
|
|
||
|
def _ixs(self, i, axis=0):
|
||
|
"""
|
||
|
i : int, slice, or sequence of integers
|
||
|
axis : int
|
||
|
"""
|
||
|
|
||
|
ax = self._get_axis(axis)
|
||
|
key = ax[i]
|
||
|
|
||
|
# xs cannot handle a non-scalar key, so just reindex here
|
||
|
# if we have a multi-index and a single tuple, then its a reduction
|
||
|
# (GH 7516)
|
||
|
if not (isinstance(ax, MultiIndex) and isinstance(key, tuple)):
|
||
|
if is_list_like(key):
|
||
|
indexer = {self._get_axis_name(axis): key}
|
||
|
return self.reindex(**indexer)
|
||
|
|
||
|
# a reduction
|
||
|
if axis == 0:
|
||
|
values = self._data.iget(i)
|
||
|
return self._box_item_values(key, values)
|
||
|
|
||
|
# xs by position
|
||
|
self._consolidate_inplace()
|
||
|
new_data = self._data.xs(i, axis=axis, copy=True, takeable=True)
|
||
|
return self._construct_return_type(new_data)
|
||
|
|
||
|
def groupby(self, function, axis='major'):
|
||
|
"""
|
||
|
Group data on given axis, returning GroupBy object
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
function : callable
|
||
|
Mapping function for chosen access
|
||
|
axis : {'major', 'minor', 'items'}, default 'major'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
grouped : PanelGroupBy
|
||
|
"""
|
||
|
from pandas.core.groupby.groupby import PanelGroupBy
|
||
|
axis = self._get_axis_number(axis)
|
||
|
return PanelGroupBy(self, function, axis=axis)
|
||
|
|
||
|
def to_frame(self, filter_observations=True):
|
||
|
"""
|
||
|
Transform wide format into long (stacked) format as DataFrame whose
|
||
|
columns are the Panel's items and whose index is a MultiIndex formed
|
||
|
of the Panel's major and minor axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filter_observations : boolean, default True
|
||
|
Drop (major, minor) pairs without a complete set of observations
|
||
|
across all the items
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : DataFrame
|
||
|
"""
|
||
|
_, N, K = self.shape
|
||
|
|
||
|
if filter_observations:
|
||
|
# shaped like the return DataFrame
|
||
|
mask = notna(self.values).all(axis=0)
|
||
|
# size = mask.sum()
|
||
|
selector = mask.ravel()
|
||
|
else:
|
||
|
# size = N * K
|
||
|
selector = slice(None, None)
|
||
|
|
||
|
data = {}
|
||
|
for item in self.items:
|
||
|
data[item] = self[item].values.ravel()[selector]
|
||
|
|
||
|
def construct_multi_parts(idx, n_repeat, n_shuffle=1):
|
||
|
axis_idx = idx.to_hierarchical(n_repeat, n_shuffle)
|
||
|
labels = [x[selector] for x in axis_idx.labels]
|
||
|
levels = axis_idx.levels
|
||
|
names = axis_idx.names
|
||
|
return labels, levels, names
|
||
|
|
||
|
def construct_index_parts(idx, major=True):
|
||
|
levels = [idx]
|
||
|
if major:
|
||
|
labels = [np.arange(N).repeat(K)[selector]]
|
||
|
names = idx.name or 'major'
|
||
|
else:
|
||
|
labels = np.arange(K).reshape(1, K)[np.zeros(N, dtype=int)]
|
||
|
labels = [labels.ravel()[selector]]
|
||
|
names = idx.name or 'minor'
|
||
|
names = [names]
|
||
|
return labels, levels, names
|
||
|
|
||
|
if isinstance(self.major_axis, MultiIndex):
|
||
|
major_labels, major_levels, major_names = construct_multi_parts(
|
||
|
self.major_axis, n_repeat=K)
|
||
|
else:
|
||
|
major_labels, major_levels, major_names = construct_index_parts(
|
||
|
self.major_axis)
|
||
|
|
||
|
if isinstance(self.minor_axis, MultiIndex):
|
||
|
minor_labels, minor_levels, minor_names = construct_multi_parts(
|
||
|
self.minor_axis, n_repeat=N, n_shuffle=K)
|
||
|
else:
|
||
|
minor_labels, minor_levels, minor_names = construct_index_parts(
