7688 lines
275 KiB
Python
7688 lines
275 KiB
Python
|
"""
|
||
|
DataFrame
|
||
|
---------
|
||
|
An efficient 2D container for potentially mixed-type time series or other
|
||
|
labeled data series.
|
||
|
|
||
|
Similar to its R counterpart, data.frame, except providing automatic data
|
||
|
alignment and a host of useful data manipulation methods having to do with the
|
||
|
labeling information
|
||
|
"""
|
||
|
from __future__ import division
|
||
|
# pylint: disable=E1101,E1103
|
||
|
# pylint: disable=W0212,W0231,W0703,W0622
|
||
|
|
||
|
import functools
|
||
|
import collections
|
||
|
import itertools
|
||
|
import sys
|
||
|
import types
|
||
|
import warnings
|
||
|
from textwrap import dedent
|
||
|
|
||
|
import numpy as np
|
||
|
import numpy.ma as ma
|
||
|
|
||
|
from pandas.core.accessor import CachedAccessor
|
||
|
from pandas.core.dtypes.cast import (
|
||
|
maybe_upcast,
|
||
|
cast_scalar_to_array,
|
||
|
construct_1d_arraylike_from_scalar,
|
||
|
maybe_cast_to_datetime,
|
||
|
maybe_infer_to_datetimelike,
|
||
|
maybe_convert_platform,
|
||
|
maybe_downcast_to_dtype,
|
||
|
invalidate_string_dtypes,
|
||
|
coerce_to_dtypes,
|
||
|
maybe_upcast_putmask,
|
||
|
find_common_type)
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_categorical_dtype,
|
||
|
is_object_dtype,
|
||
|
is_extension_type,
|
||
|
is_extension_array_dtype,
|
||
|
is_datetimetz,
|
||
|
is_datetime64_any_dtype,
|
||
|
is_bool_dtype,
|
||
|
is_integer_dtype,
|
||
|
is_float_dtype,
|
||
|
is_integer,
|
||
|
is_scalar,
|
||
|
is_dtype_equal,
|
||
|
needs_i8_conversion,
|
||
|
_get_dtype_from_object,
|
||
|
_ensure_float64,
|
||
|
_ensure_int64,
|
||
|
_ensure_platform_int,
|
||
|
is_list_like,
|
||
|
is_nested_list_like,
|
||
|
is_iterator,
|
||
|
is_sequence,
|
||
|
is_named_tuple)
|
||
|
from pandas.core.dtypes.concat import _get_sliced_frame_result_type
|
||
|
from pandas.core.dtypes.missing import isna, notna
|
||
|
|
||
|
|
||
|
from pandas.core.generic import NDFrame, _shared_docs
|
||
|
from pandas.core.index import (Index, MultiIndex, _ensure_index,
|
||
|
_ensure_index_from_sequences)
|
||
|
from pandas.core.indexing import (maybe_droplevels, convert_to_index_sliceable,
|
||
|
check_bool_indexer)
|
||
|
from pandas.core.internals import (BlockManager,
|
||
|
create_block_manager_from_arrays,
|
||
|
create_block_manager_from_blocks)
|
||
|
from pandas.core.series import Series
|
||
|
from pandas.core.arrays import Categorical, ExtensionArray
|
||
|
import pandas.core.algorithms as algorithms
|
||
|
from pandas.compat import (range, map, zip, lrange, lmap, lzip, StringIO, u,
|
||
|
OrderedDict, raise_with_traceback)
|
||
|
from pandas import compat
|
||
|
from pandas.compat import PY36
|
||
|
from pandas.compat.numpy import function as nv
|
||
|
from pandas.util._decorators import (Appender, Substitution,
|
||
|
rewrite_axis_style_signature)
|
||
|
from pandas.util._validators import (validate_bool_kwarg,
|
||
|
validate_axis_style_args)
|
||
|
|
||
|
from pandas.core.indexes.period import PeriodIndex
|
||
|
from pandas.core.indexes.datetimes import DatetimeIndex
|
||
|
from pandas.core.indexes.timedeltas import TimedeltaIndex
|
||
|
|
||
|
import pandas.core.common as com
|
||
|
import pandas.core.nanops as nanops
|
||
|
import pandas.core.ops as ops
|
||
|
import pandas.io.formats.console as console
|
||
|
import pandas.io.formats.format as fmt
|
||
|
from pandas.io.formats.printing import pprint_thing
|
||
|
import pandas.plotting._core as gfx
|
||
|
|
||
|
from pandas._libs import lib, algos as libalgos
|
||
|
|
||
|
from pandas.core.config import get_option
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Docstring templates
|
||
|
|
||
|
_shared_doc_kwargs = dict(
|
||
|
axes='index, columns', klass='DataFrame',
|
||
|
axes_single_arg="{0 or 'index', 1 or 'columns'}",
|
||
|
axis="""
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
- 0 or 'index': apply function to each column.
|
||
|
- 1 or 'columns': apply function to each row.""",
|
||
|
optional_by="""
|
||
|
by : str or list of str
|
||
|
Name or list of names to sort by.
|
||
|
|
||
|
- if `axis` is 0 or `'index'` then `by` may contain index
|
||
|
levels and/or column labels
|
||
|
- if `axis` is 1 or `'columns'` then `by` may contain column
|
||
|
levels and/or index labels
|
||
|
|
||
|
.. versionchanged:: 0.23.0
|
||
|
Allow specifying index or column level names.""",
|
||
|
versionadded_to_excel='',
|
||
|
optional_labels="""labels : array-like, optional
|
||
|
New labels / index to conform the axis specified by 'axis' to.""",
|
||
|
optional_axis="""axis : int or str, optional
|
||
|
Axis to target. Can be either the axis name ('index', 'columns')
|
||
|
or number (0, 1).""",
|
||
|
)
|
||
|
|
||
|
_numeric_only_doc = """numeric_only : boolean, default None
|
||
|
Include only float, int, boolean data. If None, will attempt to use
|
||
|
everything, then use only numeric data
|
||
|
"""
|
||
|
|
||
|
_merge_doc = """
|
||
|
Merge DataFrame objects by performing a database-style join operation by
|
||
|
columns or indexes.
|
||
|
|
||
|
If joining columns on columns, the DataFrame indexes *will be
|
||
|
ignored*. Otherwise if joining indexes on indexes or indexes on a column or
|
||
|
columns, the index will be passed on.
|
||
|
|
||
|
Parameters
|
||
|
----------%s
|
||
|
right : DataFrame
|
||
|
how : {'left', 'right', 'outer', 'inner'}, default 'inner'
|
||
|
* left: use only keys from left frame, similar to a SQL left outer join;
|
||
|
preserve key order
|
||
|
* right: use only keys from right frame, similar to a SQL right outer join;
|
||
|
preserve key order
|
||
|
* outer: use union of keys from both frames, similar to a SQL full outer
|
||
|
join; sort keys lexicographically
|
||
|
* inner: use intersection of keys from both frames, similar to a SQL inner
|
||
|
join; preserve the order of the left keys
|
||
|
on : label or list
|
||
|
Column or index level names to join on. These must be found in both
|
||
|
DataFrames. If `on` is None and not merging on indexes then this defaults
|
||
|
to the intersection of the columns in both DataFrames.
|
||
|
left_on : label or list, or array-like
|
||
|
Column or index level names to join on in the left DataFrame. Can also
|
||
|
be an array or list of arrays of the length of the left DataFrame.
|
||
|
These arrays are treated as if they are columns.
|
||
|
right_on : label or list, or array-like
|
||
|
Column or index level names to join on in the right DataFrame. Can also
|
||
|
be an array or list of arrays of the length of the right DataFrame.
|
||
|
These arrays are treated as if they are columns.
|
||
|
left_index : boolean, default False
|
||
|
Use the index from the left DataFrame as the join key(s). If it is a
|
||
|
MultiIndex, the number of keys in the other DataFrame (either the index
|
||
|
or a number of columns) must match the number of levels
|
||
|
right_index : boolean, default False
|
||
|
Use the index from the right DataFrame as the join key. Same caveats as
|
||
|
left_index
|
||
|
sort : boolean, default False
|
||
|
Sort the join keys lexicographically in the result DataFrame. If False,
|
||
|
the order of the join keys depends on the join type (how keyword)
|
||
|
suffixes : 2-length sequence (tuple, list, ...)
|
||
|
Suffix to apply to overlapping column names in the left and right
|
||
|
side, respectively
|
||
|
copy : boolean, default True
|
||
|
If False, do not copy data unnecessarily
|
||
|
indicator : boolean or string, default False
|
||
|
If True, adds a column to output DataFrame called "_merge" with
|
||
|
information on the source of each row.
|
||
|
If string, column with information on source of each row will be added to
|
||
|
output DataFrame, and column will be named value of string.
|
||
|
Information column is Categorical-type and takes on a value of "left_only"
|
||
|
for observations whose merge key only appears in 'left' DataFrame,
|
||
|
"right_only" for observations whose merge key only appears in 'right'
|
||
|
DataFrame, and "both" if the observation's merge key is found in both.
|
||
|
|
||
|
validate : string, default None
|
||
|
If specified, checks if merge is of specified type.
|
||
|
|
||
|
* "one_to_one" or "1:1": check if merge keys are unique in both
|
||
|
left and right datasets.
|
||
|
* "one_to_many" or "1:m": check if merge keys are unique in left
|
||
|
dataset.
|
||
|
* "many_to_one" or "m:1": check if merge keys are unique in right
|
||
|
dataset.
|
||
|
* "many_to_many" or "m:m": allowed, but does not result in checks.
|
||
|
|
||
|
.. versionadded:: 0.21.0
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Support for specifying index levels as the `on`, `left_on`, and
|
||
|
`right_on` parameters was added in version 0.23.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> A >>> B
|
||
|
lkey value rkey value
|
||
|
0 foo 1 0 foo 5
|
||
|
1 bar 2 1 bar 6
|
||
|
2 baz 3 2 qux 7
|
||
|
3 foo 4 3 bar 8
|
||
|
|
||
|
>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
|
||
|
lkey value_x rkey value_y
|
||
|
0 foo 1 foo 5
|
||
|
1 foo 4 foo 5
|
||
|
2 bar 2 bar 6
|
||
|
3 bar 2 bar 8
|
||
|
4 baz 3 NaN NaN
|
||
|
5 NaN NaN qux 7
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
merged : DataFrame
|
||
|
The output type will the be same as 'left', if it is a subclass
|
||
|
of DataFrame.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
merge_ordered
|
||
|
merge_asof
|
||
|
DataFrame.join
|
||
|
"""
|
||
|
|
||
|
# -----------------------------------------------------------------------
|
||
|
# DataFrame class
|
||
|
|
||
|
|
||
|
class DataFrame(NDFrame):
|
||
|
""" Two-dimensional size-mutable, potentially heterogeneous tabular data
|
||
|
structure with labeled axes (rows and columns). Arithmetic operations
|
||
|
align on both row and column labels. Can be thought of as a dict-like
|
||
|
container for Series objects. The primary pandas data structure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : numpy ndarray (structured or homogeneous), dict, or DataFrame
|
||
|
Dict can contain Series, arrays, constants, or list-like objects
|
||
|
|
||
|
.. versionchanged :: 0.23.0
|
||
|
If data is a dict, argument order is maintained for Python 3.6
|
||
|
and later.
|
||
|
|
||
|
index : Index or array-like
|
||
|
Index to use for resulting frame. Will default to RangeIndex if
|
||
|
no indexing information part of input data and no index provided
|
||
|
columns : Index or array-like
|
||
|
Column labels to use for resulting frame. Will default to
|
||
|
RangeIndex (0, 1, 2, ..., n) if no column labels are provided
|
||
|
dtype : dtype, default None
|
||
|
Data type to force. Only a single dtype is allowed. If None, infer
|
||
|
copy : boolean, default False
|
||
|
Copy data from inputs. Only affects DataFrame / 2d ndarray input
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Constructing DataFrame from a dictionary.
|
||
|
|
||
|
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
|
||
|
>>> df = pd.DataFrame(data=d)
|
||
|
>>> df
|
||
|
col1 col2
|
||
|
0 1 3
|
||
|
1 2 4
|
||
|
|
||
|
Notice that the inferred dtype is int64.
|
||
|
|
||
|
>>> df.dtypes
|
||
|
col1 int64
|
||
|
col2 int64
|
||
|
dtype: object
|
||
|
|
||
|
To enforce a single dtype:
|
||
|
|
||
|
>>> df = pd.DataFrame(data=d, dtype=np.int8)
|
||
|
>>> df.dtypes
|
||
|
col1 int8
|
||
|
col2 int8
|
||
|
dtype: object
|
||
|
|
||
|
Constructing DataFrame from numpy ndarray:
|
||
|
|
||
|
>>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),
|
||
|
... columns=['a', 'b', 'c', 'd', 'e'])
|
||
|
>>> df2
|
||
|
a b c d e
|
||
|
0 2 8 8 3 4
|
||
|
1 4 2 9 0 9
|
||
|
2 1 0 7 8 0
|
||
|
3 5 1 7 1 3
|
||
|
4 6 0 2 4 2
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.from_records : constructor from tuples, also record arrays
|
||
|
DataFrame.from_dict : from dicts of Series, arrays, or dicts
|
||
|
DataFrame.from_items : from sequence of (key, value) pairs
|
||
|
pandas.read_csv, pandas.read_table, pandas.read_clipboard
|
||
|
"""
|
||
|
|
||
|
@property
|
||
|
def _constructor(self):
|
||
|
return DataFrame
|
||
|
|
||
|
_constructor_sliced = Series
|
||
|
_deprecations = NDFrame._deprecations | frozenset(
|
||
|
['sortlevel', 'get_value', 'set_value', 'from_csv', 'from_items'])
|
||
|
_accessors = set()
|
||
|
|
||
|
@property
|
||
|
def _constructor_expanddim(self):
|
||
|
from pandas.core.panel import Panel
|
||
|
return Panel
|
||
|
|
||
|
def __init__(self, data=None, index=None, columns=None, dtype=None,
|
||
|
copy=False):
|
||
|
if data is None:
|
||
|
data = {}
|
||
|
if dtype is not None:
|
||
|
dtype = self._validate_dtype(dtype)
|
||
|
|
||
|
if isinstance(data, DataFrame):
|
||
|
data = data._data
|
||
|
|
||
|
if isinstance(data, BlockManager):
|
||
|
mgr = self._init_mgr(data, axes=dict(index=index, columns=columns),
|
||
|
dtype=dtype, copy=copy)
|
||
|
elif isinstance(data, dict):
|
||
|
mgr = self._init_dict(data, index, columns, dtype=dtype)
|
||
|
elif isinstance(data, ma.MaskedArray):
|
||
|
import numpy.ma.mrecords as mrecords
|
||
|
# masked recarray
|
||
|
if isinstance(data, mrecords.MaskedRecords):
|
||
|
mgr = _masked_rec_array_to_mgr(data, index, columns, dtype,
|
||
|
copy)
|
||
|
|
||
|
# a masked array
|
||
|
else:
|
||
|
mask = ma.getmaskarray(data)
|
||
|
if mask.any():
|
||
|
data, fill_value = maybe_upcast(data, copy=True)
|
||
|
data[mask] = fill_value
|
||
|
else:
|
||
|
data = data.copy()
|
||
|
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
|
||
|
copy=copy)
|
||
|
|
||
|
elif isinstance(data, (np.ndarray, Series, Index)):
|
||
|
if data.dtype.names:
|
||
|
data_columns = list(data.dtype.names)
|
||
|
data = {k: data[k] for k in data_columns}
|
||
|
if columns is None:
|
||
|
columns = data_columns
|
||
|
mgr = self._init_dict(data, index, columns, dtype=dtype)
|
||
|
elif getattr(data, 'name', None) is not None:
|
||
|
mgr = self._init_dict({data.name: data}, index, columns,
|
||
|
dtype=dtype)
|
||
|
else:
|
||
|
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
|
||
|
copy=copy)
|
||
|
elif isinstance(data, (list, types.GeneratorType)):
|
||
|
if isinstance(data, types.GeneratorType):
|
||
|
data = list(data)
|
||
|
if len(data) > 0:
|
||
|
if is_list_like(data[0]) and getattr(data[0], 'ndim', 1) == 1:
|
||
|
if is_named_tuple(data[0]) and columns is None:
|
||
|
columns = data[0]._fields
|
||
|
arrays, columns = _to_arrays(data, columns, dtype=dtype)
|
||
|
columns = _ensure_index(columns)
|
||
|
|
||
|
# set the index
|
||
|
if index is None:
|
||
|
if isinstance(data[0], Series):
|
||
|
index = _get_names_from_index(data)
|
||
|
elif isinstance(data[0], Categorical):
|
||
|
index = com._default_index(len(data[0]))
|
||
|
else:
|
||
|
index = com._default_index(len(data))
|
||
|
|
||
|
mgr = _arrays_to_mgr(arrays, columns, index, columns,
|
||
|
dtype=dtype)
|
||
|
else:
|
||
|
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
|
||
|
copy=copy)
|
||
|
else:
|
||
|
mgr = self._init_dict({}, index, columns, dtype=dtype)
|
||
|
elif isinstance(data, collections.Iterator):
|
||
|
raise TypeError("data argument can't be an iterator")
|
||
|
else:
|
||
|
try:
|
||
|
arr = np.array(data, dtype=dtype, copy=copy)
|
||
|
except (ValueError, TypeError) as e:
|
||
|
exc = TypeError('DataFrame constructor called with '
|
||
|
'incompatible data and dtype: {e}'.format(e=e))
|
||
|
raise_with_traceback(exc)
|
||
|
|
||
|
if arr.ndim == 0 and index is not None and columns is not None:
|
||
|
values = cast_scalar_to_array((len(index), len(columns)),
|
||
|
data, dtype=dtype)
|
||
|
mgr = self._init_ndarray(values, index, columns,
|
||
|
dtype=values.dtype, copy=False)
|
||
|
else:
|
||
|
raise ValueError('DataFrame constructor not properly called!')
|
||
|
|
||
|
NDFrame.__init__(self, mgr, fastpath=True)
|
||
|
|
||
|
def _init_dict(self, data, index, columns, dtype=None):
|
||
|
"""
|
||
|
Segregate Series based on type and coerce into matrices.
|
||
|
Needs to handle a lot of exceptional cases.