|
||
|
self.minor_axis, major=False)
|
||
|
|
||
|
levels = major_levels + minor_levels
|
||
|
labels = major_labels + minor_labels
|
||
|
names = major_names + minor_names
|
||
|
|
||
|
index = MultiIndex(levels=levels, labels=labels, names=names,
|
||
|
verify_integrity=False)
|
||
|
|
||
|
return DataFrame(data, index=index, columns=self.items)
|
||
|
|
||
|
def apply(self, func, axis='major', **kwargs):
|
||
|
"""
|
||
|
Applies function along axis (or axes) of the Panel
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
Function to apply to each combination of 'other' axes
|
||
|
e.g. if axis = 'items', the combination of major_axis/minor_axis
|
||
|
will each be passed as a Series; if axis = ('items', 'major'),
|
||
|
DataFrames of items & major axis will be passed
|
||
|
axis : {'items', 'minor', 'major'}, or {0, 1, 2}, or a tuple with two
|
||
|
axes
|
||
|
Additional keyword arguments will be passed as keywords to the function
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
Returns a Panel with the square root of each element
|
||
|
|
||
|
>>> p = pd.Panel(np.random.rand(4,3,2))
|
||
|
>>> p.apply(np.sqrt)
|
||
|
|
||
|
Equivalent to p.sum(1), returning a DataFrame
|
||
|
|
||
|
>>> p.apply(lambda x: x.sum(), axis=1)
|
||
|
|
||
|
Equivalent to previous:
|
||
|
|
||
|
>>> p.apply(lambda x: x.sum(), axis='major')
|
||
|
|
||
|
Return the shapes of each DataFrame over axis 2 (i.e the shapes of
|
||
|
items x major), as a Series
|
||
|
|
||
|
>>> p.apply(lambda x: x.shape, axis=(0,1))
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : Panel, DataFrame, or Series
|
||
|
"""
|
||
|
|
||
|
if kwargs and not isinstance(func, np.ufunc):
|
||
|
f = lambda x: func(x, **kwargs)
|
||
|
else:
|
||
|
f = func
|
||
|
|
||
|
# 2d-slabs
|
||
|
if isinstance(axis, (tuple, list)) and len(axis) == 2:
|
||
|
return self._apply_2d(f, axis=axis)
|
||
|
|
||
|
axis = self._get_axis_number(axis)
|
||
|
|
||
|
# try ufunc like
|
||
|
if isinstance(f, np.ufunc):
|
||
|
try:
|
||
|
with np.errstate(all='ignore'):
|
||
|
result = np.apply_along_axis(func, axis, self.values)
|
||
|
return self._wrap_result(result, axis=axis)
|
||
|
except (AttributeError):
|
||
|
pass
|
||
|
|
||
|
# 1d
|
||
|
return self._apply_1d(f, axis=axis)
|
||
|
|
||
|
def _apply_1d(self, func, axis):
|
||
|
|
||
|
axis_name = self._get_axis_name(axis)
|
||
|
ndim = self.ndim
|
||
|
values = self.values
|
||
|
|
||
|
# iter thru the axes
|
||
|
slice_axis = self._get_axis(axis)
|
||
|
slice_indexer = [0] * (ndim - 1)
|
||
|
indexer = np.zeros(ndim, 'O')
|
||
|
indlist = list(range(ndim))
|
||
|
indlist.remove(axis)
|
||
|
indexer[axis] = slice(None, None)
|
||
|
indexer.put(indlist, slice_indexer)
|
||
|
planes = [self._get_axis(axi) for axi in indlist]
|
||
|
shape = np.array(self.shape).take(indlist)
|
||
|
|
||
|
# all the iteration points
|
||
|
points = cartesian_product(planes)
|
||
|
|
||
|
results = []
|
||
|
for i in range(np.prod(shape)):
|
||
|
|
||
|
# construct the object
|
||
|
pts = tuple(p[i] for p in points)
|
||
|
indexer.put(indlist, slice_indexer)
|
||
|
|
||
|
obj = Series(values[tuple(indexer)], index=slice_axis, name=pts)
|
||
|
result = func(obj)
|
||
|
|
||
|
results.append(result)
|
||
|
|
||
|
# increment the indexer
|
||
|
slice_indexer[-1] += 1
|
||
|
n = -1
|
||
|
while (slice_indexer[n] >= shape[n]) and (n > (1 - ndim)):
|
||
|
slice_indexer[n - 1] += 1
|
||
|
slice_indexer[n] = 0
|
||
|
n -= 1
|
||
|
|
||
|
# empty object
|
||
|
if not len(results):
|
||
|