|
||
|
"""
|
||
|
if columns is not None:
|
||
|
arrays = Series(data, index=columns, dtype=object)
|
||
|
data_names = arrays.index
|
||
|
|
||
|
missing = arrays.isnull()
|
||
|
if index is None:
|
||
|
# GH10856
|
||
|
# raise ValueError if only scalars in dict
|
||
|
index = extract_index(arrays[~missing])
|
||
|
else:
|
||
|
index = _ensure_index(index)
|
||
|
|
||
|
# no obvious "empty" int column
|
||
|
if missing.any() and not is_integer_dtype(dtype):
|
||
|
if dtype is None or np.issubdtype(dtype, np.flexible):
|
||
|
# 1783
|
||
|
nan_dtype = object
|
||
|
else:
|
||
|
nan_dtype = dtype
|
||
|
v = construct_1d_arraylike_from_scalar(np.nan, len(index),
|
||
|
nan_dtype)
|
||
|
arrays.loc[missing] = [v] * missing.sum()
|
||
|
|
||
|
else:
|
||
|
keys = com._dict_keys_to_ordered_list(data)
|
||
|
columns = data_names = Index(keys)
|
||
|
arrays = [data[k] for k in keys]
|
||
|
|
||
|
return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
|
||
|
|
||
|
def _init_ndarray(self, values, index, columns, dtype=None, copy=False):
|
||
|
# input must be a ndarray, list, Series, index
|
||
|
|
||
|
if isinstance(values, Series):
|
||
|
if columns is None:
|
||
|
if values.name is not None:
|
||
|
columns = [values.name]
|
||
|
if index is None:
|
||
|
index = values.index
|
||
|
else:
|
||
|
values = values.reindex(index)
|
||
|
|
||
|
# zero len case (GH #2234)
|
||
|
if not len(values) and columns is not None and len(columns):
|
||
|
values = np.empty((0, 1), dtype=object)
|
||
|
|
||
|
# helper to create the axes as indexes
|
||
|
def _get_axes(N, K, index=index, columns=columns):
|
||
|
# return axes or defaults
|
||
|
|
||
|
if index is None:
|
||
|
index = com._default_index(N)
|
||
|
else:
|
||
|
index = _ensure_index(index)
|
||
|
|
||
|
if columns is None:
|
||
|
columns = com._default_index(K)
|
||
|
else:
|
||
|
columns = _ensure_index(columns)
|
||
|
return index, columns
|
||
|
|
||
|
# we could have a categorical type passed or coerced to 'category'
|
||
|
# recast this to an _arrays_to_mgr
|
||
|
if (is_categorical_dtype(getattr(values, 'dtype', None)) or
|
||
|
is_categorical_dtype(dtype)):
|
||
|
|
||
|
if not hasattr(values, 'dtype'):
|
||
|
values = _prep_ndarray(values, copy=copy)
|
||
|
values = values.ravel()
|
||
|
elif copy:
|
||
|
values = values.copy()
|
||
|
|
||
|
index, columns = _get_axes(len(values), 1)
|
||
|
return _arrays_to_mgr([values], columns, index, columns,
|
||
|
dtype=dtype)
|
||
|
elif (is_datetimetz(values) or is_extension_array_dtype(values)):
|
||
|
# GH19157
|
||
|
if columns is None:
|
||
|
columns = [0]
|
||
|
return _arrays_to_mgr([values], columns, index, columns,
|
||
|
dtype=dtype)
|
||
|
|
||
|
# by definition an array here
|
||
|
# the dtypes will be coerced to a single dtype
|
||
|
values = _prep_ndarray(values, copy=copy)
|
||
|
|
||
|
if dtype is not None:
|
||
|
if not is_dtype_equal(values.dtype, dtype):
|
||
|
try:
|
||
|
values = values.astype(dtype)
|
||
|
except Exception as orig:
|
||
|
e = ValueError("failed to cast to '{dtype}' (Exception "
|
||
|
"was: {orig})".format(dtype=dtype,
|
||
|
orig=orig))
|
||
|
raise_with_traceback(e)
|
||
|
|
||
|
index, columns = _get_axes(*values.shape)
|
||
|
values = values.T
|
||
|
|
||
|
# if we don't have a dtype specified, then try to convert objects
|
||
|
# on the entire block; this is to convert if we have datetimelike's
|
||
|
# embedded in an object type
|
||
|
if dtype is None and is_object_dtype(values):
|
||
|
values = maybe_infer_to_datetimelike(values)
|
||
|
|
||
|
return create_block_manager_from_blocks([values], [columns, index])
|
||
|
|
||
|
@property
|
||
|
def axes(self):
|
||
|
"""
|
||
|
Return a list representing the axes of the DataFrame.
|
||
|
|
||
|
It has the row axis labels and column axis labels as the only members.
|
||
|
They are returned in that order.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
||
|
>>> df.axes
|
||
|
[RangeIndex(start=0, stop=2, step=1), Index(['coll', 'col2'],
|
||
|
dtype='object')]
|
||
|
"""
|
||
|
return [self.index, self.columns]
|
||
|
|
||
|
@property
|
||
|
def shape(self):
|
||
|
"""
|
||
|
Return a tuple representing the dimensionality of the DataFrame.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ndarray.shape
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
||
|
>>> df.shape
|
||
|
(2, 2)
|
||
|
|
||
|
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4],
|
||
|
... 'col3': [5, 6]})
|
||
|
>>> df.shape
|
||
|
(2, 3)
|
||
|
"""
|
||
|
return len(self.index), len(self.columns)
|
||
|
|
||
|
def _repr_fits_vertical_(self):
|
||
|
"""
|
||
|
Check length against max_rows.
|
||
|
"""
|
||
|
max_rows = get_option("display.max_rows")
|
||
|
return len(self) <= max_rows
|
||
|
|
||
|
def _repr_fits_horizontal_(self, ignore_width=False):
|
||
|
"""
|
||
|
Check if full repr fits in horizontal boundaries imposed by the display
|
||
|
options width and max_columns. In case off non-interactive session, no
|
||
|
boundaries apply.
|
||
|
|
||
|
ignore_width is here so ipnb+HTML output can behave the way
|
||
|
users expect. display.max_columns remains in effect.
|
||
|
GH3541, GH3573
|
||
|
"""
|
||
|
|
||
|
width, height = console.get_console_size()
|
||
|
max_columns = get_option("display.max_columns")
|
||
|
nb_columns = len(self.columns)
|
||
|
|
||
|
# exceed max columns
|
||
|
if ((max_columns and nb_columns > max_columns) or
|
||
|
((not ignore_width) and width and nb_columns > (width // 2))):
|
||
|
return False
|
||
|
|
||
|
# used by repr_html under IPython notebook or scripts ignore terminal
|
||
|
# dims
|
||
|
if ignore_width or not com.in_interactive_session():
|
||
|
return True
|
||
|
|
||
|
if (get_option('display.width') is not None or
|
||
|
com.in_ipython_frontend()):
|
||
|
# check at least the column row for excessive width
|
||
|
max_rows = 1
|
||
|
else:
|
||
|
max_rows = get_option("display.max_rows")
|
||
|
|
||
|
# when auto-detecting, so width=None and not in ipython front end
|
||
|
# check whether repr fits horizontal by actually checking
|
||
|
# the width of the rendered repr
|
||
|
buf = StringIO()
|
||
|
|
||
|
# only care about the stuff we'll actually print out
|
||
|
# and to_string on entire frame may be expensive
|
||
|
d = self
|
||
|
|
||
|
if not (max_rows is None): # unlimited rows
|
||
|
# min of two, where one may be None
|
||
|
d = d.iloc[:min(max_rows, len(d))]
|
||
|
else:
|
||
|
return True
|
||
|
|
||
|
d.to_string(buf=buf)
|
||
|
value = buf.getvalue()
|
||
|
repr_width = max(len(l) for l in value.split('\n'))
|
||
|
|
||
|
return repr_width < width
|
||
|
|
||
|
def _info_repr(self):
|
||
|
"""True if the repr should show the info view."""
|
||
|
info_repr_option = (get_option("display.large_repr") == "info")
|
||
|
return info_repr_option and not (self._repr_fits_horizontal_() and
|
||
|
self._repr_fits_vertical_())
|
||
|
|
||
|
def __unicode__(self):
|
||
|
"""
|
||
|
Return a string representation for a particular DataFrame
|
||
|
|
||
|
Invoked by unicode(df) in py2 only. Yields a Unicode String in both
|
||
|
py2/py3.
|
||
|
"""
|
||
|
buf = StringIO(u(""))
|
||
|
if self._info_repr():
|
||
|
self.info(buf=buf)
|
||
|
return buf.getvalue()
|
||
|
|
||
|
max_rows = get_option("display.max_rows")
|
||
|
max_cols = get_option("display.max_columns")
|
||
|
show_dimensions = get_option("display.show_dimensions")
|
||
|
if get_option("display.expand_frame_repr"):
|
||
|
width, _ = console.get_console_size()
|
||
|
else:
|
||
|
width = None
|
||
|
self.to_string(buf=buf, max_rows=max_rows, max_cols=max_cols,
|
||
|
line_width=width, show_dimensions=show_dimensions)
|
||
|
|
||
|
return buf.getvalue()
|
||
|
|
||
|
def _repr_html_(self):
|
||
|
"""
|
||
|
Return a html representation for a particular DataFrame.
|
||
|
Mainly for IPython notebook.
|
||
|
"""
|
||
|
# qtconsole doesn't report its line width, and also
|
||
|
# behaves badly when outputting an HTML table
|
||
|
# that doesn't fit the window, so disable it.
|
||
|
# XXX: In IPython 3.x and above, the Qt console will not attempt to
|
||
|
# display HTML, so this check can be removed when support for
|
||
|
# IPython 2.x is no longer needed.
|
||
|
if com.in_qtconsole():
|
||
|
# 'HTML output is disabled in QtConsole'
|
||
|
return None
|
||
|
|
||
|
if self._info_repr():
|
||
|
buf = StringIO(u(""))
|
||
|
self.info(buf=buf)
|
||
|
# need to escape the <class>, should be the first line.
|
||
|
val = buf.getvalue().replace('<', r'<', 1)
|
||
|
val = val.replace('>', r'>', 1)
|
||
|
return '<pre>' + val + '</pre>'
|
||
|
|
||
|
if get_option("display.notebook_repr_html"):
|
||
|
max_rows = get_option("display.max_rows")
|
||
|
max_cols = get_option("display.max_columns")
|
||
|
show_dimensions = get_option("display.show_dimensions")
|
||
|
|
||
|
return self.to_html(max_rows=max_rows, max_cols=max_cols,
|
||
|
show_dimensions=show_dimensions, notebook=True)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
@property
|
||
|
def style(self):
|
||
|
"""
|
||
|
Property returning a Styler object containing methods for
|
||
|
building a styled HTML representation fo the DataFrame.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.io.formats.style.Styler
|
||
|
"""
|
||
|
from pandas.io.formats.style import Styler
|
||
|
return Styler(self)
|
||
|
|
||
|
def iteritems(self):
|
||
|
"""
|
||
|
Iterator over (column name, Series) pairs.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
iterrows : Iterate over DataFrame rows as (index, Series) pairs.
|
||
|
itertuples : Iterate over DataFrame rows as namedtuples of the values.
|
||
|
|
||
|
"""
|
||
|
if self.columns.is_unique and hasattr(self, '_item_cache'):
|
||
|
for k in self.columns:
|
||
|
yield k, self._get_item_cache(k)
|
||
|
else:
|
||
|
for i, k in enumerate(self.columns):
|
||
|
yield k, self._ixs(i, axis=1)
|
||
|
|
||
|
def iterrows(self):
|
||
|
"""
|
||
|
Iterate over DataFrame rows as (index, Series) pairs.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
1. Because ``iterrows`` returns a Series for each row,
|
||
|
it does **not** preserve dtypes across the rows (dtypes are
|
||
|
preserved across columns for DataFrames). For example,
|
||
|
|
||
|
>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
|
||
|
>>> row = next(df.iterrows())[1]
|
||
|
>>> row
|
||
|
int 1.0
|
||
|
float 1.5
|
||
|
Name: 0, dtype: float64
|
||
|
>>> print(row['int'].dtype)
|
||
|
float64
|
||
|
>>> print(df['int'].dtype)
|
||
|
int64
|
||
|
|
||
|
To preserve dtypes while iterating over the rows, it is better
|
||
|
to use :meth:`itertuples` which returns namedtuples of the values
|
||
|
and which is generally faster than ``iterrows``.
|
||
|
|
||
|
2. You should **never modify** something you are iterating over.
|
||
|
This is not guaranteed to work in all cases. Depending on the
|
||
|
data types, the iterator returns a copy and not a view, and writing
|
||
|
to it will have no effect.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
it : generator
|
||
|
A generator that iterates over the rows of the frame.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
itertuples : Iterate over DataFrame rows as namedtuples of the values.
|
||
|
iteritems : Iterate over (column name, Series) pairs.
|
||
|
|
||
|
"""
|
||
|
columns = self.columns
|
||
|
klass = self._constructor_sliced
|
||
|
for k, v in zip(self.index, self.values):
|
||
|
s = klass(v, index=columns, name=k)
|
||
|
yield k, s
|
||
|
|
||
|
def itertuples(self, index=True, name="Pandas"):
|
||
|
"""
|
||
|
Iterate over DataFrame rows as namedtuples, with index value as first
|
||
|
element of the tuple.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : boolean, default True
|
||
|
If True, return the index as the first element of the tuple.
|
||
|
name : string, default "Pandas"
|
||
|
The name of the returned namedtuples or None to return regular
|
||
|
tuples.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The column names will be renamed to positional names if they are
|
||
|
invalid Python identifiers, repeated, or start with an underscore.
|
||
|
With a large number of columns (>255), regular tuples are returned.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
iterrows : Iterate over DataFrame rows as (index, Series) pairs.
|
||
|
iteritems : Iterate over (column name, Series) pairs.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
|
||
|
index=['a', 'b'])
|
||
|
>>> df
|
||
|
col1 col2
|
||
|
a 1 0.1
|
||
|
b 2 0.2
|
||
|
>>> for row in df.itertuples():
|
||
|
... print(row)
|
||
|
...
|
||
|
Pandas(Index='a', col1=1, col2=0.10000000000000001)
|
||
|
Pandas(Index='b', col1=2, col2=0.20000000000000001)
|
||
|
|
||
|
"""
|
||
|
arrays = []
|
||
|
fields = []
|
||
|
if index:
|
||
|
arrays.append(self.index)
|
||
|
fields.append("Index")
|
||
|
|
||
|
# use integer indexing because of possible duplicate column names
|
||
|
arrays.extend(self.iloc[:, k] for k in range(len(self.columns)))
|
||
|
|
||
|
# Python 3 supports at most 255 arguments to constructor, and
|
||
|
# things get slow with this many fields in Python 2
|
||
|
if name is not None and len(self.columns) + index < 256:
|
||
|
# `rename` is unsupported in Python 2.6
|
||
|
try:
|
||
|
itertuple = collections.namedtuple(name,
|
||
|
fields + list(self.columns),
|
||
|
rename=True)
|
||
|
return map(itertuple._make, zip(*arrays))
|
||
|
except Exception:
|
||
|
pass
|
||
|
|
||
|
# fallback to regular tuples
|
||
|
return zip(*arrays)
|
||
|
|
||
|
items = iteritems
|
||
|
|
||
|
def __len__(self):
|
||
|
"""Returns length of info axis, but here we use the index """
|
||
|
return len(self.index)
|
||
|
|
||
|
def dot(self, other):
|
||
|
"""
|
||
|
Matrix multiplication with DataFrame or Series objects. Can also be
|
||
|
called using `self @ other` in Python >= 3.5.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame or Series
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dot_product : DataFrame or Series
|
||
|
"""
|
||
|
if isinstance(other, (Series, DataFrame)):
|
||
|
common = self.columns.union(other.index)
|
||
|
if (len(common) > len(self.columns) or
|
||
|
len(common) > len(other.index)):
|
||
|
raise ValueError('matrices are not aligned')
|
||
|
|
||
|
left = self.reindex(columns=common, copy=False)
|
||
|
right = other.reindex(index=common, copy=False)
|
||
|
lvals = left.values
|
||
|
rvals = right.values
|
||
|
else:
|
||
|
left = self
|
||
|
lvals = self.values
|
||
|
rvals = np.asarray(other)
|
||
|
if lvals.shape[1] != rvals.shape[0]:
|
||
|
raise ValueError('Dot product shape mismatch, '
|
||
|
'{l} vs {r}'.format(l=lvals.shape,
|
||
|
r=rvals.shape))
|
||
|
|
||
|
if isinstance(other, DataFrame):
|
||
|
return self._constructor(np.dot(lvals, rvals), index=left.index,
|
||
|
columns=other.columns)
|
||
|
elif isinstance(other, Series):
|
||
|
return Series(np.dot(lvals, rvals), index=left.index)
|
||
|
elif isinstance(rvals, (np.ndarray, Index)):
|
||
|
result = np.dot(lvals, rvals)
|
||
|
if result.ndim == 2:
|
||
|
return self._constructor(result, index=left.index)
|
||
|
else:
|
||
|
return Series(result, index=left.index)
|
||
|
else: # pragma: no cover
|
||
|
raise TypeError('unsupported type: {oth}'.format(oth=type(other)))
|
||
|
|
||
|
def __matmul__(self, other):
|
||
|
""" Matrix multiplication using binary `@` operator in Python>=3.5 """
|
||
|
return self.dot(other)
|
||
|
|
||
|
def __rmatmul__(self, other):
|
||
|
""" Matrix multiplication using binary `@` operator in Python>=3.5 """
|
||
|
return self.T.dot(np.transpose(other)).T
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# IO methods (to / from other formats)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, data, orient='columns', dtype=None, columns=None):
|
||
|
"""
|
||
|
Construct DataFrame from dict of array-like or dicts.
|
||
|
|
||
|
Creates DataFrame object from dictionary by columns or by index
|
||
|
allowing dtype specification.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : dict
|
||
|
Of the form {field : array-like} or {field : dict}.
|
||
|
orient : {'columns', 'index'}, default 'columns'
|
||
|
The "orientation" of the data. If the keys of the passed dict
|
||
|
should be the columns of the resulting DataFrame, pass 'columns'
|
||
|
(default). Otherwise if the keys should be rows, pass 'index'.
|
||
|
dtype : dtype, default None
|
||
|
Data type to force, otherwise infer.
|
||
|
columns : list, default None
|
||
|
Column labels to use when ``orient='index'``. Raises a ValueError
|
||
|
if used with ``orient='columns'``.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pandas.DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.from_records : DataFrame from ndarray (structured
|
||
|
dtype), list of tuples, dict, or DataFrame
|
||
|
DataFrame : DataFrame object creation using constructor
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
By default the keys of the dict become the DataFrame columns:
|
||
|
|
||
|
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
|
||
|
>>> pd.DataFrame.from_dict(data)
|
||
|
col_1 col_2
|
||
|
0 3 a
|
||
|
1 2 b
|
||
|
2 1 c
|
||
|
3 0 d
|
||
|
|
||
|
Specify ``orient='index'`` to create the DataFrame using dictionary
|
||
|
keys as rows:
|
||
|
|
||
|
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
|
||
|
>>> pd.DataFrame.from_dict(data, orient='index')
|
||
|
0 1 2 3
|
||
|
row_1 3 2 1 0
|
||
|
row_2 a b c d
|
||
|
|
||
|
When using the 'index' orientation, the column names can be
|
||
|
specified manually:
|
||
|
|
||
|
>>> pd.DataFrame.from_dict(data, orient='index',
|
||
|
... columns=['A', 'B', 'C', 'D'])
|
||
|
A B C D
|
||
|
row_1 3 2 1 0
|
||
|
row_2 a b c d
|
||
|
"""
|
||
|
index = None
|
||
|
orient = orient.lower()
|
||
|
if orient == 'index':
|
||
|
if len(data) > 0:
|
||
|
# TODO speed up Series case
|
||
|
if isinstance(list(data.values())[0], (Series, dict)):
|
||
|
data = _from_nested_dict(data)
|
||
|
else:
|
||
|
data, index = list(data.values()), list(data.keys())
|
||
|
elif orient == 'columns':
|
||
|
if columns is not None:
|
||
|
raise ValueError("cannot use columns parameter with "
|
||
|
"orient='columns'")
|
||
|
else: # pragma: no cover
|
||
|
raise ValueError('only recognize index or columns for orient')
|
||
|
|
||
|
return cls(data, index=index, columns=columns, dtype=dtype)
|
||
|
|
||
|
def to_dict(self, orient='dict', into=dict):
|
||
|
"""
|
||
|
Convert the DataFrame to a dictionary.
|
||
|
|
||
|
The type of the key-value pairs can be customized with the parameters
|
||
|
(see below).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
|
||
|
Determines the type of the values of the dictionary.
|
||
|
|
||
|
- 'dict' (default) : dict like {column -> {index -> value}}
|
||
|
- 'list' : dict like {column -> [values]}
|
||
|
- 'series' : dict like {column -> Series(values)}
|
||
|
- 'split' : dict like
|
||
|
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
|
||
|
- 'records' : list like
|
||
|
[{column -> value}, ... , {column -> value}]
|
||
|
- 'index' : dict like {index -> {column -> value}}
|
||
|
|
||
|
Abbreviations are allowed. `s` indicates `series` and `sp`
|
||
|
indicates `split`.
|
||
|
|
||
|
into : class, default dict
|
||
|
The collections.Mapping subclass used for all Mappings
|
||
|
in the return value. Can be the actual class or an empty
|
||
|
instance of the mapping type you want. If you want a
|
||
|
collections.defaultdict, you must pass it initialized.
|
||
|
|
||
|
.. versionadded:: 0.21.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : collections.Mapping like {column -> {index -> value}}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.from_dict: create a DataFrame from a dictionary
|
||
|
DataFrame.to_json: convert a DataFrame to JSON format
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'col1': [1, 2],
|
||
|
... 'col2': [0.5, 0.75]},
|
||
|
... index=['a', 'b'])
|
||
|
>>> df
|
||
|
col1 col2
|
||
|
a 1 0.50
|
||
|
b 2 0.75
|
||
|
>>> df.to_dict()
|
||
|
{'col1': {'a': 1, 'b': 2}, 'col2': {'a': 0.5, 'b': 0.75}}
|
||
|
|
||
|
You can specify the return orientation.
|
||
|
|
||
|
>>> df.to_dict('series')
|
||
|
{'col1': a 1
|
||
|
b 2
|
||
|
Name: col1, dtype: int64,
|
||
|
'col2': a 0.50
|
||
|
b 0.75
|
||
|
Name: col2, dtype: float64}
|
||
|
|
||
|
>>> df.to_dict('split')
|
||
|
{'index': ['a', 'b'], 'columns': ['col1', 'col2'],
|
||
|
'data': [[1.0, 0.5], [2.0, 0.75]]}
|
||
|
|
||
|
>>> df.to_dict('records')
|
||
|
[{'col1': 1.0, 'col2': 0.5}, {'col1': 2.0, 'col2': 0.75}]
|
||
|
|
||
|
>>> df.to_dict('index')
|
||
|
{'a': {'col1': 1.0, 'col2': 0.5}, 'b': {'col1': 2.0, 'col2': 0.75}}
|
||
|
|
||
|
You can also specify the mapping type.
|
||
|
|
||
|
>>> from collections import OrderedDict, defaultdict
|
||
|
>>> df.to_dict(into=OrderedDict)
|
||
|
OrderedDict([('col1', OrderedDict([('a', 1), ('b', 2)])),
|
||
|
('col2', OrderedDict([('a', 0.5), ('b', 0.75)]))])
|
||
|
|
||
|
If you want a `defaultdict`, you need to initialize it:
|
||
|
|
||
|
>>> dd = defaultdict(list)
|
||
|
>>> df.to_dict('records', into=dd)
|
||
|
[defaultdict(<class 'list'>, {'col1': 1.0, 'col2': 0.5}),
|
||
|
defaultdict(<class 'list'>, {'col1': 2.0, 'col2': 0.75})]
|
||
|
"""
|
||
|
if not self.columns.is_unique:
|
||
|
warnings.warn("DataFrame columns are not unique, some "
|
||
|
"columns will be omitted.", UserWarning,
|
||
|
stacklevel=2)
|
||
|
# GH16122
|
||
|
into_c = com.standardize_mapping(into)
|
||
|
if orient.lower().startswith('d'):
|
||
|
return into_c(
|
||
|
(k, v.to_dict(into)) for k, v in compat.iteritems(self))
|
||
|
elif orient.lower().startswith('l'):
|
||
|
return into_c((k, v.tolist()) for k, v in compat.iteritems(self))
|
||
|
elif orient.lower().startswith('sp'):
|
||
|
return into_c((('index', self.index.tolist()),
|
||
|
('columns', self.columns.tolist()),
|
||
|
('data', lib.map_infer(self.values.ravel(),
|
||
|
com._maybe_box_datetimelike)
|
||
|
.reshape(self.values.shape).tolist())))
|
||
|
elif orient.lower().startswith('s'):
|
||
|
return into_c((k, com._maybe_box_datetimelike(v))
|
||
|
for k, v in compat.iteritems(self))
|
||
|
elif orient.lower().startswith('r'):
|
||
|
return [into_c((k, com._maybe_box_datetimelike(v))
|
||
|
for k, v in zip(self.columns, np.atleast_1d(row)))
|
||
|
for row in self.values]
|
||
|
elif orient.lower().startswith('i'):
|
||
|
return into_c((t[0], dict(zip(self.columns, t[1:])))
|
||
|
for t in self.itertuples())
|
||
|
else:
|
||
|
raise ValueError("orient '{o}' not understood".format(o=orient))
|
||
|
|
||
|
def to_gbq(self, destination_table, project_id, chunksize=None,
|
||
|
verbose=None, reauth=False, if_exists='fail', private_key=None,
|
||
|
auth_local_webserver=False, table_schema=None):
|
||
|
"""
|
||
|
Write a DataFrame to a Google BigQuery table.
|
||
|
|
||
|
This function requires the `pandas-gbq package
|
||
|
<https://pandas-gbq.readthedocs.io>`__.
|
||
|
|
||
|
Authentication to the Google BigQuery service is via OAuth 2.0.
|
||
|
|
||
|
- If ``private_key`` is provided, the library loads the JSON service
|
||
|
account credentials and uses those to authenticate.
|
||
|
|
||
|
- If no ``private_key`` is provided, the library tries `application
|
||
|
default credentials`_.
|
||
|
|
||
|
.. _application default credentials:
|
||
|
https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application
|
||
|
|
||
|
- If application default credentials are not found or cannot be used
|
||
|
with BigQuery, the library authenticates with user account
|
||
|
credentials. In this case, you will be asked to grant permissions
|
||
|
for product name 'pandas GBQ'.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
destination_table : str
|
||
|
Name of table to be written, in the form 'dataset.tablename'.
|
||
|
project_id : str
|
||
|
Google BigQuery Account project ID.
|
||
|
chunksize : int, optional
|
||
|
Number of rows to be inserted in each chunk from the dataframe.
|
||
|
Set to ``None`` to load the whole dataframe at once.
|
||
|
reauth : bool, default False
|
||
|
Force Google BigQuery to reauthenticate the user. This is useful
|
||
|
if multiple accounts are used.
|
||
|
if_exists : str, default 'fail'
|
||
|
Behavior when the destination table exists. Value can be one of:
|
||
|
|
||
|
``'fail'``
|
||
|
If table exists, do nothing.
|
||
|
``'replace'``
|
||
|
If table exists, drop it, recreate it, and insert data.
|
||
|
``'append'``
|
||
|
If table exists, insert data. Create if does not exist.
|
||
|
private_key : str, optional
|
||
|
Service account private key in JSON format. Can be file path
|
||
|
or string contents. This is useful for remote server
|
||
|
authentication (eg. Jupyter/IPython notebook on remote host).
|
||
|
auth_local_webserver : bool, default False
|
||
|
Use the `local webserver flow`_ instead of the `console flow`_
|
||
|
when getting user credentials.
|
||
|
|
||
|
.. _local webserver flow:
|
||
|
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
|
||
|
.. _console flow:
|
||
|
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
|
||
|
|
||
|
*New in version 0.2.0 of pandas-gbq*.
|
||
|
table_schema : list of dicts, optional
|
||
|
List of BigQuery table fields to which according DataFrame
|
||
|
columns conform to, e.g. ``[{'name': 'col1', 'type':
|
||
|
'STRING'},...]``. If schema is not provided, it will be
|
||
|
generated according to dtypes of DataFrame columns. See
|
||
|
BigQuery API documentation on available names of a field.
|
||
|
|
||
|
*New in version 0.3.1 of pandas-gbq*.
|
||
|
verbose : boolean, deprecated
|
||
|
*Deprecated in Pandas-GBQ 0.4.0.* Use the `logging module
|
||
|
to adjust verbosity instead
|
||
|
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas_gbq.to_gbq : This function in the pandas-gbq library.
|
||
|
pandas.read_gbq : Read a DataFrame from Google BigQuery.
|
||
|
"""
|
||
|
from pandas.io import gbq
|
||
|
return gbq.to_gbq(
|
||
|
self, destination_table, project_id, chunksize=chunksize,
|
||
|
verbose=verbose, reauth=reauth, if_exists=if_exists,
|
||
|
private_key=private_key, auth_local_webserver=auth_local_webserver,
|
||
|
table_schema=table_schema)
|
||
|
|
||
|
@classmethod
|
||
|
def from_records(cls, data, index=None, exclude=None, columns=None,
|
||
|
coerce_float=False, nrows=None):
|
||
|
"""
|
||
|
Convert structured or record ndarray to DataFrame
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : ndarray (structured dtype), list of tuples, dict, or DataFrame
|
||
|
index : string, list of fields, array-like
|
||
|
Field of array to use as the index, alternately a specific set of
|
||
|
input labels to use
|
||
|
exclude : sequence, default None
|
||
|
Columns or fields to exclude
|
||
|
columns : sequence, default None
|
||
|
Column names to use. If the passed data do not have names
|
||
|
associated with them, this argument provides names for the
|
||
|
columns. Otherwise this argument indicates the order of the columns
|
||
|
in the result (any names not found in the data will become all-NA
|
||
|
columns)
|
||
|
coerce_float : boolean, default False
|
||
|
Attempt to convert values of non-string, non-numeric objects (like
|
||
|
decimal.Decimal) to floating point, useful for SQL result sets
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : DataFrame
|
||
|
"""
|
||
|
|
||
|
# Make a copy of the input columns so we can modify it
|
||
|
if columns is not None:
|
||
|
columns = _ensure_index(columns)
|
||
|
|
||
|
if is_iterator(data):
|
||
|
if nrows == 0:
|
||
|
return cls()
|
||
|
|
||
|
try:
|
||
|
first_row = next(data)
|
||
|
except StopIteration:
|
||
|
return cls(index=index, columns=columns)
|
||
|
|
||
|
dtype = None
|
||
|
if hasattr(first_row, 'dtype') and first_row.dtype.names:
|
||
|
dtype = first_row.dtype
|
||
|
|
||
|
values = [first_row]
|
||
|
|
||
|
if nrows is None:
|
||
|
values += data
|
||
|
else:
|
||
|
values.extend(itertools.islice(data, nrows - 1))
|
||
|
|
||
|
if dtype is not None:
|
||
|
data = np.array(values, dtype=dtype)
|
||
|
else:
|
||
|
data = values
|
||
|
|
||
|
if isinstance(data, dict):
|
||
|
if columns is None:
|
||
|
columns = arr_columns = _ensure_index(sorted(data))
|
||
|
arrays = [data[k] for k in columns]
|
||
|
else:
|
||
|
arrays = []
|
||
|
arr_columns = []
|
||
|
for k, v in compat.iteritems(data):
|
||
|
if k in columns:
|
||
|
arr_columns.append(k)
|
||
|
arrays.append(v)
|
||
|
|
||
|
arrays, arr_columns = _reorder_arrays(arrays, arr_columns,
|
||
|
columns)
|
||
|
|
||
|
elif isinstance(data, (np.ndarray, DataFrame)):
|
||
|
arrays, columns = _to_arrays(data, columns)
|
||
|
if columns is not None:
|
||
|
columns = _ensure_index(columns)
|
||
|
arr_columns = columns
|
||
|
else:
|
||
|
arrays, arr_columns = _to_arrays(data, columns,
|
||
|
coerce_float=coerce_float)
|
||
|
|
||
|
arr_columns = _ensure_index(arr_columns)
|
||
|
if columns is not None:
|
||
|
columns = _ensure_index(columns)
|
||
|
else:
|
||
|
columns = arr_columns
|
||
|
|
||
|
if exclude is None:
|
||
|
exclude = set()
|
||
|
else:
|
||
|
exclude = set(exclude)
|
||
|
|
||
|
result_index = None
|
||
|
if index is not None:
|
||
|
if (isinstance(index, compat.string_types) or
|
||
|
not hasattr(index, "__iter__")):
|
||
|
i = columns.get_loc(index)
|
||
|
exclude.add(index)
|
||
|
if len(arrays) > 0:
|
||
|
result_index = Index(arrays[i], name=index)
|
||
|
else:
|
||
|
result_index = Index([], name=index)
|
||
|
else:
|
||
|
try:
|
||
|
to_remove = [arr_columns.get_loc(field) for field in index]
|
||
|
index_data = [arrays[i] for i in to_remove]
|
||
|
result_index = _ensure_index_from_sequences(index_data,
|
||
|
names=index)
|
||
|
|
||
|
exclude.update(index)
|
||
|
except Exception:
|
||
|
result_index = index
|
||
|
|
||
|
if any(exclude):
|
||
|
arr_exclude = [x for x in exclude if x in arr_columns]
|
||
|
to_remove = [arr_columns.get_loc(col) for col in arr_exclude]
|
||
|
arrays = [v for i, v in enumerate(arrays) if i not in to_remove]
|
||
|
|
||
|
arr_columns = arr_columns.drop(arr_exclude)
|
||
|
columns = columns.drop(exclude)
|
||
|
|
||
|
mgr = _arrays_to_mgr(arrays, arr_columns, result_index, columns)
|
||
|
|
||
|
return cls(mgr)
|
||
|
|
||
|
def to_records(self, index=True, convert_datetime64=None):
|
||
|
"""
|
||
|
Convert DataFrame to a NumPy record array.
|
||
|
|
||
|
Index will be put in the 'index' field of the record array if
|
||
|
requested.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : boolean, default True
|
||
|
Include index in resulting record array, stored in 'index' field.
|
||
|
convert_datetime64 : boolean, default None
|
||
|
.. deprecated:: 0.23.0
|
||
|
|
||
|
Whether to convert the index to datetime.datetime if it is a
|
||
|
DatetimeIndex.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : numpy.recarray
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.from_records: convert structured or record ndarray
|
||
|
to DataFrame.
|
||
|
numpy.recarray: ndarray that allows field access using
|
||
|
attributes, analogous to typed columns in a
|
||
|
spreadsheet.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
|
||
|
... index=['a', 'b'])
|
||
|
>>> df
|
||
|
A B
|
||
|
a 1 0.50
|
||
|
b 2 0.75
|
||
|
>>> df.to_records()
|
||
|
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
|
||
|
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
|
||
|
|
||
|
The index can be excluded from the record array:
|
||
|
|
||
|
>>> df.to_records(index=False)
|
||
|
rec.array([(1, 0.5 ), (2, 0.75)],
|
||
|
dtype=[('A', '<i8'), ('B', '<f8')])
|
||
|
|
||
|
By default, timestamps are converted to `datetime.datetime`:
|
||
|
|
||
|
>>> df.index = pd.date_range('2018-01-01 09:00', periods=2, freq='min')
|
||
|
>>> df
|
||
|
A B
|
||
|
2018-01-01 09:00:00 1 0.50
|
||
|
2018-01-01 09:01:00 2 0.75
|
||
|
>>> df.to_records()
|
||
|
rec.array([(datetime.datetime(2018, 1, 1, 9, 0), 1, 0.5 ),
|
||
|
(datetime.datetime(2018, 1, 1, 9, 1), 2, 0.75)],
|
||
|
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
|
||
|
|
||
|
The timestamp conversion can be disabled so NumPy's datetime64
|
||
|
data type is used instead:
|
||
|
|
||
|
>>> df.to_records(convert_datetime64=False)
|
||
|
rec.array([('2018-01-01T09:00:00.000000000', 1, 0.5 ),
|
||
|
('2018-01-01T09:01:00.000000000', 2, 0.75)],
|
||
|
dtype=[('index', '<M8[ns]'), ('A', '<i8'), ('B', '<f8')])
|
||
|
"""
|
||
|
|
||
|
if convert_datetime64 is not None:
|
||
|
warnings.warn("The 'convert_datetime64' parameter is "
|
||
|
"deprecated and will be removed in a future "
|
||
|
"version",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
if index:
|
||
|
if is_datetime64_any_dtype(self.index) and convert_datetime64:
|
||
|
ix_vals = [self.index.to_pydatetime()]
|
||
|
else:
|
||
|
if isinstance(self.index, MultiIndex):
|
||
|
# array of tuples to numpy cols. copy copy copy
|
||
|
ix_vals = lmap(np.array, zip(*self.index.values))
|
||
|
else:
|
||
|
ix_vals = [self.index.values]
|
||
|
|
||
|
arrays = ix_vals + [self[c].get_values() for c in self.columns]
|
||
|
|
||
|
count = 0
|
||
|
index_names = list(self.index.names)
|
||
|
if isinstance(self.index, MultiIndex):
|
||
|
for i, n in enumerate(index_names):
|
||
|
if n is None:
|
||
|
index_names[i] = 'level_%d' % count
|
||
|
count += 1
|
||
|
elif index_names[0] is None:
|
||
|
index_names = ['index']
|
||
|
names = (lmap(compat.text_type, index_names) +
|
||
|
lmap(compat.text_type, self.columns))
|
||
|
else:
|
||
|
arrays = [self[c].get_values() for c in self.columns]
|
||
|
names = lmap(compat.text_type, self.columns)
|
||
|
|
||
|
formats = [v.dtype for v in arrays]
|
||
|
return np.rec.fromarrays(
|
||
|
arrays,
|
||
|
dtype={'names': names, 'formats': formats}
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_items(cls, items, columns=None, orient='columns'):
|
||
|
"""Construct a dataframe from a list of tuples
|
||
|
|
||
|
.. deprecated:: 0.23.0
|
||
|
`from_items` is deprecated and will be removed in a future version.
|
||
|
Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>`
|
||
|
instead.
|
||
|
:meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>`
|
||
|
may be used to preserve the key order.
|
||
|
|
||
|
Convert (key, value) pairs to DataFrame. The keys will be the axis
|
||
|
index (usually the columns, but depends on the specified
|
||
|
orientation). The values should be arrays or Series.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
items : sequence of (key, value) pairs
|
||
|
Values should be arrays or Series.
|
||
|
columns : sequence of column labels, optional
|
||
|
Must be passed if orient='index'.
|
||
|
orient : {'columns', 'index'}, default 'columns'
|
||
|
The "orientation" of the data. If the keys of the
|
||
|
input correspond to column labels, pass 'columns'
|
||
|
(default). Otherwise if the keys correspond to the index,
|
||
|
pass 'index'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frame : DataFrame
|
||
|
"""
|
||
|
|
||
|
warnings.warn("from_items is deprecated. Please use "
|
||
|
"DataFrame.from_dict(dict(items), ...) instead. "
|
||
|
"DataFrame.from_dict(OrderedDict(items)) may be used to "
|
||
|
"preserve the key order.",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
keys, values = lzip(*items)
|
||
|
|
||
|
if orient == 'columns':
|
||
|
if columns is not None:
|
||
|
columns = _ensure_index(columns)
|
||
|
|
||
|
idict = dict(items)
|
||
|
if len(idict) < len(items):
|
||
|
if not columns.equals(_ensure_index(keys)):
|
||
|
raise ValueError('With non-unique item names, passed '
|
||
|
'columns must be identical')
|
||
|
arrays = values
|
||
|
else:
|
||
|
arrays = [idict[k] for k in columns if k in idict]
|
||
|
else:
|
||
|
columns = _ensure_index(keys)
|
||
|
arrays = values
|
||
|
|
||
|
# GH 17312
|
||
|
# Provide more informative error msg when scalar values passed
|
||
|
try:
|
||
|
return cls._from_arrays(arrays, columns, None)
|
||
|
|
||
|
except ValueError:
|
||
|
if not is_nested_list_like(values):
|
||
|
raise ValueError('The value in each (key, value) pair '
|
||
|
'must be an array, Series, or dict')
|
||
|
|
||
|
elif orient == 'index':
|
||
|
if columns is None:
|
||
|
raise TypeError("Must pass columns with orient='index'")
|
||
|
|
||
|
keys = _ensure_index(keys)
|
||
|
|
||
|
# GH 17312
|
||
|
# Provide more informative error msg when scalar values passed
|
||
|
try:
|
||
|
arr = np.array(values, dtype=object).T
|
||
|
data = [lib.maybe_convert_objects(v) for v in arr]
|
||
|
return cls._from_arrays(data, columns, keys)
|
||
|
|
||
|
except TypeError:
|
||
|
if not is_nested_list_like(values):
|
||
|
raise ValueError('The value in each (key, value) pair '
|
||
|
'must be an array, Series, or dict')
|
||
|
|
||
|
else: # pragma: no cover
|
||
|
raise ValueError("'orient' must be either 'columns' or 'index'")
|
||
|
|
||
|
@classmethod
|
||
|
def _from_arrays(cls, arrays, columns, index, dtype=None):
|
||
|
mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype)
|
||
|
return cls(mgr)
|
||
|
|
||
|
@classmethod
|
||
|
def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True,
|
||
|
encoding=None, tupleize_cols=None,
|
||
|
infer_datetime_format=False):
|
||
|
"""Read CSV file.