return self._constructor(**self._construct_axes_dict())
|
||
|
|
||
|
# same ndim as current
|
||
|
if isinstance(results[0], Series):
|
||
|
arr = np.vstack([r.values for r in results])
|
||
|
arr = arr.T.reshape(tuple([len(slice_axis)] + list(shape)))
|
||
|
tranp = np.array([axis] + indlist).argsort()
|
||
|
arr = arr.transpose(tuple(list(tranp)))
|
||
|
return self._constructor(arr, **self._construct_axes_dict())
|
||
|
|
||
|
# ndim-1 shape
|
||
|
results = np.array(results).reshape(shape)
|
||
|
if results.ndim == 2 and axis_name != self._info_axis_name:
|
||
|
results = results.T
|
||
|
planes = planes[::-1]
|
||
|
return self._construct_return_type(results, planes)
|
||
|
|
||
|
def _apply_2d(self, func, axis):
|
||
|
""" handle 2-d slices, equiv to iterating over the other axis """
|
||
|
|
||
|
ndim = self.ndim
|
||
|
axis = [self._get_axis_number(a) for a in axis]
|
||
|
|
||
|
# construct slabs, in 2-d this is a DataFrame result
|
||
|
indexer_axis = list(range(ndim))
|
||
|
for a in axis:
|
||
|
indexer_axis.remove(a)
|
||
|
indexer_axis = indexer_axis[0]
|
||
|
|
||
|
slicer = [slice(None, None)] * ndim
|
||
|
ax = self._get_axis(indexer_axis)
|
||
|
|
||
|
results = []
|
||
|
for i, e in enumerate(ax):
|
||
|
slicer[indexer_axis] = i
|
||
|
sliced = self.iloc[tuple(slicer)]
|
||
|
|
||
|
obj = func(sliced)
|
||
|
results.append((e, obj))
|
||
|
|
||
|
return self._construct_return_type(dict(results))
|
||
|
|
||
|
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
|
||
|
filter_type=None, **kwds):
|
||
|
if numeric_only:
|
||
|
raise NotImplementedError('Panel.{0} does not implement '
|
||
|
'numeric_only.'.format(name))
|
||
|
|
||
|
if axis is None and filter_type == 'bool':
|
||
|
# labels = None
|
||
|
# constructor = None
|
||
|
axis_number = None
|
||
|
axis_name = None
|
||
|
else:
|
||
|
# TODO: Make other agg func handle axis=None properly
|
||
|
axis = self._get_axis_number(axis)
|
||
|
# labels = self._get_agg_axis(axis)
|
||
|
# constructor = self._constructor
|
||
|
axis_name = self._get_axis_name(axis)
|
||
|
axis_number = self._get_axis_number(axis_name)
|
||
|
|
||
|
f = lambda x: op(x, axis=axis_number, skipna=skipna, **kwds)
|
||
|
|
||
|
with np.errstate(all='ignore'):
|
||
|
result = f(self.values)
|
||
|
|
||
|
if axis is None and filter_type == 'bool':
|
||
|
return np.bool_(result)
|
||
|
axes = self._get_plane_axes(axis_name)
|
||
|
if result.ndim == 2 and axis_name != self._info_axis_name:
|
||
|
result = result.T
|
||
|
|
||
|
return self._construct_return_type(result, axes)
|
||
|
|
||
|
def _construct_return_type(self, result, axes=None):
|
||
|
""" return the type for the ndim of the result """
|
||
|
ndim = getattr(result, 'ndim', None)
|
||
|
|
||
|
# need to assume they are the same
|
||
|
if ndim is None:
|
||
|
if isinstance(result, dict):
|
||
|
ndim = getattr(list(compat.itervalues(result))[0], 'ndim', 0)
|
||
|
|
||
|
# have a dict, so top-level is +1 dim
|
||
|
if ndim != 0:
|
||
|
ndim += 1
|
||
|
|
||
|
# scalar
|
||
|
if ndim == 0:
|
||
|
return Series(result)
|
||
|
|
||
|
# same as self
|
||
|
elif self.ndim == ndim:
|
||
|
# return the construction dictionary for these axes
|
||
|
if axes is None:
|
||
|
return self._constructor(result)
|
||
|
return self._constructor(result, **self._construct_axes_dict())
|
||
|
|
||
|
# sliced
|
||
|
elif self.ndim == ndim + 1:
|
||
|
if axes is None:
|
||
|
return self._constructor_sliced(result)
|
||
|
return self._constructor_sliced(
|
||
|
result, **self._extract_axes_for_slice(self, axes))
|
||