|
||
|
|
||
|
.. deprecated:: 0.21.0
|
||
|
Use :func:`pandas.read_csv` instead.
|
||
|
|
||
|
It is preferable to use the more powerful :func:`pandas.read_csv`
|
||
|
for most general purposes, but ``from_csv`` makes for an easy
|
||
|
roundtrip to and from a file (the exact counterpart of
|
||
|
``to_csv``), especially with a DataFrame of time series data.
|
||
|
|
||
|
This method only differs from the preferred :func:`pandas.read_csv`
|
||
|
in some defaults:
|
||
|
|
||
|
- `index_col` is ``0`` instead of ``None`` (take first column as index
|
||
|
by default)
|
||
|
- `parse_dates` is ``True`` instead of ``False`` (try parsing the index
|
||
|
as datetime by default)
|
||
|
|
||
|
So a ``pd.DataFrame.from_csv(path)`` can be replaced by
|
||
|
``pd.read_csv(path, index_col=0, parse_dates=True)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path : string file path or file handle / StringIO
|
||
|
header : int, default 0
|
||
|
Row to use as header (skip prior rows)
|
||
|
sep : string, default ','
|
||
|
Field delimiter
|
||
|
index_col : int or sequence, default 0
|
||
|
Column to use for index. If a sequence is given, a MultiIndex
|
||
|
is used. Different default from read_table
|
||
|
parse_dates : boolean, default True
|
||
|
Parse dates. Different default from read_table
|
||
|
tupleize_cols : boolean, default False
|
||
|
write multi_index columns as a list of tuples (if True)
|
||
|
or new (expanded format) if False)
|
||
|
infer_datetime_format: boolean, default False
|
||
|
If True and `parse_dates` is True for a column, try to infer the
|
||
|
datetime format based on the first datetime string. If the format
|
||
|
can be inferred, there often will be a large parsing speed-up.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
pandas.read_csv
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : DataFrame
|
||
|
|
||
|
"""
|
||
|
|
||
|
warnings.warn("from_csv is deprecated. Please use read_csv(...) "
|
||
|
"instead. Note that some of the default arguments are "
|
||
|
"different, so please refer to the documentation "
|
||
|
"for from_csv when changing your function calls",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
|
||
|
from pandas.io.parsers import read_table
|
||
|
return read_table(path, header=header, sep=sep,
|
||
|
parse_dates=parse_dates, index_col=index_col,
|
||
|
encoding=encoding, tupleize_cols=tupleize_cols,
|
||
|
infer_datetime_format=infer_datetime_format)
|
||
|
|
||
|
def to_sparse(self, fill_value=None, kind='block'):
|
||
|
"""
|
||
|
Convert to SparseDataFrame
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fill_value : float, default NaN
|
||
|
kind : {'block', 'integer'}
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : SparseDataFrame
|
||
|
"""
|
||
|
from pandas.core.sparse.frame import SparseDataFrame
|
||
|
return SparseDataFrame(self._series, index=self.index,
|
||
|
columns=self.columns, default_kind=kind,
|
||
|
default_fill_value=fill_value)
|
||
|
|
||
|
def to_panel(self):
|
||
|
"""
|
||
|
Transform long (stacked) format (DataFrame) into wide (3D, Panel)
|
||
|
format.
|
||
|
|
||
|
.. deprecated:: 0.20.0
|
||
|
|
||
|
Currently the index of the DataFrame must be a 2-level MultiIndex. This
|
||
|
may be generalized later
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
panel : Panel
|
||
|
"""
|
||
|
# only support this kind for now
|
||
|
if (not isinstance(self.index, MultiIndex) or # pragma: no cover
|
||
|
len(self.index.levels) != 2):
|
||
|
raise NotImplementedError('Only 2-level MultiIndex are supported.')
|
||
|
|
||
|
if not self.index.is_unique:
|
||
|
raise ValueError("Can't convert non-uniquely indexed "
|
||
|
"DataFrame to Panel")
|
||
|
|
||
|
self._consolidate_inplace()
|
||
|
|
||
|
# minor axis must be sorted
|
||
|
if self.index.lexsort_depth < 2:
|
||
|
selfsorted = self.sort_index(level=0)
|
||
|
else:
|
||
|
selfsorted = self
|
||
|
|
||
|
major_axis, minor_axis = selfsorted.index.levels
|
||
|
major_labels, minor_labels = selfsorted.index.labels
|
||
|
shape = len(major_axis), len(minor_axis)
|
||
|
|
||
|
# preserve names, if any
|
||
|
major_axis = major_axis.copy()
|
||
|
major_axis.name = self.index.names[0]
|
||
|
|
||
|
minor_axis = minor_axis.copy()
|
||
|
minor_axis.name = self.index.names[1]
|
||
|
|
||
|
# create new axes
|
||
|
new_axes = [selfsorted.columns, major_axis, minor_axis]
|
||
|
|
||
|
# create new manager
|
||
|
new_mgr = selfsorted._data.reshape_nd(axes=new_axes,
|
||
|
labels=[major_labels,
|
||
|
minor_labels],
|
||
|
shape=shape,
|
||
|
ref_items=selfsorted.columns)
|
||
|
|
||
|
return self._constructor_expanddim(new_mgr)
|
||
|
|
||
|
def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None,
|
||
|
columns=None, header=True, index=True, index_label=None,
|
||
|
mode='w', encoding=None, compression=None, quoting=None,
|
||
|
quotechar='"', line_terminator='\n', chunksize=None,
|
||
|
tupleize_cols=None, date_format=None, doublequote=True,
|
||
|
escapechar=None, decimal='.'):
|
||
|
r"""Write DataFrame to a comma-separated values (csv) file
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path_or_buf : string or file handle, default None
|
||
|
File path or object, if None is provided the result is returned as
|
||
|
a string.
|
||
|
sep : character, default ','
|
||
|
Field delimiter for the output file.
|
||
|
na_rep : string, default ''
|
||
|
Missing data representation
|
||
|
float_format : string, default None
|
||
|
Format string for floating point numbers
|
||
|
columns : sequence, optional
|
||
|
Columns to write
|
||
|
header : boolean or list of string, default True
|
||
|
Write out the column names. If a list of strings is given it is
|
||
|
assumed to be aliases for the column names
|
||
|
index : boolean, default True
|
||
|
Write row names (index)
|
||
|
index_label : string or sequence, or False, default None
|
||
|
Column label for index column(s) if desired. If None is given, and
|
||
|
`header` and `index` are True, then the index names are used. A
|
||
|
sequence should be given if the DataFrame uses MultiIndex. If
|
||
|
False do not print fields for index names. Use index_label=False
|
||
|
for easier importing in R
|
||
|
mode : str
|
||
|
Python write mode, default 'w'
|
||
|
encoding : string, optional
|
||
|
A string representing the encoding to use in the output file,
|
||
|
defaults to 'ascii' on Python 2 and 'utf-8' on Python 3.
|
||
|
compression : string, optional
|
||
|
A string representing the compression to use in the output file.
|
||
|
Allowed values are 'gzip', 'bz2', 'zip', 'xz'. This input is only
|
||
|
used when the first argument is a filename.
|
||
|
line_terminator : string, default ``'\n'``
|
||
|
The newline character or character sequence to use in the output
|
||
|
file
|
||
|
quoting : optional constant from csv module
|
||
|
defaults to csv.QUOTE_MINIMAL. If you have set a `float_format`
|
||
|
then floats are converted to strings and thus csv.QUOTE_NONNUMERIC
|
||
|
will treat them as non-numeric
|
||
|
quotechar : string (length 1), default '\"'
|
||
|
character used to quote fields
|
||
|
doublequote : boolean, default True
|
||
|
Control quoting of `quotechar` inside a field
|
||
|
escapechar : string (length 1), default None
|
||
|
character used to escape `sep` and `quotechar` when appropriate
|
||
|
chunksize : int or None
|
||
|
rows to write at a time
|
||
|
tupleize_cols : boolean, default False
|
||
|
.. deprecated:: 0.21.0
|
||
|
This argument will be removed and will always write each row
|
||
|
of the multi-index as a separate row in the CSV file.
|
||
|
|
||
|
Write MultiIndex columns as a list of tuples (if True) or in
|
||
|
the new, expanded format, where each MultiIndex column is a row
|
||
|
in the CSV (if False).
|
||
|
date_format : string, default None
|
||
|
Format string for datetime objects
|
||
|
decimal: string, default '.'
|
||
|
Character recognized as decimal separator. E.g. use ',' for
|
||
|
European data
|
||
|
|
||
|
"""
|
||
|
|
||
|
if tupleize_cols is not None:
|
||
|
warnings.warn("The 'tupleize_cols' parameter is deprecated and "
|
||
|
"will be removed in a future version",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
else:
|
||
|
tupleize_cols = False
|
||
|
|
||
|
from pandas.io.formats.csvs import CSVFormatter
|
||
|
formatter = CSVFormatter(self, path_or_buf,
|
||
|
line_terminator=line_terminator, sep=sep,
|
||
|
encoding=encoding,
|
||
|
compression=compression, quoting=quoting,
|
||
|
na_rep=na_rep, float_format=float_format,
|
||
|
cols=columns, header=header, index=index,
|
||
|
index_label=index_label, mode=mode,
|
||
|
chunksize=chunksize, quotechar=quotechar,
|
||
|
tupleize_cols=tupleize_cols,
|
||
|
date_format=date_format,
|
||
|
doublequote=doublequote,
|
||
|
escapechar=escapechar, decimal=decimal)
|
||
|
formatter.save()
|
||
|
|
||
|
if path_or_buf is None:
|
||
|
return formatter.path_or_buf.getvalue()
|
||
|
|
||
|
@Appender(_shared_docs['to_excel'] % _shared_doc_kwargs)
|
||
|
def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='',
|
||
|
float_format=None, columns=None, header=True, index=True,
|
||
|
index_label=None, startrow=0, startcol=0, engine=None,
|
||
|
merge_cells=True, encoding=None, inf_rep='inf', verbose=True,
|
||
|
freeze_panes=None):
|
||
|
|
||
|
from pandas.io.formats.excel import ExcelFormatter
|
||
|
formatter = ExcelFormatter(self, na_rep=na_rep, cols=columns,
|
||
|
header=header,
|
||
|
float_format=float_format, index=index,
|
||
|
index_label=index_label,
|
||
|
merge_cells=merge_cells,
|
||
|
inf_rep=inf_rep)
|
||
|
formatter.write(excel_writer, sheet_name=sheet_name, startrow=startrow,
|
||
|
startcol=startcol, freeze_panes=freeze_panes,
|
||
|
engine=engine)
|
||
|
|
||
|
def to_stata(self, fname, convert_dates=None, write_index=True,
|
||
|
encoding="latin-1", byteorder=None, time_stamp=None,
|
||
|
data_label=None, variable_labels=None, version=114,
|
||
|
convert_strl=None):
|
||
|
"""
|
||
|
Export Stata binary dta files.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : path (string), buffer or path object
|
||
|
string, path object (pathlib.Path or py._path.local.LocalPath) or
|
||
|
object implementing a binary write() functions. If using a buffer
|
||
|
then the buffer will not be automatically closed after the file
|
||
|
data has been written.
|
||
|
convert_dates : dict
|
||
|
Dictionary mapping columns containing datetime types to stata
|
||
|
internal format to use when writing the dates. Options are 'tc',
|
||
|
'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
|
||
|
or a name. Datetime columns that do not have a conversion type
|
||
|
specified will be converted to 'tc'. Raises NotImplementedError if
|
||
|
a datetime column has timezone information.
|
||
|
write_index : bool
|
||
|
Write the index to Stata dataset.
|
||
|
encoding : str
|
||
|
Default is latin-1. Unicode is not supported.
|
||
|
byteorder : str
|
||
|
Can be ">", "<", "little", or "big". default is `sys.byteorder`.
|
||
|
time_stamp : datetime
|
||
|
A datetime to use as file creation date. Default is the current
|
||
|
time.
|
||
|
data_label : str
|
||
|
A label for the data set. Must be 80 characters or smaller.
|
||
|
variable_labels : dict
|
||
|
Dictionary containing columns as keys and variable labels as
|
||
|
values. Each label must be 80 characters or smaller.
|
||
|
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
version : {114, 117}
|
||
|
Version to use in the output dta file. Version 114 can be used
|
||
|
read by Stata 10 and later. Version 117 can be read by Stata 13
|
||
|
or later. Version 114 limits string variables to 244 characters or
|
||
|
fewer while 117 allows strings with lengths up to 2,000,000
|
||
|
characters.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
convert_strl : list, optional
|
||
|
List of column names to convert to string columns to Stata StrL
|
||
|
format. Only available if version is 117. Storing strings in the
|
||
|
StrL format can produce smaller dta files if strings have more than
|
||
|
8 characters and values are repeated.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NotImplementedError
|
||
|
* If datetimes contain timezone information
|
||
|
* Column dtype is not representable in Stata
|
||
|
ValueError
|
||
|
* Columns listed in convert_dates are neither datetime64[ns]
|
||
|
or datetime.datetime
|
||
|
* Column listed in convert_dates is not in DataFrame
|
||
|
* Categorical label contains more than 32,000 characters
|
||
|
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.read_stata : Import Stata data files
|
||
|
pandas.io.stata.StataWriter : low-level writer for Stata data files
|
||
|
pandas.io.stata.StataWriter117 : low-level writer for version 117 files
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> data.to_stata('./data_file.dta')
|
||
|
|
||
|
Or with dates
|
||
|
|
||
|
>>> data.to_stata('./date_data_file.dta', {2 : 'tw'})
|
||
|
|
||
|
Alternatively you can create an instance of the StataWriter class
|
||
|
|
||
|
>>> writer = StataWriter('./data_file.dta', data)
|
||
|
>>> writer.write_file()
|
||
|
|
||
|
With dates:
|
||
|
|
||
|
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
|
||
|
>>> writer.write_file()
|
||
|
"""
|
||
|
kwargs = {}
|
||
|
if version not in (114, 117):
|
||
|
raise ValueError('Only formats 114 and 117 supported.')
|
||
|
if version == 114:
|
||
|
if convert_strl is not None:
|
||
|
raise ValueError('strl support is only available when using '
|
||
|
'format 117')
|
||
|
from pandas.io.stata import StataWriter as statawriter
|
||
|
else:
|
||
|
from pandas.io.stata import StataWriter117 as statawriter
|
||
|
kwargs['convert_strl'] = convert_strl
|
||
|
|
||
|
writer = statawriter(fname, self, convert_dates=convert_dates,
|
||
|
encoding=encoding, byteorder=byteorder,
|
||
|
time_stamp=time_stamp, data_label=data_label,
|
||
|
write_index=write_index,
|
||
|
variable_labels=variable_labels, **kwargs)
|
||
|
writer.write_file()
|
||
|
|
||
|
def to_feather(self, fname):
|
||
|
"""
|
||
|
write out the binary feather-format for DataFrames
|
||
|
|
||
|
.. versionadded:: 0.20.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str
|
||
|
string file path
|
||
|
|
||
|
"""
|
||
|
from pandas.io.feather_format import to_feather
|
||
|
to_feather(self, fname)
|
||
|
|
||
|
def to_parquet(self, fname, engine='auto', compression='snappy',
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Write a DataFrame to the binary parquet format.
|
||
|
|
||
|
.. versionadded:: 0.21.0
|
||
|
|
||
|
This function writes the dataframe as a `parquet file
|
||
|
<https://parquet.apache.org/>`_. You can choose different parquet
|
||
|
backends, and have the option of compression. See
|
||
|
:ref:`the user guide <io.parquet>` for more details.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str
|
||
|
String file path.
|
||
|
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
|
||
|
Parquet library to use. If 'auto', then the option
|
||
|
``io.parquet.engine`` is used. The default ``io.parquet.engine``
|
||
|
behavior is to try 'pyarrow', falling back to 'fastparquet' if
|
||
|
'pyarrow' is unavailable.
|
||
|
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
|
||
|
Name of the compression to use. Use ``None`` for no compression.
|
||
|
**kwargs
|
||
|
Additional arguments passed to the parquet library. See
|
||
|
:ref:`pandas io <io.parquet>` for more details.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
read_parquet : Read a parquet file.
|
||
|
DataFrame.to_csv : Write a csv file.
|
||
|
DataFrame.to_sql : Write to a sql table.
|
||
|
DataFrame.to_hdf : Write to hdf.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function requires either the `fastparquet
|
||
|
<https://pypi.org/project/fastparquet>`_ or `pyarrow
|
||
|
<https://arrow.apache.org/docs/python/>`_ library.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
|
||
|
>>> df.to_parquet('df.parquet.gzip', compression='gzip')
|
||
|
>>> pd.read_parquet('df.parquet.gzip')
|
||
|
col1 col2
|
||
|
0 1 3
|
||
|
1 2 4
|
||
|
"""
|
||
|
from pandas.io.parquet import to_parquet
|
||
|
to_parquet(self, fname, engine,
|
||
|
compression=compression, **kwargs)
|
||
|
|
||
|
@Substitution(header='Write out the column names. If a list of strings '
|
||
|
'is given, it is assumed to be aliases for the '
|
||
|
'column names')
|
||
|
@Appender(fmt.docstring_to_string, indents=1)
|
||
|
def to_string(self, buf=None, columns=None, col_space=None, header=True,
|
||
|
index=True, na_rep='NaN', formatters=None, float_format=None,
|
||
|
sparsify=None, index_names=True, justify=None,
|
||
|
line_width=None, max_rows=None, max_cols=None,
|
||
|
show_dimensions=False):
|
||
|
"""
|
||
|
Render a DataFrame to a console-friendly tabular output.
|
||
|
"""
|
||
|
|
||
|
formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns,
|
||
|
col_space=col_space, na_rep=na_rep,
|
||
|
formatters=formatters,
|
||
|
float_format=float_format,
|
||
|
sparsify=sparsify, justify=justify,
|
||
|
index_names=index_names,
|
||
|
header=header, index=index,
|
||
|
line_width=line_width,
|
||
|
max_rows=max_rows,
|
||
|
max_cols=max_cols,
|
||
|
show_dimensions=show_dimensions)
|
||
|
formatter.to_string()
|
||
|
|
||
|
if buf is None:
|
||
|
result = formatter.buf.getvalue()
|
||
|
return result
|
||
|
|
||
|
@Substitution(header='whether to print column labels, default True')
|
||
|
@Appender(fmt.docstring_to_string, indents=1)
|
||
|
def to_html(self, buf=None, columns=None, col_space=None, header=True,
|
||
|
index=True, na_rep='NaN', formatters=None, float_format=None,
|
||
|
sparsify=None, index_names=True, justify=None, bold_rows=True,
|
||
|
classes=None, escape=True, max_rows=None, max_cols=None,
|
||
|
show_dimensions=False, notebook=False, decimal='.',
|
||
|
border=None, table_id=None):
|
||
|
"""
|
||
|
Render a DataFrame as an HTML table.
|
||
|
|
||
|
`to_html`-specific options:
|
||
|
|
||
|
bold_rows : boolean, default True
|
||
|
Make the row labels bold in the output
|
||
|
classes : str or list or tuple, default None
|
||
|
CSS class(es) to apply to the resulting html table
|
||
|
escape : boolean, default True
|
||
|
Convert the characters <, >, and & to HTML-safe sequences.
|
||
|
max_rows : int, optional
|
||
|
Maximum number of rows to show before truncating. If None, show
|
||
|
all.
|
||
|
max_cols : int, optional
|
||
|
Maximum number of columns to show before truncating. If None, show
|
||
|
all.
|
||
|
decimal : string, default '.'
|
||
|
Character recognized as decimal separator, e.g. ',' in Europe
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
border : int
|
||
|
A ``border=border`` attribute is included in the opening
|
||
|
`<table>` tag. Default ``pd.options.html.border``.
|
||
|
|
||
|
.. versionadded:: 0.19.0
|
||
|
|
||
|
table_id : str, optional
|
||
|
A css id is included in the opening `<table>` tag if specified.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
"""
|
||
|
|
||
|
if (justify is not None and
|
||
|
justify not in fmt._VALID_JUSTIFY_PARAMETERS):
|
||
|
raise ValueError("Invalid value for justify parameter")
|
||
|
|
||
|
formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns,
|
||
|
col_space=col_space, na_rep=na_rep,
|
||
|
formatters=formatters,
|
||
|
float_format=float_format,
|
||
|
sparsify=sparsify, justify=justify,
|
||
|
index_names=index_names,
|
||
|
header=header, index=index,
|
||
|
bold_rows=bold_rows, escape=escape,
|
||
|
max_rows=max_rows,
|
||
|
max_cols=max_cols,
|
||
|
show_dimensions=show_dimensions,
|
||
|
decimal=decimal, table_id=table_id)
|
||
|
# TODO: a generic formatter wld b in DataFrameFormatter
|
||
|
formatter.to_html(classes=classes, notebook=notebook, border=border)
|
||
|
|
||
|
if buf is None:
|
||
|
return formatter.buf.getvalue()
|
||
|
|
||
|
def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None,
|
||
|
null_counts=None):
|
||
|
"""
|
||
|
Print a concise summary of a DataFrame.
|
||
|
|
||
|
This method prints information about a DataFrame including
|
||
|
the index dtype and column dtypes, non-null values and memory usage.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
verbose : bool, optional
|
||
|
Whether to print the full summary. By default, the setting in
|
||
|
``pandas.options.display.max_info_columns`` is followed.
|
||
|
buf : writable buffer, defaults to sys.stdout
|
||
|
Where to send the output. By default, the output is printed to
|
||
|
sys.stdout. Pass a writable buffer if you need to further process
|
||
|
the output.
|
||
|
max_cols : int, optional
|
||
|
When to switch from the verbose to the truncated output. If the
|
||
|
DataFrame has more than `max_cols` columns, the truncated output
|
||
|
is used. By default, the setting in
|
||
|
``pandas.options.display.max_info_columns`` is used.
|
||
|
memory_usage : bool, str, optional
|
||
|
Specifies whether total memory usage of the DataFrame
|
||
|
elements (including the index) should be displayed. By default,
|
||
|
this follows the ``pandas.options.display.memory_usage`` setting.
|
||
|
|
||
|
True always show memory usage. False never shows memory usage.
|
||
|
A value of 'deep' is equivalent to "True with deep introspection".
|
||
|
Memory usage is shown in human-readable units (base-2
|
||
|
representation). Without deep introspection a memory estimation is
|
||
|
made based in column dtype and number of rows assuming values
|
||
|
consume the same memory amount for corresponding dtypes. With deep
|
||
|
memory introspection, a real memory usage calculation is performed
|
||
|
at the cost of computational resources.
|
||
|
null_counts : bool, optional
|
||
|
Whether to show the non-null counts. By default, this is shown
|
||
|
only if the frame is smaller than
|
||
|
``pandas.options.display.max_info_rows`` and
|
||
|
``pandas.options.display.max_info_columns``. A value of True always
|
||
|
shows the counts, and False never shows the counts.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
None
|
||
|
This method prints a summary of a DataFrame and returns None.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.describe: Generate descriptive statistics of DataFrame
|
||
|
columns.
|
||
|
DataFrame.memory_usage: Memory usage of DataFrame columns.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> int_values = [1, 2, 3, 4, 5]
|
||
|
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
|
||
|
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
|
||
|
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
|
||
|
... "float_col": float_values})
|
||
|
>>> df
|
||
|
int_col text_col float_col
|
||
|
0 1 alpha 0.00
|
||
|
1 2 beta 0.25
|
||
|
2 3 gamma 0.50
|
||
|
3 4 delta 0.75
|
||
|
4 5 epsilon 1.00
|
||
|
|
||
|
Prints information of all columns:
|
||
|
|
||
|
>>> df.info(verbose=True)
|
||
|
<class 'pandas.core.frame.DataFrame'>
|
||
|
RangeIndex: 5 entries, 0 to 4
|
||
|
Data columns (total 3 columns):
|
||
|
int_col 5 non-null int64
|
||
|
text_col 5 non-null object
|
||
|
float_col 5 non-null float64
|
||
|
dtypes: float64(1), int64(1), object(1)
|
||
|
memory usage: 200.0+ bytes
|
||
|
|
||
|
Prints a summary of columns count and its dtypes but not per column
|
||
|
information:
|
||
|
|
||
|
>>> df.info(verbose=False)
|
||
|
<class 'pandas.core.frame.DataFrame'>
|
||
|
RangeIndex: 5 entries, 0 to 4
|
||
|
Columns: 3 entries, int_col to float_col
|
||
|
dtypes: float64(1), int64(1), object(1)
|
||
|
memory usage: 200.0+ bytes
|
||
|
|
||
|
Pipe output of DataFrame.info to buffer instead of sys.stdout, get
|
||
|
buffer content and writes to a text file:
|
||
|
|
||
|
>>> import io
|
||
|
>>> buffer = io.StringIO()
|
||
|
>>> df.info(buf=buffer)
|
||
|
>>> s = buffer.getvalue()
|
||
|
>>> with open("df_info.txt", "w", encoding="utf-8") as f:
|
||
|
... f.write(s)
|
||
|
260
|
||
|
|
||
|
The `memory_usage` parameter allows deep introspection mode, specially
|
||
|
useful for big DataFrames and fine-tune memory optimization:
|
||
|
|
||
|
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
|
||
|
>>> df = pd.DataFrame({
|
||
|
... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
|
||
|
... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
|
||
|
... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
|
||
|
... })
|
||
|
>>> df.info()
|
||
|
<class 'pandas.core.frame.DataFrame'>
|
||
|
RangeIndex: 1000000 entries, 0 to 999999
|
||
|
Data columns (total 3 columns):
|
||
|
column_1 1000000 non-null object
|
||
|
column_2 1000000 non-null object
|
||
|
column_3 1000000 non-null object
|
||
|
dtypes: object(3)
|
||
|
memory usage: 22.9+ MB
|
||
|
|
||
|
>>> df.info(memory_usage='deep')
|
||
|
<class 'pandas.core.frame.DataFrame'>
|
||
|
RangeIndex: 1000000 entries, 0 to 999999
|
||
|
Data columns (total 3 columns):
|
||
|
column_1 1000000 non-null object
|
||
|
column_2 1000000 non-null object
|
||
|
column_3 1000000 non-null object
|
||
|
dtypes: object(3)
|
||
|
memory usage: 188.8 MB
|
||
|
"""
|
||
|
|
||
|
if buf is None: # pragma: no cover
|
||
|
buf = sys.stdout
|
||
|
|
||
|
lines = []
|
||
|
|
||
|
lines.append(str(type(self)))
|
||
|
lines.append(self.index._summary())
|
||
|
|
||
|
if len(self.columns) == 0:
|
||
|
lines.append('Empty {name}'.format(name=type(self).__name__))
|
||
|
fmt.buffer_put_lines(buf, lines)
|
||
|
return
|
||
|
|
||
|
cols = self.columns
|
||
|
|
||
|
# hack
|
||
|
if max_cols is None:
|
||
|
max_cols = get_option('display.max_info_columns',
|
||
|
len(self.columns) + 1)
|
||
|
|
||
|
max_rows = get_option('display.max_info_rows', len(self) + 1)
|
||
|
|
||
|
if null_counts is None:
|
||
|
show_counts = ((len(self.columns) <= max_cols) and
|
||
|
(len(self) < max_rows))
|
||
|
else:
|
||
|
show_counts = null_counts
|
||
|
exceeds_info_cols = len(self.columns) > max_cols
|
||
|
|
||
|
def _verbose_repr():
|
||
|
lines.append('Data columns (total %d columns):' %
|
||
|
len(self.columns))
|
||
|
space = max(len(pprint_thing(k)) for k in self.columns) + 4
|
||
|
counts = None
|
||
|
|
||
|
tmpl = "{count}{dtype}"
|
||
|
if show_counts:
|
||
|
counts = self.count()
|
||
|
if len(cols) != len(counts): # pragma: no cover
|
||
|
raise AssertionError(
|
||
|
'Columns must equal counts '
|
||
|
'({cols:d} != {counts:d})'.format(
|
||
|
cols=len(cols), counts=len(counts)))
|
||
|
tmpl = "{count} non-null {dtype}"
|
||
|
|
||
|
dtypes = self.dtypes
|
||
|
for i, col in enumerate(self.columns):
|
||
|
dtype = dtypes.iloc[i]
|
||
|
col = pprint_thing(col)
|
||
|
|
||
|
count = ""
|
||
|
if show_counts:
|
||
|
count = counts.iloc[i]
|
||
|
|
||
|
lines.append(_put_str(col, space) + tmpl.format(count=count,
|
||
|
dtype=dtype))
|
||
|
|
||
|
def _non_verbose_repr():
|
||
|
lines.append(self.columns._summary(name='Columns'))
|
||
|
|
||
|
def _sizeof_fmt(num, size_qualifier):
|
||
|
# returns size in human readable format
|
||
|
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
|
||
|
if num < 1024.0:
|
||
|
return ("{num:3.1f}{size_q} "
|
||
|
"{x}".format(num=num, size_q=size_qualifier, x=x))
|
||
|
num /= 1024.0
|
||
|
return "{num:3.1f}{size_q} {pb}".format(num=num,
|
||
|
size_q=size_qualifier,
|
||
|
pb='PB')
|
||
|
|
||
|
if verbose:
|
||
|
_verbose_repr()
|
||
|
elif verbose is False: # specifically set to False, not nesc None
|
||
|
_non_verbose_repr()
|
||
|
else:
|
||
|
if exceeds_info_cols:
|
||
|
_non_verbose_repr()
|
||
|
else:
|
||
|
_verbose_repr()
|
||
|
|
||
|
counts = self.get_dtype_counts()
|
||
|
dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k
|
||
|
in sorted(compat.iteritems(counts))]
|
||
|
lines.append('dtypes: {types}'.format(types=', '.join(dtypes)))
|
||
|
|
||
|
if memory_usage is None:
|
||
|
memory_usage = get_option('display.memory_usage')
|
||
|
if memory_usage:
|
||
|
# append memory usage of df to display
|
||
|
size_qualifier = ''
|
||
|
if memory_usage == 'deep':
|
||
|
deep = True
|
||
|
else:
|
||
|
# size_qualifier is just a best effort; not guaranteed to catch
|
||
|
# all cases (e.g., it misses categorical data even with object
|
||
|
# categories)
|
||
|
deep = False
|
||
|
if ('object' in counts or
|
||
|
self.index._is_memory_usage_qualified()):
|
||
|
size_qualifier = '+'
|
||
|
mem_usage = self.memory_usage(index=True, deep=deep).sum()
|
||
|
lines.append("memory usage: {mem}\n".format(
|
||
|
mem=_sizeof_fmt(mem_usage, size_qualifier)))
|
||
|
|
||
|
fmt.buffer_put_lines(buf, lines)
|
||
|
|
||
|
def memory_usage(self, index=True, deep=False):
|
||
|
"""
|
||
|
Return the memory usage of each column in bytes.
|
||
|
|
||
|
The memory usage can optionally include the contribution of
|
||
|
the index and elements of `object` dtype.
|
||
|
|
||
|
This value is displayed in `DataFrame.info` by default. This can be
|
||
|
suppressed by setting ``pandas.options.display.memory_usage`` to False.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : bool, default True
|
||
|
Specifies whether to include the memory usage of the DataFrame's
|
||
|
index in returned Series. If ``index=True`` the memory usage of the
|
||
|
index the first item in the output.
|
||
|
deep : bool, default False
|
||
|
If True, introspect the data deeply by interrogating
|
||
|
`object` dtypes for system-level memory consumption, and include
|
||
|
it in the returned values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sizes : Series
|
||
|
A Series whose index is the original column names and whose values
|
||
|
is the memory usage of each column in bytes.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.ndarray.nbytes : Total bytes consumed by the elements of an
|
||
|
ndarray.
|
||
|
Series.memory_usage : Bytes consumed by a Series.
|
||
|
pandas.Categorical : Memory-efficient array for string values with
|
||
|
many repeated values.
|
||
|
DataFrame.info : Concise summary of a DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
|
||
|
>>> data = dict([(t, np.ones(shape=5000).astype(t))
|
||
|
... for t in dtypes])
|
||
|
>>> df = pd.DataFrame(data)
|
||
|
>>> df.head()
|
||
|
int64 float64 complex128 object bool
|
||
|
0 1 1.0 (1+0j) 1 True
|
||
|
1 1 1.0 (1+0j) 1 True
|
||
|
2 1 1.0 (1+0j) 1 True
|
||
|
3 1 1.0 (1+0j) 1 True
|
||
|
4 1 1.0 (1+0j) 1 True
|
||
|
|
||
|
>>> df.memory_usage()
|
||
|
Index 80
|
||
|
int64 40000
|
||
|
float64 40000
|
||
|
complex128 80000
|
||
|
object 40000
|
||
|
bool 5000
|
||
|
dtype: int64
|
||
|
|
||
|
>>> df.memory_usage(index=False)
|
||
|
int64 40000
|
||
|
float64 40000
|
||
|
complex128 80000
|
||
|
object 40000
|
||
|
bool 5000
|
||
|
dtype: int64
|
||
|
|
||
|
The memory footprint of `object` dtype columns is ignored by default:
|
||
|
|
||
|
>>> df.memory_usage(deep=True)
|
||
|
Index 80
|
||
|
int64 40000
|
||
|
float64 40000
|
||
|
complex128 80000
|
||
|
object 160000
|
||
|
bool 5000
|
||
|
dtype: int64
|
||
|
|
||
|
Use a Categorical for efficient storage of an object-dtype column with
|
||
|
many repeated values.
|
||
|
|
||
|
>>> df['object'].astype('category').memory_usage(deep=True)
|
||
|
5168
|
||
|
"""
|
||
|
result = Series([c.memory_usage(index=False, deep=deep)
|
||
|
for col, c in self.iteritems()], index=self.columns)
|
||
|
if index:
|
||
|
result = Series(self.index.memory_usage(deep=deep),
|
||
|
index=['Index']).append(result)
|
||
|
return result
|
||
|
|
||
|
def transpose(self, *args, **kwargs):
|
||
|
"""
|
||
|
Transpose index and columns.
|
||
|
|
||
|
Reflect the DataFrame over its main diagonal by writing rows as columns
|
||
|
and vice-versa. The property :attr:`.T` is an accessor to the method
|
||
|
:meth:`transpose`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
copy : bool, default False
|
||
|
If True, the underlying data is copied. Otherwise (default), no
|
||
|
copy is made if possible.