|
|
||
|
raise ValueError('invalid _construct_return_type [self->{self}] '
|
||
|
'[result->{result}]'.format(self=self, result=result))
|
||
|
|
||
|
def _wrap_result(self, result, axis):
|
||
|
axis = self._get_axis_name(axis)
|
||
|
axes = self._get_plane_axes(axis)
|
||
|
if result.ndim == 2 and axis != self._info_axis_name:
|
||
|
result = result.T
|
||
|
|
||
|
return self._construct_return_type(result, axes)
|
||
|
|
||
|
@Appender(_shared_docs['reindex'] % _shared_doc_kwargs)
|
||
|
def reindex(self, *args, **kwargs):
|
||
|
major = kwargs.pop("major", None)
|
||
|
minor = kwargs.pop('minor', None)
|
||
|
|
||
|
if major is not None:
|
||
|
if kwargs.get("major_axis"):
|
||
|
raise TypeError("Cannot specify both 'major' and 'major_axis'")
|
||
|
kwargs['major_axis'] = major
|
||
|
if minor is not None:
|
||
|
if kwargs.get("minor_axis"):
|
||
|
raise TypeError("Cannot specify both 'minor' and 'minor_axis'")
|
||
|
|
||
|
kwargs['minor_axis'] = minor
|
||
|
axes = validate_axis_style_args(self, args, kwargs, 'labels',
|
||
|
'reindex')
|
||
|
kwargs.update(axes)
|
||
|
kwargs.pop('axis', None)
|
||
|
kwargs.pop('labels', None)
|
||
|
return super(Panel, self).reindex(**kwargs)
|
||
|
|
||
|
@Appender(_shared_docs['rename'] % _shared_doc_kwargs)
|
||
|
def rename(self, items=None, major_axis=None, minor_axis=None, **kwargs):
|
||
|
major_axis = (major_axis if major_axis is not None else
|
||
|
kwargs.pop('major', None))
|
||
|
minor_axis = (minor_axis if minor_axis is not None else
|
||
|
kwargs.pop('minor', None))
|
||
|
return super(Panel, self).rename(items=items, major_axis=major_axis,
|
||
|
minor_axis=minor_axis, **kwargs)
|
||
|
|
||
|
@Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs)
|
||
|
def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True,
|
||
|
limit=None, fill_value=np.nan):
|
||
|
return super(Panel, self).reindex_axis(labels=labels, axis=axis,
|
||
|
method=method, level=level,
|
||
|
copy=copy, limit=limit,
|
||
|
fill_value=fill_value)
|
||
|
|
||
|
@Appender(_shared_docs['transpose'] % _shared_doc_kwargs)
|
||
|
def transpose(self, *args, **kwargs):
|
||
|
# check if a list of axes was passed in instead as a
|
||
|
# single *args element
|
||
|
if (len(args) == 1 and hasattr(args[0], '__iter__') and
|
||
|
not is_string_like(args[0])):
|
||
|
axes = args[0]
|
||
|
else:
|
||
|
axes = args
|
||
|
|
||
|
if 'axes' in kwargs and axes:
|
||
|
raise TypeError("transpose() got multiple values for "
|
||
|
"keyword argument 'axes'")
|
||
|
elif not axes:
|
||
|
axes = kwargs.pop('axes', ())
|
||
|
|
||
|
return super(Panel, self).transpose(*axes, **kwargs)
|
||
|
|
||
|
@Substitution(**_shared_doc_kwargs)
|
||
|
@Appender(NDFrame.fillna.__doc__)
|
||
|
def fillna(self, value=None, method=None, axis=None, inplace=False,
|
||
|
limit=None, downcast=None, **kwargs):
|
||
|
return super(Panel, self).fillna(value=value, method=method, axis=axis,
|
||
|
inplace=inplace, limit=limit,
|
||
|
downcast=downcast, **kwargs)
|
||
|
|
||
|
def count(self, axis='major'):
|
||
|
"""
|
||
|
Return number of observations over requested axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {'items', 'major', 'minor'} or {0, 1, 2}
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
count : DataFrame
|
||
|
"""
|
||
|
i = self._get_axis_number(axis)
|
||
|
|
||
|
values = self.values
|
||
|
mask = np.isfinite(values)
|
||
|
result = mask.sum(axis=i, dtype='int64')
|
||
|
|
||
|
return self._wrap_result(result, axis)
|
||
|
|
||
|
def shift(self, periods=1, freq=None, axis='major'):