|
||
|
*args, **kwargs
|
||
|
Additional keywords have no effect but might be accepted for
|
||
|
compatibility with numpy.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
The transposed DataFrame.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.transpose : Permute the dimensions of a given array.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Transposing a DataFrame with mixed dtypes will result in a homogeneous
|
||
|
DataFrame with the `object` dtype. In such a case, a copy of the data
|
||
|
is always made.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
**Square DataFrame with homogeneous dtype**
|
||
|
|
||
|
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
|
||
|
>>> df1 = pd.DataFrame(data=d1)
|
||
|
>>> df1
|
||
|
col1 col2
|
||
|
0 1 3
|
||
|
1 2 4
|
||
|
|
||
|
>>> df1_transposed = df1.T # or df1.transpose()
|
||
|
>>> df1_transposed
|
||
|
0 1
|
||
|
col1 1 2
|
||
|
col2 3 4
|
||
|
|
||
|
When the dtype is homogeneous in the original DataFrame, we get a
|
||
|
transposed DataFrame with the same dtype:
|
||
|
|
||
|
>>> df1.dtypes
|
||
|
col1 int64
|
||
|
col2 int64
|
||
|
dtype: object
|
||
|
>>> df1_transposed.dtypes
|
||
|
0 int64
|
||
|
1 int64
|
||
|
dtype: object
|
||
|
|
||
|
**Non-square DataFrame with mixed dtypes**
|
||
|
|
||
|
>>> d2 = {'name': ['Alice', 'Bob'],
|
||
|
... 'score': [9.5, 8],
|
||
|
... 'employed': [False, True],
|
||
|
... 'kids': [0, 0]}
|
||
|
>>> df2 = pd.DataFrame(data=d2)
|
||
|
>>> df2
|
||
|
name score employed kids
|
||
|
0 Alice 9.5 False 0
|
||
|
1 Bob 8.0 True 0
|
||
|
|
||
|
>>> df2_transposed = df2.T # or df2.transpose()
|
||
|
>>> df2_transposed
|
||
|
0 1
|
||
|
name Alice Bob
|
||
|
score 9.5 8
|
||
|
employed False True
|
||
|
kids 0 0
|
||
|
|
||
|
When the DataFrame has mixed dtypes, we get a transposed DataFrame with
|
||
|
the `object` dtype:
|
||
|
|
||
|
>>> df2.dtypes
|
||
|
name object
|
||
|
score float64
|
||
|
employed bool
|
||
|
kids int64
|
||
|
dtype: object
|
||
|
>>> df2_transposed.dtypes
|
||
|
0 object
|
||
|
1 object
|
||
|
dtype: object
|
||
|
"""
|
||
|
nv.validate_transpose(args, dict())
|
||
|
return super(DataFrame, self).transpose(1, 0, **kwargs)
|
||
|
|
||
|
T = property(transpose)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Picklability
|
||
|
|
||
|
# legacy pickle formats
|
||
|
def _unpickle_frame_compat(self, state): # pragma: no cover
|
||
|
if len(state) == 2: # pragma: no cover
|
||
|
series, idx = state
|
||
|
columns = sorted(series)
|
||
|
else:
|
||
|
series, cols, idx = state
|
||
|
columns = com._unpickle_array(cols)
|
||
|
|
||
|
index = com._unpickle_array(idx)
|
||
|
self._data = self._init_dict(series, index, columns, None)
|
||
|
|
||
|
def _unpickle_matrix_compat(self, state): # pragma: no cover
|
||
|
# old unpickling
|
||
|
(vals, idx, cols), object_state = state
|
||
|
|
||
|
index = com._unpickle_array(idx)
|
||
|
dm = DataFrame(vals, index=index, columns=com._unpickle_array(cols),
|
||
|
copy=False)
|
||
|
|
||
|
if object_state is not None:
|
||
|
ovals, _, ocols = object_state
|
||
|
objects = DataFrame(ovals, index=index,
|
||
|
columns=com._unpickle_array(ocols), copy=False)
|
||
|
|
||
|
dm = dm.join(objects)
|
||
|
|
||
|
self._data = dm._data
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Getting and setting elements
|
||
|
|
||
|
def get_value(self, index, col, takeable=False):
|
||
|
"""Quickly retrieve single value at passed column and index
|
||
|
|
||
|
.. deprecated:: 0.21.0
|
||
|
Use .at[] or .iat[] accessors instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : row label
|
||
|
col : column label
|
||
|
takeable : interpret the index/col as indexers, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : scalar value
|
||
|
"""
|
||
|
|
||
|
warnings.warn("get_value is deprecated and will be removed "
|
||
|
"in a future release. Please use "
|
||
|
".at[] or .iat[] accessors instead", FutureWarning,
|
||
|
stacklevel=2)
|
||
|
return self._get_value(index, col, takeable=takeable)
|
||
|
|
||
|
def _get_value(self, index, col, takeable=False):
|
||
|
|
||
|
if takeable:
|
||
|
series = self._iget_item_cache(col)
|
||
|
return com._maybe_box_datetimelike(series._values[index])
|
||
|
|
||
|
series = self._get_item_cache(col)
|
||
|
engine = self.index._engine
|
||
|
|
||
|
try:
|
||
|
return engine.get_value(series._values, index)
|
||
|
except (TypeError, ValueError):
|
||
|
|
||
|
# we cannot handle direct indexing
|
||
|
# use positional
|
||
|
col = self.columns.get_loc(col)
|
||
|
index = self.index.get_loc(index)
|
||
|
return self._get_value(index, col, takeable=True)
|
||
|
_get_value.__doc__ = get_value.__doc__
|
||
|
|
||
|
def set_value(self, index, col, value, takeable=False):
|
||
|
"""Put single value at passed column and index
|
||
|
|
||
|
.. deprecated:: 0.21.0
|
||
|
Use .at[] or .iat[] accessors instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : row label
|
||
|
col : column label
|
||
|
value : scalar value
|
||
|
takeable : interpret the index/col as indexers, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frame : DataFrame
|
||
|
If label pair is contained, will be reference to calling DataFrame,
|
||
|
otherwise a new object
|
||
|
"""
|
||
|
warnings.warn("set_value is deprecated and will be removed "
|
||
|
"in a future release. Please use "
|
||
|
".at[] or .iat[] accessors instead", FutureWarning,
|
||
|
stacklevel=2)
|
||
|
return self._set_value(index, col, value, takeable=takeable)
|
||
|
|
||
|
def _set_value(self, index, col, value, takeable=False):
|
||
|
try:
|
||
|
if takeable is True:
|
||
|
series = self._iget_item_cache(col)
|
||
|
return series._set_value(index, value, takeable=True)
|
||
|
|
||
|
series = self._get_item_cache(col)
|
||
|
engine = self.index._engine
|
||
|
engine.set_value(series._values, index, value)
|
||
|
return self
|
||
|
except (KeyError, TypeError):
|
||
|
|
||
|
# set using a non-recursive method & reset the cache
|
||
|
self.loc[index, col] = value
|
||
|
self._item_cache.pop(col, None)
|
||
|
|
||
|
return self
|
||
|
_set_value.__doc__ = set_value.__doc__
|
||
|
|
||
|
def _ixs(self, i, axis=0):
|
||
|
"""
|
||
|
i : int, slice, or sequence of integers
|
||
|
axis : int
|
||
|
"""
|
||
|
|
||
|
# irow
|
||
|
if axis == 0:
|
||
|
"""
|
||
|
Notes
|
||
|
-----
|
||
|
If slice passed, the resulting data will be a view
|
||
|
"""
|
||
|
|
||
|
if isinstance(i, slice):
|
||
|
return self[i]
|
||
|
else:
|
||
|
label = self.index[i]
|
||
|
if isinstance(label, Index):
|
||
|
# a location index by definition
|
||
|
result = self.take(i, axis=axis)
|
||
|
copy = True
|
||
|
else:
|
||
|
new_values = self._data.fast_xs(i)
|
||
|
if is_scalar(new_values):
|
||
|
return new_values
|
||
|
|
||
|
# if we are a copy, mark as such
|
||
|
copy = (isinstance(new_values, np.ndarray) and
|
||
|
new_values.base is None)
|
||
|
result = self._constructor_sliced(new_values,
|
||
|
index=self.columns,
|
||
|
name=self.index[i],
|
||
|
dtype=new_values.dtype)
|
||
|
result._set_is_copy(self, copy=copy)
|
||
|
return result
|
||
|
|
||
|
# icol
|
||
|
else:
|
||
|
"""
|
||
|
Notes
|
||
|
-----
|
||
|
If slice passed, the resulting data will be a view
|
||
|
"""
|
||
|
|
||
|
label = self.columns[i]
|
||
|
if isinstance(i, slice):
|
||
|
# need to return view
|
||
|
lab_slice = slice(label[0], label[-1])
|
||
|
return self.loc[:, lab_slice]
|
||
|
else:
|
||
|
if isinstance(label, Index):
|
||
|
return self._take(i, axis=1)
|
||
|
|
||
|
index_len = len(self.index)
|
||
|
|
||
|
# if the values returned are not the same length
|
||
|
# as the index (iow a not found value), iget returns
|
||
|
# a 0-len ndarray. This is effectively catching
|
||
|
# a numpy error (as numpy should really raise)
|
||
|
values = self._data.iget(i)
|
||
|
|
||
|
if index_len and not len(values):
|
||
|
values = np.array([np.nan] * index_len, dtype=object)
|
||
|
result = self._box_col_values(values, label)
|
||
|
|
||
|
# this is a cached value, mark it so
|
||
|
result._set_as_cached(label, self)
|
||
|
|
||
|
return result
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
key = com._apply_if_callable(key, self)
|
||
|
|
||
|
# shortcut if we are an actual column
|
||
|
is_mi_columns = isinstance(self.columns, MultiIndex)
|
||
|
try:
|
||
|
if key in self.columns and not is_mi_columns:
|
||
|
return self._getitem_column(key)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
# see if we can slice the rows
|
||
|
indexer = convert_to_index_sliceable(self, key)
|
||
|
if indexer is not None:
|
||
|
return self._getitem_slice(indexer)
|
||
|
|
||
|
if isinstance(key, (Series, np.ndarray, Index, list)):
|
||
|
# either boolean or fancy integer index
|
||
|
return self._getitem_array(key)
|
||
|
elif isinstance(key, DataFrame):
|
||
|
return self._getitem_frame(key)
|
||
|
elif is_mi_columns:
|
||
|
return self._getitem_multilevel(key)
|
||
|
else:
|
||
|
return self._getitem_column(key)
|
||
|
|
||
|
def _getitem_column(self, key):
|
||
|
""" return the actual column """
|
||
|
|
||
|
# get column
|
||
|
if self.columns.is_unique:
|
||
|
return self._get_item_cache(key)
|
||
|
|
||
|
# duplicate columns & possible reduce dimensionality
|
||
|
result = self._constructor(self._data.get(key))
|
||
|
if result.columns.is_unique:
|
||
|
result = result[key]
|
||
|
|
||
|
return result
|
||
|
|
||
|
def _getitem_slice(self, key):
|
||
|
return self._slice(key, axis=0)
|
||
|
|
||
|
def _getitem_array(self, key):
|
||
|
# also raises Exception if object array with NA values
|
||
|
if com.is_bool_indexer(key):
|
||
|
# warning here just in case -- previously __setitem__ was
|
||
|
# reindexing but __getitem__ was not; it seems more reasonable to
|
||
|
# go with the __setitem__ behavior since that is more consistent
|
||
|
# with all other indexing behavior
|
||
|
if isinstance(key, Series) and not key.index.equals(self.index):
|
||
|
warnings.warn("Boolean Series key will be reindexed to match "
|
||
|
"DataFrame index.", UserWarning, stacklevel=3)
|
||
|
elif len(key) != len(self.index):
|
||
|
raise ValueError('Item wrong length %d instead of %d.' %
|
||
|
(len(key), len(self.index)))
|
||
|
# check_bool_indexer will throw exception if Series key cannot
|
||
|
# be reindexed to match DataFrame rows
|
||
|
key = check_bool_indexer(self.index, key)
|
||
|
indexer = key.nonzero()[0]
|
||
|
return self._take(indexer, axis=0)
|
||
|
else:
|
||
|
indexer = self.loc._convert_to_indexer(key, axis=1)
|
||
|
return self._take(indexer, axis=1)
|
||
|
|
||
|
def _getitem_multilevel(self, key):
|
||
|
loc = self.columns.get_loc(key)
|
||
|
if isinstance(loc, (slice, Series, np.ndarray, Index)):
|
||
|
new_columns = self.columns[loc]
|
||
|
result_columns = maybe_droplevels(new_columns, key)
|
||
|
if self._is_mixed_type:
|
||
|
result = self.reindex(columns=new_columns)
|
||
|
result.columns = result_columns
|
||
|
else:
|
||
|
new_values = self.values[:, loc]
|
||
|
result = self._constructor(new_values, index=self.index,
|
||
|
columns=result_columns)
|
||
|
result = result.__finalize__(self)
|
||
|
|
||
|
# If there is only one column being returned, and its name is
|
||
|
# either an empty string, or a tuple with an empty string as its
|
||
|
# first element, then treat the empty string as a placeholder
|
||
|
# and return the column as if the user had provided that empty
|
||
|
# string in the key. If the result is a Series, exclude the
|
||
|
# implied empty string from its name.
|
||
|
if len(result.columns) == 1:
|
||
|
top = result.columns[0]
|
||
|
if isinstance(top, tuple):
|
||
|
top = top[0]
|
||
|
if top == '':
|
||
|
result = result['']
|
||
|
if isinstance(result, Series):
|
||
|
result = self._constructor_sliced(result,
|
||
|
index=self.index,
|
||
|
name=key)
|
||
|
|
||
|
result._set_is_copy(self)
|
||
|
return result
|
||
|
else:
|
||
|
return self._get_item_cache(key)
|
||
|
|
||
|
def _getitem_frame(self, key):
|
||
|
if key.values.size and not is_bool_dtype(key.values):
|
||
|
raise ValueError('Must pass DataFrame with boolean values only')
|
||
|
return self.where(key)
|
||
|
|
||
|
def query(self, expr, inplace=False, **kwargs):
|
||
|
"""Query the columns of a frame with a boolean expression.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
expr : string
|
||
|
The query string to evaluate. You can refer to variables
|
||
|
in the environment by prefixing them with an '@' character like
|
||
|
``@a + b``.
|
||
|
inplace : bool
|
||
|
Whether the query should modify the data in place or return
|
||
|
a modified copy
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
kwargs : dict
|
||
|
See the documentation for :func:`pandas.eval` for complete details
|
||
|
on the keyword arguments accepted by :meth:`DataFrame.query`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
q : DataFrame
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The result of the evaluation of this expression is first passed to
|
||
|
:attr:`DataFrame.loc` and if that fails because of a
|
||
|
multidimensional key (e.g., a DataFrame) then the result will be passed
|
||
|
to :meth:`DataFrame.__getitem__`.
|
||
|
|
||
|
This method uses the top-level :func:`pandas.eval` function to
|
||
|
evaluate the passed query.
|
||
|
|
||
|
The :meth:`~pandas.DataFrame.query` method uses a slightly
|
||
|
modified Python syntax by default. For example, the ``&`` and ``|``
|
||
|
(bitwise) operators have the precedence of their boolean cousins,
|
||
|
:keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
|
||
|
however the semantics are different.
|
||
|
|
||
|
You can change the semantics of the expression by passing the keyword
|
||
|
argument ``parser='python'``. This enforces the same semantics as
|
||
|
evaluation in Python space. Likewise, you can pass ``engine='python'``
|
||
|
to evaluate an expression using Python itself as a backend. This is not
|
||
|
recommended as it is inefficient compared to using ``numexpr`` as the
|
||
|
engine.
|
||
|
|
||
|
The :attr:`DataFrame.index` and
|
||
|
:attr:`DataFrame.columns` attributes of the
|
||
|
:class:`~pandas.DataFrame` instance are placed in the query namespace
|
||
|
by default, which allows you to treat both the index and columns of the
|
||
|
frame as a column in the frame.
|
||
|
The identifier ``index`` is used for the frame index; you can also
|
||
|
use the name of the index to identify it in a query. Please note that
|
||
|
Python keywords may not be used as identifiers.
|
||
|
|
||
|
For further details and examples see the ``query`` documentation in
|
||
|
:ref:`indexing <indexing.query>`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.eval
|
||
|
DataFrame.eval
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.random import randn
|
||
|
>>> from pandas import DataFrame
|
||
|
>>> df = pd.DataFrame(randn(10, 2), columns=list('ab'))
|
||
|
>>> df.query('a > b')
|
||
|
>>> df[df.a > df.b] # same result as the previous expression
|
||
|
"""
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
if not isinstance(expr, compat.string_types):
|
||
|
msg = "expr must be a string to be evaluated, {0} given"
|
||
|
raise ValueError(msg.format(type(expr)))
|
||
|
kwargs['level'] = kwargs.pop('level', 0) + 1
|
||
|
kwargs['target'] = None
|
||
|
res = self.eval(expr, **kwargs)
|
||
|
|
||
|
try:
|
||
|
new_data = self.loc[res]
|
||
|
except ValueError:
|
||
|
# when res is multi-dimensional loc raises, but this is sometimes a
|
||
|
# valid query
|
||
|
new_data = self[res]
|
||
|
|
||
|
if inplace:
|
||
|
self._update_inplace(new_data)
|
||
|
else:
|
||
|
return new_data
|
||
|
|
||
|
def eval(self, expr, inplace=False, **kwargs):
|
||
|
"""
|
||
|
Evaluate a string describing operations on DataFrame columns.
|
||
|
|
||
|
Operates on columns only, not specific rows or elements. This allows
|
||
|
`eval` to run arbitrary code, which can make you vulnerable to code
|
||
|
injection if you pass user input to this function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
expr : str
|
||
|
The expression string to evaluate.
|
||
|
inplace : bool, default False
|
||
|
If the expression contains an assignment, whether to perform the
|
||
|
operation inplace and mutate the existing DataFrame. Otherwise,
|
||
|
a new DataFrame is returned.
|
||
|
|
||
|
.. versionadded:: 0.18.0.
|
||
|
kwargs : dict
|
||
|
See the documentation for :func:`~pandas.eval` for complete details
|
||
|
on the keyword arguments accepted by
|
||
|
:meth:`~pandas.DataFrame.query`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray, scalar, or pandas object
|
||
|
The result of the evaluation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.query : Evaluates a boolean expression to query the columns
|
||
|
of a frame.
|
||
|
DataFrame.assign : Can evaluate an expression or function to create new
|
||
|
values for a column.
|
||
|
pandas.eval : Evaluate a Python expression as a string using various
|
||
|
backends.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For more details see the API documentation for :func:`~pandas.eval`.
|
||
|
For detailed examples see :ref:`enhancing performance with eval
|
||
|
<enhancingperf.eval>`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 10
|
||
|
1 2 8
|
||
|
2 3 6
|
||
|
3 4 4
|
||
|
4 5 2
|
||
|
>>> df.eval('A + B')
|
||
|
0 11
|
||
|
1 10
|
||
|
2 9
|
||
|
3 8
|
||
|
4 7
|
||
|
dtype: int64
|
||
|
|
||
|
Assignment is allowed though by default the original DataFrame is not
|
||
|
modified.
|
||
|
|
||
|
>>> df.eval('C = A + B')
|
||
|
A B C
|
||
|
0 1 10 11
|
||
|
1 2 8 10
|
||
|
2 3 6 9
|
||
|
3 4 4 8
|
||
|
4 5 2 7
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 10
|
||
|
1 2 8
|
||
|
2 3 6
|
||
|
3 4 4
|
||
|
4 5 2
|
||
|
|
||
|
Use ``inplace=True`` to modify the original DataFrame.
|
||
|
|
||
|
>>> df.eval('C = A + B', inplace=True)
|
||
|
>>> df
|
||
|
A B C
|
||
|
0 1 10 11
|
||
|
1 2 8 10
|
||
|
2 3 6 9
|
||
|
3 4 4 8
|
||
|
4 5 2 7
|
||
|
"""
|
||
|
from pandas.core.computation.eval import eval as _eval
|
||
|
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
resolvers = kwargs.pop('resolvers', None)
|
||
|
kwargs['level'] = kwargs.pop('level', 0) + 1
|
||
|
if resolvers is None:
|
||
|
index_resolvers = self._get_index_resolvers()
|
||
|
resolvers = dict(self.iteritems()), index_resolvers
|
||
|
if 'target' not in kwargs:
|
||
|
kwargs['target'] = self
|
||
|
kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers)
|
||
|
return _eval(expr, inplace=inplace, **kwargs)
|
||
|
|
||
|
def select_dtypes(self, include=None, exclude=None):
|
||
|
"""
|
||
|
Return a subset of the DataFrame's columns based on the column dtypes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
include, exclude : scalar or list-like
|
||
|
A selection of dtypes or strings to be included/excluded. At least
|
||
|
one of these parameters must be supplied.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
* If both of ``include`` and ``exclude`` are empty
|
||
|
* If ``include`` and ``exclude`` have overlapping elements
|
||
|
* If any kind of string dtype is passed in.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
subset : DataFrame
|
||
|
The subset of the frame including the dtypes in ``include`` and
|
||
|
excluding the dtypes in ``exclude``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
* To select all *numeric* types, use ``np.number`` or ``'number'``
|
||
|
* To select strings you must use the ``object`` dtype, but note that
|
||
|
this will return *all* object dtype columns
|
||
|
* See the `numpy dtype hierarchy
|
||
|
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
|
||
|
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
|
||
|
``'datetime64'``
|
||
|
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
|
||
|
``'timedelta64'``
|
||
|
* To select Pandas categorical dtypes, use ``'category'``
|
||
|
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
|
||
|
0.20.0) or ``'datetime64[ns, tz]'``
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'a': [1, 2] * 3,
|
||
|
... 'b': [True, False] * 3,
|
||
|
... 'c': [1.0, 2.0] * 3})
|
||
|
>>> df
|
||
|
a b c
|
||
|
0 1 True 1.0
|
||
|
1 2 False 2.0
|
||
|
2 1 True 1.0
|
||
|
3 2 False 2.0
|
||
|
4 1 True 1.0
|
||
|
5 2 False 2.0
|
||
|
|
||
|
>>> df.select_dtypes(include='bool')
|
||
|
b
|
||
|
0 True
|
||
|
1 False
|
||
|
2 True
|
||
|
3 False
|
||
|
4 True
|
||
|
5 False
|
||
|
|
||
|
>>> df.select_dtypes(include=['float64'])
|
||
|
c
|
||
|
0 1.0
|
||
|
1 2.0
|
||
|
2 1.0
|
||
|
3 2.0
|
||
|
4 1.0
|
||
|
5 2.0
|
||
|
|
||
|
>>> df.select_dtypes(exclude=['int'])
|
||
|
b c
|
||
|
0 True 1.0
|
||
|
1 False 2.0
|
||
|
2 True 1.0
|
||
|
3 False 2.0
|
||
|
4 True 1.0
|
||
|
5 False 2.0
|
||
|
"""
|
||
|
|
||
|
if not is_list_like(include):
|
||
|
include = (include,) if include is not None else ()
|
||
|
if not is_list_like(exclude):
|
||
|
exclude = (exclude,) if exclude is not None else ()
|
||
|
|
||
|
selection = tuple(map(frozenset, (include, exclude)))
|
||
|
|
||
|
if not any(selection):
|
||
|
raise ValueError('at least one of include or exclude must be '
|
||
|
'nonempty')
|
||
|
|
||
|
# convert the myriad valid dtypes object to a single representation
|
||
|
include, exclude = map(
|
||
|
lambda x: frozenset(map(_get_dtype_from_object, x)), selection)
|
||
|
for dtypes in (include, exclude):
|
||
|
invalidate_string_dtypes(dtypes)
|
||
|
|
||
|
# can't both include AND exclude!
|
||
|
if not include.isdisjoint(exclude):
|
||
|
raise ValueError('include and exclude overlap on {inc_ex}'.format(
|
||
|
inc_ex=(include & exclude)))
|
||
|
|
||
|
# empty include/exclude -> defaults to True
|
||
|
# three cases (we've already raised if both are empty)
|
||
|
# case 1: empty include, nonempty exclude
|
||
|
# we have True, True, ... True for include, same for exclude
|
||
|
# in the loop below we get the excluded
|
||
|
# and when we call '&' below we get only the excluded
|
||
|
# case 2: nonempty include, empty exclude
|
||
|
# same as case 1, but with include
|
||
|
# case 3: both nonempty
|
||
|
# the "union" of the logic of case 1 and case 2:
|
||
|
# we get the included and excluded, and return their logical and
|
||
|
include_these = Series(not bool(include), index=self.columns)
|
||
|
exclude_these = Series(not bool(exclude), index=self.columns)
|
||
|
|
||
|
def is_dtype_instance_mapper(idx, dtype):
|
||
|
return idx, functools.partial(issubclass, dtype.type)
|
||
|
|
||
|
for idx, f in itertools.starmap(is_dtype_instance_mapper,
|
||
|
enumerate(self.dtypes)):
|
||
|
if include: # checks for the case of empty include or exclude
|
||
|
include_these.iloc[idx] = any(map(f, include))
|
||
|
if exclude:
|
||
|
exclude_these.iloc[idx] = not any(map(f, exclude))
|
||
|
|
||
|
dtype_indexer = include_these & exclude_these
|
||
|
return self.loc[com._get_info_slice(self, dtype_indexer)]
|
||
|
|
||
|
def _box_item_values(self, key, values):
|
||
|
items = self.columns[self.columns.get_loc(key)]
|
||
|
if values.ndim == 2:
|
||
|
return self._constructor(values.T, columns=items, index=self.index)
|
||
|
else:
|
||
|
return self._box_col_values(values, items)
|
||
|
|
||
|
def _box_col_values(self, values, items):
|
||
|
""" provide boxed values for a column """
|
||
|
klass = _get_sliced_frame_result_type(values, self)
|
||
|
return klass(values, index=self.index, name=items, fastpath=True)
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
key = com._apply_if_callable(key, self)
|
||
|
|
||
|
# see if we can slice the rows
|
||
|
indexer = convert_to_index_sliceable(self, key)
|
||
|
if indexer is not None:
|
||
|
return self._setitem_slice(indexer, value)
|
||
|
|
||
|
if isinstance(key, DataFrame) or getattr(key, 'ndim', None) == 2:
|
||
|
self._setitem_frame(key, value)
|
||
|
elif isinstance(key, (Series, np.ndarray, list, Index)):
|
||
|
self._setitem_array(key, value)
|
||
|
else:
|
||
|
# set column
|
||
|
self._set_item(key, value)
|
||
|
|
||
|
def _setitem_slice(self, key, value):
|
||
|
self._check_setitem_copy()
|
||
|
self.loc._setitem_with_indexer(key, value)
|
||
|
|
||
|
def _setitem_array(self, key, value):
|
||
|
# also raises Exception if object array with NA values
|
||
|
if com.is_bool_indexer(key):
|
||
|
if len(key) != len(self.index):
|
||
|
raise ValueError('Item wrong length %d instead of %d!' %
|
||
|
(len(key), len(self.index)))
|
||
|
key = check_bool_indexer(self.index, key)
|
||
|
indexer = key.nonzero()[0]
|
||
|
self._check_setitem_copy()
|
||
|
self.loc._setitem_with_indexer(indexer, value)
|
||
|
else:
|
||
|
if isinstance(value, DataFrame):
|
||
|
if len(value.columns) != len(key):
|
||
|
raise ValueError('Columns must be same length as key')
|
||
|
for k1, k2 in zip(key, value.columns):
|
||
|
self[k1] = value[k2]
|
||
|
else:
|
||
|
indexer = self.loc._convert_to_indexer(key, axis=1)
|
||
|
self._check_setitem_copy()
|
||
|
self.loc._setitem_with_indexer((slice(None), indexer), value)
|
||
|
|
||
|
def _setitem_frame(self, key, value):
|
||
|
# support boolean setting with DataFrame input, e.g.
|
||
|
# df[df > df2] = 0
|
||
|
if isinstance(key, np.ndarray):
|
||
|
if key.shape != self.shape:
|
||
|
raise ValueError(
|
||
|
'Array conditional must be same shape as self'
|
||
|
)
|
||
|
key = self._constructor(key, **self._construct_axes_dict())
|
||
|
|
||
|
if key.values.size and not is_bool_dtype(key.values):
|
||
|
raise TypeError(
|
||
|
'Must pass DataFrame or 2-d ndarray with boolean values only'
|
||
|
)
|
||
|
|
||
|
self._check_inplace_setting(value)
|
||
|
self._check_setitem_copy()
|
||
|
self._where(-key, value, inplace=True)
|
||
|
|
||
|
def _ensure_valid_index(self, value):
|
||
|
"""
|
||
|
ensure that if we don't have an index, that we can create one from the
|
||
|
passed value
|
||
|
"""
|
||
|
# GH5632, make sure that we are a Series convertible
|
||
|
if not len(self.index) and is_list_like(value):
|
||
|
try:
|
||
|
value = Series(value)
|
||
|
except:
|
||
|
raise ValueError('Cannot set a frame with no defined index '
|
||
|
'and a value that cannot be converted to a '
|
||
|
'Series')
|
||
|
|
||
|
self._data = self._data.reindex_axis(value.index.copy(), axis=1,
|
||
|
fill_value=np.nan)
|
||
|
|
||
|
def _set_item(self, key, value):
|
||
|
"""
|
||
|
Add series to DataFrame in specified column.
|
||
|
|
||
|
If series is a numpy-array (not a Series/TimeSeries), it must be the
|
||
|
same length as the DataFrames index or an error will be thrown.
|
||
|
|
||
|
Series/TimeSeries will be conformed to the DataFrames index to
|
||
|
ensure homogeneity.
|
||
|
"""
|
||
|
|
||
|
self._ensure_valid_index(value)
|
||
|
value = self._sanitize_column(key, value)
|
||
|
NDFrame._set_item(self, key, value)
|
||
|
|
||
|
# check if we are modifying a copy
|
||
|
# try to set first as we want an invalid
|
||
|
# value exception to occur first
|
||
|
if len(self):
|
||
|
self._check_setitem_copy()
|
||
|
|
||
|
def insert(self, loc, column, value, allow_duplicates=False):
|
||
|
"""
|
||
|
Insert column into DataFrame at specified location.
|
||
|
|
||
|
Raises a ValueError if `column` is already contained in the DataFrame,
|
||
|
unless `allow_duplicates` is set to True.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
loc : int
|
||
|
Insertion index. Must verify 0 <= loc <= len(columns)
|
||
|
column : string, number, or hashable object
|
||
|
label of the inserted column
|
||
|
value : int, Series, or array-like
|
||
|
allow_duplicates : bool, optional
|
||
|
"""
|
||
|
self._ensure_valid_index(value)
|
||
|
value = self._sanitize_column(column, value, broadcast=False)
|
||
|
self._data.insert(loc, column, value,
|
||
|
allow_duplicates=allow_duplicates)
|
||
|
|
||
|
def assign(self, **kwargs):
|
||
|
r"""
|
||
|
Assign new columns to a DataFrame, returning a new object
|
||
|
(a copy) with the new columns added to the original ones.
|
||
|
Existing columns that are re-assigned will be overwritten.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
kwargs : keyword, value pairs
|
||
|
keywords are the column names. If the values are
|
||
|
callable, they are computed on the DataFrame and
|
||
|
assigned to the new columns. The callable must not
|
||
|
change input DataFrame (though pandas doesn't check it).
|
||
|
If the values are not callable, (e.g. a Series, scalar, or array),
|
||
|
they are simply assigned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : DataFrame
|
||
|
A new DataFrame with the new columns in addition to
|
||
|
all the existing columns.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Assigning multiple columns within the same ``assign`` is possible.
|
||
|
For Python 3.6 and above, later items in '\*\*kwargs' may refer to
|
||
|
newly created or modified columns in 'df'; items are computed and
|
||
|
assigned into 'df' in order. For Python 3.5 and below, the order of
|
||
|
keyword arguments is not specified, you cannot refer to newly created
|
||
|
or modified columns. All items are computed first, and then assigned
|
||
|
in alphabetical order.
|
||
|
|
||
|
.. versionchanged :: 0.23.0
|
||
|
|
||
|
Keyword argument order is maintained for Python 3.6 and later.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
|
||
|
|
||
|
Where the value is a callable, evaluated on `df`:
|
||
|
|
||
|
>>> df.assign(ln_A = lambda x: np.log(x.A))
|
||
|
A B ln_A
|
||
|
0 1 0.426905 0.000000
|
||
|
1 2 -0.780949 0.693147
|
||
|
2 3 -0.418711 1.098612
|
||
|
3 4 -0.269708 1.386294
|
||
|
4 5 -0.274002 1.609438
|
||
|
5 6 -0.500792 1.791759
|
||
|
6 7 1.649697 1.945910
|
||
|
7 8 -1.495604 2.079442
|
||
|
8 9 0.549296 2.197225
|
||
|
9 10 -0.758542 2.302585
|
||
|
|
||
|
Where the value already exists and is inserted:
|
||
|
|
||
|
>>> newcol = np.log(df['A'])
|
||
|
>>> df.assign(ln_A=newcol)
|
||
|
A B ln_A
|
||
|
0 1 0.426905 0.000000
|
||
|
1 2 -0.780949 0.693147
|
||
|
2 3 -0.418711 1.098612
|
||
|
3 4 -0.269708 1.386294
|
||
|
4 5 -0.274002 1.609438
|
||
|
5 6 -0.500792 1.791759
|
||
|
6 7 1.649697 1.945910
|
||
|
7 8 -1.495604 2.079442
|
||
|
8 9 0.549296 2.197225
|
||
|
9 10 -0.758542 2.302585
|
||
|
|
||
|
Where the keyword arguments depend on each other
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3]})
|
||
|
|
||
|
>>> df.assign(B=df.A, C=lambda x:x['A']+ x['B'])
|
||
|
A B C
|
||
|
0 1 1 2
|
||
|
1 2 2 4
|
||
|
2 3 3 6
|
||
|
"""
|
||
|
data = self.copy()
|
||
|
|
||
|
# >= 3.6 preserve order of kwargs
|
||
|
if PY36:
|
||
|
for k, v in kwargs.items():
|
||
|
data[k] = com._apply_if_callable(v, data)
|
||
|
else:
|
||
|
# <= 3.5: do all calculations first...
|
||
|
results = OrderedDict()
|
||
|
for k, v in kwargs.items():
|
||
|
results[k] = com._apply_if_callable(v, data)
|
||
|
|
||
|
# <= 3.5 and earlier
|
||
|
results = sorted(results.items())
|
||
|
# ... and then assign
|
||
|
for k, v in results:
|
||
|
data[k] = v
|
||
|
return data
|
||
|
|
||
|
def _sanitize_column(self, key, value, broadcast=True):
|
||
|
"""
|
||
|
Ensures new columns (which go into the BlockManager as new blocks) are
|
||
|
always copied and converted into an array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : object
|
||
|
value : scalar, Series, or array-like
|
||
|
broadcast : bool, default True
|
||
|
If ``key`` matches multiple duplicate column names in the
|
||
|
DataFrame, this parameter indicates whether ``value`` should be
|
||
|
tiled so that the returned array contains a (duplicated) column for
|
||
|
each occurrence of the key. If False, ``value`` will not be tiled.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sanitized_column : numpy-array
|
||
|
"""
|
||
|
|
||
|
def reindexer(value):
|
||
|
# reindex if necessary
|
||
|
|
||
|
if value.index.equals(self.index) or not len(self.index):
|
||
|
value = value._values.copy()
|
||
|
else:
|
||
|
|
||
|
# GH 4107
|
||
|
try:
|
||
|
value = value.reindex(self.index)._values
|
||
|
except Exception as e:
|
||
|
|
||
|
# duplicate axis
|
||
|
if not value.index.is_unique:
|
||
|
raise e
|
||
|
|
||
|
# other
|
||
|
raise TypeError('incompatible index of inserted column '
|
||
|
'with frame index')
|
||
|
return value
|
||
|
|
||
|
if isinstance(value, Series):
|
||
|
value = reindexer(value)
|
||
|
|
||
|
elif isinstance(value, DataFrame):
|
||
|
# align right-hand-side columns if self.columns
|
||
|
# is multi-index and self[key] is a sub-frame
|
||
|
if isinstance(self.columns, MultiIndex) and key in self.columns:
|
||
|
loc = self.columns.get_loc(key)
|
||
|
if isinstance(loc, (slice, Series, np.ndarray, Index)):
|
||
|
cols = maybe_droplevels(self.columns[loc], key)
|
||
|
if len(cols) and not cols.equals(value.columns):
|
||
|
value = value.reindex(cols, axis=1)
|
||
|
# now align rows
|
||
|
value = reindexer(value).T
|
||
|
|
||
|
elif isinstance(value, ExtensionArray):
|
||
|
from pandas.core.series import _sanitize_index
|
||
|
# Explicitly copy here, instead of in _sanitize_index,
|
||
|
# as sanitize_index won't copy an EA, even with copy=True
|
||
|
value = value.copy()
|
||
|
value = _sanitize_index(value, self.index, copy=False)
|
||
|
|
||
|
elif isinstance(value, Index) or is_sequence(value):
|
||
|
from pandas.core.series import _sanitize_index
|
||
|
|
||
|
# turn me into an ndarray
|
||
|
value = _sanitize_index(value, self.index, copy=False)
|
||
|
if not isinstance(value, (np.ndarray, Index)):
|
||
|
if isinstance(value, list) and len(value) > 0:
|
||
|
value = maybe_convert_platform(value)
|
||
|
else:
|
||
|
value = com._asarray_tuplesafe(value)
|
||
|
elif value.ndim == 2:
|
||
|
value = value.copy().T
|
||
|
elif isinstance(value, Index):
|
||
|
value = value.copy(deep=True)
|
||
|
else:
|
||
|
value = value.copy()
|
||
|
|
||
|
# possibly infer to datetimelike
|
||
|
if is_object_dtype(value.dtype):
|
||
|
value = maybe_infer_to_datetimelike(value)
|
||
|
|
||
|
else:
|
||
|
# upcast the scalar
|
||
|
value = cast_scalar_to_array(len(self.index), value)
|
||
|
value = maybe_cast_to_datetime(value, value.dtype)
|
||
|
|
||
|
# return internal types directly
|
||
|
if is_extension_type(value) or is_extension_array_dtype(value):
|
||
|
return value
|
||
|
|
||
|
# broadcast across multiple columns if necessary
|
||
|
if broadcast and key in self.columns and value.ndim == 1:
|
||
|
if (not self.columns.is_unique or
|
||
|
isinstance(self.columns, MultiIndex)):
|
||
|
existing_piece = self[key]
|
||
|
if isinstance(existing_piece, DataFrame):
|
||
|
value = np.tile(value, (len(existing_piece.columns), 1))
|
||
|
|
||
|
return np.atleast_2d(np.asarray(value))
|
||
|
|
||
|
@property
|
||
|
def _series(self):
|
||
|
result = {}
|
||
|
for idx, item in enumerate(self.columns):
|
||
|
result[item] = Series(self._data.iget(idx), index=self.index,
|
||
|
name=item)
|
||
|
return result
|
||
|
|
||
|
def lookup(self, row_labels, col_labels):
|
||
|
"""Label-based "fancy indexing" function for DataFrame.
|
||
|
Given equal-length arrays of row and column labels, return an
|
||
|
array of the values corresponding to each (row, col) pair.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
row_labels : sequence
|
||
|
The row labels to use for lookup
|
||
|
col_labels : sequence
|
||
|
The column labels to use for lookup
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Akin to::
|
||
|
|
||
|
result = []
|
||
|
for row, col in zip(row_labels, col_labels):
|
||
|
result.append(df.get_value(row, col))
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
values : ndarray
|
||
|
The found values
|
||
|
|
||
|
"""
|
||
|
n = len(row_labels)
|
||
|
if n != len(col_labels):
|
||
|
raise ValueError('Row labels must have same size as column labels')
|
||
|
|
||
|
thresh = 1000
|
||
|
if not self._is_mixed_type or n > thresh:
|
||
|
values = self.values
|
||
|
ridx = self.index.get_indexer(row_labels)
|
||
|
cidx = self.columns.get_indexer(col_labels)
|
||
|
if (ridx == -1).any():
|
||
|
raise KeyError('One or more row labels was not found')
|
||
|
if (cidx == -1).any():
|
||
|
raise KeyError('One or more column labels was not found')
|
||
|
flat_index = ridx * len(self.columns) + cidx
|
||
|
result = values.flat[flat_index]
|
||
|
else:
|
||
|
result = np.empty(n, dtype='O')
|
||
|
for i, (r, c) in enumerate(zip(row_labels, col_labels)):
|
||
|
result[i] = self._get_value(r, c)
|
||
|
|
||
|
if is_object_dtype(result):
|
||
|
result = lib.maybe_convert_objects(result)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Reindexing and alignment
|
||
|
|
||
|
def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value,
|
||
|
copy):
|
||
|
frame = self
|
||
|
|
||
|
columns = axes['columns']
|
||
|
if columns is not None:
|
||
|
frame = frame._reindex_columns(columns, method, copy, level,
|
||
|
fill_value, limit, tolerance)
|
||
|
|
||
|
index = axes['index']
|
||
|
if index is not None:
|
||
|
frame = frame._reindex_index(index, method, copy, level,
|
||
|
fill_value, limit, tolerance)
|
||
|
|
||
|
return frame
|
||
|
|
||
|
def _reindex_index(self, new_index, method, copy, level, fill_value=np.nan,
|
||
|
limit=None, tolerance=None):
|
||
|
new_index, indexer = self.index.reindex(new_index, method=method,
|
||
|
level=level, limit=limit,
|
||
|
tolerance=tolerance)
|
||
|
return self._reindex_with_indexers({0: [new_index, indexer]},
|
||
|
copy=copy, fill_value=fill_value,
|
||
|
allow_dups=False)
|
||
|
|
||
|
def _reindex_columns(self, new_columns, method, copy, level,
|
||
|
fill_value=None, limit=None, tolerance=None):
|
||
|
new_columns, indexer = self.columns.reindex(new_columns, method=method,
|
||
|
level=level, limit=limit,
|
||
|
tolerance=tolerance)
|
||
|
return self._reindex_with_indexers({1: [new_columns, indexer]},
|
||
|
copy=copy, fill_value=fill_value,
|
||
|
allow_dups=False)
|
||
|
|
||
|
def _reindex_multi(self, axes, copy, fill_value):
|
||
|
""" we are guaranteed non-Nones in the axes! """
|
||
|
|
||
|
new_index, row_indexer = self.index.reindex(axes['index'])
|
||
|
new_columns, col_indexer = self.columns.reindex(axes['columns'])
|
||
|
|
||
|
if row_indexer is not None and col_indexer is not None:
|
||
|
indexer = row_indexer, col_indexer
|
||
|
new_values = algorithms.take_2d_multi(self.values, indexer,
|
||
|
fill_value=fill_value)
|
||
|
return self._constructor(new_values, index=new_index,
|
||
|
columns=new_columns)
|
||
|
else:
|
||
|
return self._reindex_with_indexers({0: [new_index, row_indexer],
|
||
|
1: [new_columns, col_indexer]},
|
||
|
copy=copy,
|
||
|
fill_value=fill_value)
|
||
|
|
||
|
@Appender(_shared_docs['align'] % _shared_doc_kwargs)
|
||
|
def align(self, other, join='outer', axis=None, level=None, copy=True,
|
||
|
fill_value=None, method=None, limit=None, fill_axis=0,
|
||
|
broadcast_axis=None):
|
||
|
return super(DataFrame, self).align(other, join=join, axis=axis,
|
||
|
level=level, copy=copy,
|
||
|
fill_value=fill_value,
|
||
|
method=method, limit=limit,
|
||
|
fill_axis=fill_axis,
|
||
|
broadcast_axis=broadcast_axis)
|
||
|
|
||
|
@Appender(_shared_docs['reindex'] % _shared_doc_kwargs)
|
||
|
@rewrite_axis_style_signature('labels', [('method', None),
|
||
|
('copy', True),
|
||
|
('level', None),
|
||
|
('fill_value', np.nan),
|
||
|
('limit', None),
|
||
|
('tolerance', None)])
|
||
|
def reindex(self, *args, **kwargs):
|
||
|
axes = validate_axis_style_args(self, args, kwargs, 'labels',
|
||
|
'reindex')
|
||
|
kwargs.update(axes)
|
||
|
# Pop these, since the values are in `kwargs` under different names
|
||
|
kwargs.pop('axis', None)
|
||
|
kwargs.pop('labels', None)
|
||
|
return super(DataFrame, self).reindex(**kwargs)
|
||
|
|
||
|
@Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs)
|
||
|
def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True,
|
||
|
limit=None, fill_value=np.nan):
|
||
|
return super(DataFrame,
|
||
|
self).reindex_axis(labels=labels, axis=axis,
|
||
|
method=method, level=level, copy=copy,
|
||
|
limit=limit, fill_value=fill_value)
|
||
|
|
||
|
def drop(self, labels=None, axis=0, index=None, columns=None,
|
||
|
level=None, inplace=False, errors='raise'):
|
||
|
"""
|
||
|
Drop specified labels from rows or columns.
|
||
|
|
||
|
Remove rows or columns by specifying label names and corresponding
|
||
|
axis, or by specifying directly index or column names. When using a
|
||
|
multi-index, labels on different levels can be removed by specifying
|
||
|
the level.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
labels : single label or list-like
|
||
|
Index or column labels to drop.