|
||
|
"""
|
||
|
Shift index by desired number of periods with an optional time freq.
|
||
|
The shifted data will not include the dropped periods and the
|
||
|
shifted axis will be smaller than the original. This is different
|
||
|
from the behavior of DataFrame.shift()
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
periods : int
|
||
|
Number of periods to move, can be positive or negative
|
||
|
freq : DateOffset, timedelta, or time rule string, optional
|
||
|
axis : {'items', 'major', 'minor'} or {0, 1, 2}
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
shifted : Panel
|
||
|
"""
|
||
|
if freq:
|
||
|
return self.tshift(periods, freq, axis=axis)
|
||
|
|
||
|
return super(Panel, self).slice_shift(periods, axis=axis)
|
||
|
|
||
|
def tshift(self, periods=1, freq=None, axis='major'):
|
||
|
return super(Panel, self).tshift(periods, freq, axis)
|
||
|
|
||
|
def join(self, other, how='left', lsuffix='', rsuffix=''):
|
||
|
"""
|
||
|
Join items with other Panel either on major and minor axes column
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : Panel or list of Panels
|
||
|
Index should be similar to one of the columns in this one
|
||
|
how : {'left', 'right', 'outer', 'inner'}
|
||
|
How to handle indexes of the two objects. Default: 'left'
|
||
|
for joining on index, None otherwise
|
||
|
* left: use calling frame's index
|
||
|
* right: use input frame's index
|
||
|
* outer: form union of indexes
|
||
|
* inner: use intersection of indexes
|
||
|
lsuffix : string
|
||
|
Suffix to use from left frame's overlapping columns
|
||
|
rsuffix : string
|
||
|
Suffix to use from right frame's overlapping columns
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
joined : Panel
|
||
|
"""
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
|
||
|
if isinstance(other, Panel):
|
||
|
join_major, join_minor = self._get_join_index(other, how)
|
||
|
this = self.reindex(major=join_major, minor=join_minor)
|
||
|
other = other.reindex(major=join_major, minor=join_minor)
|
||
|
merged_data = this._data.merge(other._data, lsuffix, rsuffix)
|
||
|
return self._constructor(merged_data)
|
||
|
else:
|
||
|
if lsuffix or rsuffix:
|
||
|
raise ValueError('Suffixes not supported when passing '
|
||
|
'multiple panels')
|
||
|
|
||
|
if how == 'left':
|
||
|
how = 'outer'
|
||
|
join_axes = [self.major_axis, self.minor_axis]
|
||
|
elif how == 'right':
|
||
|
raise ValueError('Right join not supported with multiple '
|
||
|
'panels')
|
||
|
else:
|
||
|
join_axes = None
|
||
|
|
||
|
return concat([self] + list(other), axis=0, join=how,
|
||
|
join_axes=join_axes, verify_integrity=True)
|
||
|
|
||
|
def update(self, other, join='left', overwrite=True, filter_func=None,
|
||
|
raise_conflict=False):
|
||
|
"""
|
||
|
Modify Panel in place using non-NA values from passed
|
||
|
Panel, or object coercible to Panel. Aligns on items
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : Panel, or object coercible to Panel
|
||
|
join : How to join individual DataFrames
|
||
|
{'left', 'right', 'outer', 'inner'}, default 'left'
|
||
|
overwrite : boolean, default True
|
||
|
If True then overwrite values for common keys in the calling panel
|
||
|
filter_func : callable(1d-array) -> 1d-array<boolean>, default None
|
||
|
Can choose to replace values other than NA. Return True for values
|
||
|
that should be updated
|
||
|
raise_conflict : bool
|
||
|
If True, will raise an error if a DataFrame and other both
|
||
|
contain data in the same place.
|
||
|
"""
|
||
|
|
||
|
if not isinstance(other, self._constructor):
|
||
|
other = self._constructor(other)
|
||
|
|
||
|
axis_name = self._info_axis_name
|
||
|
axis_values = self._info_axis
|
||
|
other = other.reindex(**{axis_name: axis_values})
|
||
|
|
||
|
for frame in axis_values:
|
||
|
self[frame].update(other[frame], join, overwrite, filter_func,
|
||
|
raise_conflict)
|
||
|
|
||
|
def _get_join_index(self, other, how):
|
||
|
if how == 'left':
|
||
|
join_major, join_minor = self.major_axis, self.minor_axis
|
||
|
elif how == 'right':
|
||
|
join_major, join_minor = other.major_axis, other.minor_axis
|
||
|
elif how == 'inner':
|
||
|
join_major = self.major_axis.intersection(other.major_axis)
|
||
|
join_minor = self.minor_axis.intersection(other.minor_axis)
|
||
|
elif how == 'outer':
|
||
|
join_major = self.major_axis.union(other.major_axis)
|
||
|
join_minor = self.minor_axis.union(other.minor_axis)
|
||
|
return join_major, join_minor
|
||
|
|
||
|
# miscellaneous data creation
|
||
|
@staticmethod
|
||
|
def _extract_axes(self, data, axes, **kwargs):
|
||
|
""" return a list of the axis indicies """
|
||
|
return [self._extract_axis(self, data, axis=i, **kwargs)
|
||
|
for i, a in enumerate(axes)]
|
||
|
|
||
|
@staticmethod
|
||
|
def _extract_axes_for_slice(self, axes):
|
||
|
""" return the slice dictionary for these axes """
|
||
|
return dict((self._AXIS_SLICEMAP[i], a)
|
||
|
for i, a in zip(
|
||
|
self._AXIS_ORDERS[self._AXIS_LEN - len(axes):],
|
||
|
axes))
|
||
|
|
||
|
@staticmethod
|
||
|
def _prep_ndarray(self, values, copy=True):
|
||
|
if not isinstance(values, np.ndarray):
|
||
|
values = np.asarray(values)
|
||
|
# NumPy strings are a pain, convert to object
|
||
|
if issubclass(values.dtype.type, compat.string_types):
|
||
|
values = np.array(values, dtype=object, copy=True)
|
||
|
else:
|
||
|
if copy:
|
||
|
values = values.copy()
|
||
|
if values.ndim != self._AXIS_LEN:
|
||
|
raise ValueError("The number of dimensions required is {0}, "
|
||
|
"but the number of dimensions of the "
|
||
|
"ndarray given was {1}".format(self._AXIS_LEN,
|
||
|
values.ndim))
|
||
|
return values
|
||
|
|
||
|
@staticmethod
|
||
|
def _homogenize_dict(self, frames, intersect=True, dtype=None):
|
||
|
"""
|
||
|
Conform set of _constructor_sliced-like objects to either
|
||
|
an intersection of indices / columns or a union.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frames : dict
|
||
|
intersect : boolean, default True
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict of aligned results & indicies
|
||
|
"""
|
||
|
|
||
|
result = dict()
|
||
|
# caller differs dict/ODict, presered type
|
||
|
if isinstance(frames, OrderedDict):
|
||
|
result = OrderedDict()
|
||
|
|
||
|
adj_frames = OrderedDict()
|
||
|
for k, v in compat.iteritems(frames):
|
||
|
if isinstance(v, dict):
|
||
|
adj_frames[k] = self._constructor_sliced(v)
|
||
|
else:
|
||
|
adj_frames[k] = v
|
||
|
|
||
|
axes = self._AXIS_ORDERS[1:]
|
||
|
axes_dict = dict((a, ax) for a, ax in zip(axes, self._extract_axes(
|
||
|
self, adj_frames, axes, intersect=intersect)))
|
||
|
|
||
|
reindex_dict = dict(
|
||
|
[(self._AXIS_SLICEMAP[a], axes_dict[a]) for a in axes])
|
||
|
reindex_dict['copy'] = False
|
||
|
for key, frame in compat.iteritems(adj_frames):
|
||
|
if frame is not None:
|
||
|
result[key] = frame.reindex(**reindex_dict)
|
||
|
else:
|
||
|
result[key] = None
|
||
|
|
||
|
axes_dict['data'] = result
|
||
|
axes_dict['dtype'] = dtype
|
||
|
return axes_dict
|
||
|
|
||
|
@staticmethod
|
||
|
def _extract_axis(self, data, axis=0, intersect=False):
|
||
|
|
||
|
index = None
|
||
|
if len(data) == 0:
|
||
|
index = Index([])
|
||
|
elif len(data) > 0:
|
||
|
raw_lengths = []
|
||
|
|
||
|
have_raw_arrays = False
|
||
|
have_frames = False
|
||
|
|
||
|
for v in data.values():
|
||
|
if isinstance(v, self._constructor_sliced):
|
||
|
have_frames = True
|
||
|
elif v is not None:
|
||
|
have_raw_arrays = True
|
||
|
raw_lengths.append(v.shape[axis])
|
||
|
|
||
|
if have_frames:
|
||
|
# we want the "old" behavior here, of sorting only
|
||
|
# 1. we're doing a union (intersect=False)
|
||
|
# 2. the indices are not aligned.
|
||
|
index = _get_objs_combined_axis(data.values(), axis=axis,
|
||
|
intersect=intersect, sort=None)
|
||
|
|
||
|
if have_raw_arrays:
|
||
|
lengths = list(set(raw_lengths))
|
||
|
if len(lengths) > 1:
|
||
|
raise ValueError('ndarrays must match shape on '
|
||
|
'axis {ax}'.format(ax=axis))
|
||
|
|
||
|
if have_frames:
|
||
|
if lengths[0] != len(index):
|
||
|
raise AssertionError('Length of data and index must match')
|
||
|
else:
|
||
|
index = Index(np.arange(lengths[0]))
|
||
|
|
||
|
if index is None:
|
||
|
index = Index([])
|
||
|
|
||
|
return _ensure_index(index)
|
||
|
|
||
|
|
||
|
Panel._setup_axes(axes=['items', 'major_axis', 'minor_axis'], info_axis=0,
|
||
|
stat_axis=1, aliases={'major': 'major_axis',
|
||
|
'minor': 'minor_axis'},
|
||
|
slicers={'major_axis': 'index',
|
||
|
'minor_axis': 'columns'},
|
||
|
docs={})
|
||
|
|
||
|
ops.add_special_arithmetic_methods(Panel)
|
||
|
ops.add_flex_arithmetic_methods(Panel)
|
||
|
Panel._add_numeric_operations()
|
||
|
|
||
|
|
||
|
# legacy
|
||
|
class WidePanel(Panel):
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
# deprecation, #10892
|
||
|
warnings.warn("WidePanel is deprecated. Please use Panel",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
super(WidePanel, self).__init__(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class LongPanel(DataFrame):
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
# deprecation, #10892
|
||
|
warnings.warn("LongPanel is deprecated. Please use DataFrame",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
super(LongPanel, self).__init__(*args, **kwargs)
|