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
Whether to drop labels from the index (0 or 'index') or
|
||
|
columns (1 or 'columns').
|
||
|
index, columns : single label or list-like
|
||
|
Alternative to specifying axis (``labels, axis=1``
|
||
|
is equivalent to ``columns=labels``).
|
||
|
|
||
|
.. versionadded:: 0.21.0
|
||
|
level : int or level name, optional
|
||
|
For MultiIndex, level from which the labels will be removed.
|
||
|
inplace : bool, default False
|
||
|
If True, do operation inplace and return None.
|
||
|
errors : {'ignore', 'raise'}, default 'raise'
|
||
|
If 'ignore', suppress error and only existing labels are
|
||
|
dropped.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dropped : pandas.DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.loc : Label-location based indexer for selection by label.
|
||
|
DataFrame.dropna : Return DataFrame with labels on given axis omitted
|
||
|
where (all or any) data are missing
|
||
|
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
|
||
|
removed, optionally only considering certain columns
|
||
|
Series.drop : Return Series with specified index labels removed.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
KeyError
|
||
|
If none of the labels are found in the selected axis
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.arange(12).reshape(3,4),
|
||
|
... columns=['A', 'B', 'C', 'D'])
|
||
|
>>> df
|
||
|
A B C D
|
||
|
0 0 1 2 3
|
||
|
1 4 5 6 7
|
||
|
2 8 9 10 11
|
||
|
|
||
|
Drop columns
|
||
|
|
||
|
>>> df.drop(['B', 'C'], axis=1)
|
||
|
A D
|
||
|
0 0 3
|
||
|
1 4 7
|
||
|
2 8 11
|
||
|
|
||
|
>>> df.drop(columns=['B', 'C'])
|
||
|
A D
|
||
|
0 0 3
|
||
|
1 4 7
|
||
|
2 8 11
|
||
|
|
||
|
Drop a row by index
|
||
|
|
||
|
>>> df.drop([0, 1])
|
||
|
A B C D
|
||
|
2 8 9 10 11
|
||
|
|
||
|
Drop columns and/or rows of MultiIndex DataFrame
|
||
|
|
||
|
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
|
||
|
... ['speed', 'weight', 'length']],
|
||
|
... labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
|
||
|
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
|
||
|
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
|
||
|
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
|
||
|
... [250, 150], [1.5, 0.8], [320, 250],
|
||
|
... [1, 0.8], [0.3,0.2]])
|
||
|
>>> df
|
||
|
big small
|
||
|
lama speed 45.0 30.0
|
||
|
weight 200.0 100.0
|
||
|
length 1.5 1.0
|
||
|
cow speed 30.0 20.0
|
||
|
weight 250.0 150.0
|
||
|
length 1.5 0.8
|
||
|
falcon speed 320.0 250.0
|
||
|
weight 1.0 0.8
|
||
|
length 0.3 0.2
|
||
|
|
||
|
>>> df.drop(index='cow', columns='small')
|
||
|
big
|
||
|
lama speed 45.0
|
||
|
weight 200.0
|
||
|
length 1.5
|
||
|
falcon speed 320.0
|
||
|
weight 1.0
|
||
|
length 0.3
|
||
|
|
||
|
>>> df.drop(index='length', level=1)
|
||
|
big small
|
||
|
lama speed 45.0 30.0
|
||
|
weight 200.0 100.0
|
||
|
cow speed 30.0 20.0
|
||
|
weight 250.0 150.0
|
||
|
falcon speed 320.0 250.0
|
||
|
weight 1.0 0.8
|
||
|
"""
|
||
|
return super(DataFrame, self).drop(labels=labels, axis=axis,
|
||
|
index=index, columns=columns,
|
||
|
level=level, inplace=inplace,
|
||
|
errors=errors)
|
||
|
|
||
|
@rewrite_axis_style_signature('mapper', [('copy', True),
|
||
|
('inplace', False),
|
||
|
('level', None)])
|
||
|
def rename(self, *args, **kwargs):
|
||
|
"""Alter axes labels.
|
||
|
|
||
|
Function / dict values must be unique (1-to-1). Labels not contained in
|
||
|
a dict / Series will be left as-is. Extra labels listed don't throw an
|
||
|
error.
|
||
|
|
||
|
See the :ref:`user guide <basics.rename>` for more.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mapper, index, columns : dict-like or function, optional
|
||
|
dict-like or functions transformations to apply to
|
||
|
that axis' values. Use either ``mapper`` and ``axis`` to
|
||
|
specify the axis to target with ``mapper``, or ``index`` and
|
||
|
``columns``.
|
||
|
axis : int or str, optional
|
||
|
Axis to target with ``mapper``. Can be either the axis name
|
||
|
('index', 'columns') or number (0, 1). The default is 'index'.
|
||
|
copy : boolean, default True
|
||
|
Also copy underlying data
|
||
|
inplace : boolean, default False
|
||
|
Whether to return a new DataFrame. If True then value of copy is
|
||
|
ignored.
|
||
|
level : int or level name, default None
|
||
|
In case of a MultiIndex, only rename labels in the specified
|
||
|
level.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
renamed : DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.DataFrame.rename_axis
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
``DataFrame.rename`` supports two calling conventions
|
||
|
|
||
|
* ``(index=index_mapper, columns=columns_mapper, ...)``
|
||
|
* ``(mapper, axis={'index', 'columns'}, ...)``
|
||
|
|
||
|
We *highly* recommend using keyword arguments to clarify your
|
||
|
intent.
|
||
|
|
||
|
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
||
|
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
|
||
|
a c
|
||
|
0 1 4
|
||
|
1 2 5
|
||
|
2 3 6
|
||
|
|
||
|
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
|
||
|
a B
|
||
|
0 1 4
|
||
|
1 2 5
|
||
|
2 3 6
|
||
|
|
||
|
Using axis-style parameters
|
||
|
|
||
|
>>> df.rename(str.lower, axis='columns')
|
||
|
a b
|
||
|
0 1 4
|
||
|
1 2 5
|
||
|
2 3 6
|
||
|
|
||
|
>>> df.rename({1: 2, 2: 4}, axis='index')
|
||
|
A B
|
||
|
0 1 4
|
||
|
2 2 5
|
||
|
4 3 6
|
||
|
"""
|
||
|
axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename')
|
||
|
kwargs.update(axes)
|
||
|
# Pop these, since the values are in `kwargs` under different names
|
||
|
kwargs.pop('axis', None)
|
||
|
kwargs.pop('mapper', None)
|
||
|
return super(DataFrame, self).rename(**kwargs)
|
||
|
|
||
|
@Substitution(**_shared_doc_kwargs)
|
||
|
@Appender(NDFrame.fillna.__doc__)
|
||
|
def fillna(self, value=None, method=None, axis=None, inplace=False,
|
||
|
limit=None, downcast=None, **kwargs):
|
||
|
return super(DataFrame,
|
||
|
self).fillna(value=value, method=method, axis=axis,
|
||
|
inplace=inplace, limit=limit,
|
||
|
downcast=downcast, **kwargs)
|
||
|
|
||
|
@Appender(_shared_docs['replace'] % _shared_doc_kwargs)
|
||
|
def replace(self, to_replace=None, value=None, inplace=False, limit=None,
|
||
|
regex=False, method='pad'):
|
||
|
return super(DataFrame, self).replace(to_replace=to_replace,
|
||
|
value=value, inplace=inplace,
|
||
|
limit=limit, regex=regex,
|
||
|
method=method)
|
||
|
|
||
|
@Appender(_shared_docs['shift'] % _shared_doc_kwargs)
|
||
|
def shift(self, periods=1, freq=None, axis=0):
|
||
|
return super(DataFrame, self).shift(periods=periods, freq=freq,
|
||
|
axis=axis)
|
||
|
|
||
|
def set_index(self, keys, drop=True, append=False, inplace=False,
|
||
|
verify_integrity=False):
|
||
|
"""
|
||
|
Set the DataFrame index (row labels) using one or more existing
|
||
|
columns. By default yields a new object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
keys : column label or list of column labels / arrays
|
||
|
drop : boolean, default True
|
||
|
Delete columns to be used as the new index
|
||
|
append : boolean, default False
|
||
|
Whether to append columns to existing index
|
||
|
inplace : boolean, default False
|
||
|
Modify the DataFrame in place (do not create a new object)
|
||
|
verify_integrity : boolean, default False
|
||
|
Check the new index for duplicates. Otherwise defer the check until
|
||
|
necessary. Setting to False will improve the performance of this
|
||
|
method
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'month': [1, 4, 7, 10],
|
||
|
... 'year': [2012, 2014, 2013, 2014],
|
||
|
... 'sale':[55, 40, 84, 31]})
|
||
|
month sale year
|
||
|
0 1 55 2012
|
||
|
1 4 40 2014
|
||
|
2 7 84 2013
|
||
|
3 10 31 2014
|
||
|
|
||
|
Set the index to become the 'month' column:
|
||
|
|
||
|
>>> df.set_index('month')
|
||
|
sale year
|
||
|
month
|
||
|
1 55 2012
|
||
|
4 40 2014
|
||
|
7 84 2013
|
||
|
10 31 2014
|
||
|
|
||
|
Create a multi-index using columns 'year' and 'month':
|
||
|
|
||
|
>>> df.set_index(['year', 'month'])
|
||
|
sale
|
||
|
year month
|
||
|
2012 1 55
|
||
|
2014 4 40
|
||
|
2013 7 84
|
||
|
2014 10 31
|
||
|
|
||
|
Create a multi-index using a set of values and a column:
|
||
|
|
||
|
>>> df.set_index([[1, 2, 3, 4], 'year'])
|
||
|
month sale
|
||
|
year
|
||
|
1 2012 1 55
|
||
|
2 2014 4 40
|
||
|
3 2013 7 84
|
||
|
4 2014 10 31
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dataframe : DataFrame
|
||
|
"""
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
if not isinstance(keys, list):
|
||
|
keys = [keys]
|
||
|
|
||
|
if inplace:
|
||
|
frame = self
|
||
|
else:
|
||
|
frame = self.copy()
|
||
|
|
||
|
arrays = []
|
||
|
names = []
|
||
|
if append:
|
||
|
names = [x for x in self.index.names]
|
||
|
if isinstance(self.index, MultiIndex):
|
||
|
for i in range(self.index.nlevels):
|
||
|
arrays.append(self.index._get_level_values(i))
|
||
|
else:
|
||
|
arrays.append(self.index)
|
||
|
|
||
|
to_remove = []
|
||
|
for col in keys:
|
||
|
if isinstance(col, MultiIndex):
|
||
|
# append all but the last column so we don't have to modify
|
||
|
# the end of this loop
|
||
|
for n in range(col.nlevels - 1):
|
||
|
arrays.append(col._get_level_values(n))
|
||
|
|
||
|
level = col._get_level_values(col.nlevels - 1)
|
||
|
names.extend(col.names)
|
||
|
elif isinstance(col, Series):
|
||
|
level = col._values
|
||
|
names.append(col.name)
|
||
|
elif isinstance(col, Index):
|
||
|
level = col
|
||
|
names.append(col.name)
|
||
|
elif isinstance(col, (list, np.ndarray, Index)):
|
||
|
level = col
|
||
|
names.append(None)
|
||
|
else:
|
||
|
level = frame[col]._values
|
||
|
names.append(col)
|
||
|
if drop:
|
||
|
to_remove.append(col)
|
||
|
arrays.append(level)
|
||
|
|
||
|
index = _ensure_index_from_sequences(arrays, names)
|
||
|
|
||
|
if verify_integrity and not index.is_unique:
|
||
|
duplicates = index[index.duplicated()].unique()
|
||
|
raise ValueError('Index has duplicate keys: {dup}'.format(
|
||
|
dup=duplicates))
|
||
|
|
||
|
for c in to_remove:
|
||
|
del frame[c]
|
||
|
|
||
|
# clear up memory usage
|
||
|
index._cleanup()
|
||
|
|
||
|
frame.index = index
|
||
|
|
||
|
if not inplace:
|
||
|
return frame
|
||
|
|
||
|
def reset_index(self, level=None, drop=False, inplace=False, col_level=0,
|
||
|
col_fill=''):
|
||
|
"""
|
||
|
For DataFrame with multi-level index, return new DataFrame with
|
||
|
labeling information in the columns under the index names, defaulting
|
||
|
to 'level_0', 'level_1', etc. if any are None. For a standard index,
|
||
|
the index name will be used (if set), otherwise a default 'index' or
|
||
|
'level_0' (if 'index' is already taken) will be used.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int, str, tuple, or list, default None
|
||
|
Only remove the given levels from the index. Removes all levels by
|
||
|
default
|
||
|
drop : boolean, default False
|
||
|
Do not try to insert index into dataframe columns. This resets
|
||
|
the index to the default integer index.
|
||
|
inplace : boolean, default False
|
||
|
Modify the DataFrame in place (do not create a new object)
|
||
|
col_level : int or str, default 0
|
||
|
If the columns have multiple levels, determines which level the
|
||
|
labels are inserted into. By default it is inserted into the first
|
||
|
level.
|
||
|
col_fill : object, default ''
|
||
|
If the columns have multiple levels, determines how the other
|
||
|
levels are named. If None then the index name is repeated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
resetted : DataFrame
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([('bird', 389.0),
|
||
|
... ('bird', 24.0),
|
||
|
... ('mammal', 80.5),
|
||
|
... ('mammal', np.nan)],
|
||
|
... index=['falcon', 'parrot', 'lion', 'monkey'],
|
||
|
... columns=('class', 'max_speed'))
|
||
|
>>> df
|
||
|
class max_speed
|
||
|
falcon bird 389.0
|
||
|
parrot bird 24.0
|
||
|
lion mammal 80.5
|
||
|
monkey mammal NaN
|
||
|
|
||
|
When we reset the index, the old index is added as a column, and a
|
||
|
new sequential index is used:
|
||
|
|
||
|
>>> df.reset_index()
|
||
|
index class max_speed
|
||
|
0 falcon bird 389.0
|
||
|
1 parrot bird 24.0
|
||
|
2 lion mammal 80.5
|
||
|
3 monkey mammal NaN
|
||
|
|
||
|
We can use the `drop` parameter to avoid the old index being added as
|
||
|
a column:
|
||
|
|
||
|
>>> df.reset_index(drop=True)
|
||
|
class max_speed
|
||
|
0 bird 389.0
|
||
|
1 bird 24.0
|
||
|
2 mammal 80.5
|
||
|
3 mammal NaN
|
||
|
|
||
|
You can also use `reset_index` with `MultiIndex`.
|
||
|
|
||
|
>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
|
||
|
... ('bird', 'parrot'),
|
||
|
... ('mammal', 'lion'),
|
||
|
... ('mammal', 'monkey')],
|
||
|
... names=['class', 'name'])
|
||
|
>>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
|
||
|
... ('species', 'type')])
|
||
|
>>> df = pd.DataFrame([(389.0, 'fly'),
|
||
|
... ( 24.0, 'fly'),
|
||
|
... ( 80.5, 'run'),
|
||
|
... (np.nan, 'jump')],
|
||
|
... index=index,
|
||
|
... columns=columns)
|
||
|
>>> df
|
||
|
speed species
|
||
|
max type
|
||
|
class name
|
||
|
bird falcon 389.0 fly
|
||
|
parrot 24.0 fly
|
||
|
mammal lion 80.5 run
|
||
|
monkey NaN jump
|
||
|
|
||
|
If the index has multiple levels, we can reset a subset of them:
|
||
|
|
||
|
>>> df.reset_index(level='class')
|
||
|
class speed species
|
||
|
max type
|
||
|
name
|
||
|
falcon bird 389.0 fly
|
||
|
parrot bird 24.0 fly
|
||
|
lion mammal 80.5 run
|
||
|
monkey mammal NaN jump
|
||
|
|
||
|
If we are not dropping the index, by default, it is placed in the top
|
||
|
level. We can place it in another level:
|
||
|
|
||
|
>>> df.reset_index(level='class', col_level=1)
|
||
|
speed species
|
||
|
class max type
|
||
|
name
|
||
|
falcon bird 389.0 fly
|
||
|
parrot bird 24.0 fly
|
||
|
lion mammal 80.5 run
|
||
|
monkey mammal NaN jump
|
||
|
|
||
|
When the index is inserted under another level, we can specify under
|
||
|
which one with the parameter `col_fill`:
|
||
|
|
||
|
>>> df.reset_index(level='class', col_level=1, col_fill='species')
|
||
|
species speed species
|
||
|
class max type
|
||
|
name
|
||
|
falcon bird 389.0 fly
|
||
|
parrot bird 24.0 fly
|
||
|
lion mammal 80.5 run
|
||
|
monkey mammal NaN jump
|
||
|
|
||
|
If we specify a nonexistent level for `col_fill`, it is created:
|
||
|
|
||
|
>>> df.reset_index(level='class', col_level=1, col_fill='genus')
|
||
|
genus speed species
|
||
|
class max type
|
||
|
name
|
||
|
falcon bird 389.0 fly
|
||
|
parrot bird 24.0 fly
|
||
|
lion mammal 80.5 run
|
||
|
monkey mammal NaN jump
|
||
|
"""
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
if inplace:
|
||
|
new_obj = self
|
||
|
else:
|
||
|
new_obj = self.copy()
|
||
|
|
||
|
def _maybe_casted_values(index, labels=None):
|
||
|
values = index._values
|
||
|
if not isinstance(index, (PeriodIndex, DatetimeIndex)):
|
||
|
if values.dtype == np.object_:
|
||
|
values = lib.maybe_convert_objects(values)
|
||
|
|
||
|
# if we have the labels, extract the values with a mask
|
||
|
if labels is not None:
|
||
|
mask = labels == -1
|
||
|
|
||
|
# we can have situations where the whole mask is -1,
|
||
|
# meaning there is nothing found in labels, so make all nan's
|
||
|
if mask.all():
|
||
|
values = np.empty(len(mask))
|
||
|
values.fill(np.nan)
|
||
|
else:
|
||
|
values = values.take(labels)
|
||
|
if mask.any():
|
||
|
values, changed = maybe_upcast_putmask(
|
||
|
values, mask, np.nan)
|
||
|
return values
|
||
|
|
||
|
new_index = com._default_index(len(new_obj))
|
||
|
if level is not None:
|
||
|
if not isinstance(level, (tuple, list)):
|
||
|
level = [level]
|
||
|
level = [self.index._get_level_number(lev) for lev in level]
|
||
|
if isinstance(self.index, MultiIndex):
|
||
|
if len(level) < self.index.nlevels:
|
||
|
new_index = self.index.droplevel(level)
|
||
|
|
||
|
if not drop:
|
||
|
if isinstance(self.index, MultiIndex):
|
||
|
names = [n if n is not None else ('level_%d' % i)
|
||
|
for (i, n) in enumerate(self.index.names)]
|
||
|
to_insert = lzip(self.index.levels, self.index.labels)
|
||
|
else:
|
||
|
default = 'index' if 'index' not in self else 'level_0'
|
||
|
names = ([default] if self.index.name is None
|
||
|
else [self.index.name])
|
||
|
to_insert = ((self.index, None),)
|
||
|
|
||
|
multi_col = isinstance(self.columns, MultiIndex)
|
||
|
for i, (lev, lab) in reversed(list(enumerate(to_insert))):
|
||
|
if not (level is None or i in level):
|
||
|
continue
|
||
|
name = names[i]
|
||
|
if multi_col:
|
||
|
col_name = (list(name) if isinstance(name, tuple)
|
||
|
else [name])
|
||
|
if col_fill is None:
|
||
|
if len(col_name) not in (1, self.columns.nlevels):
|
||
|
raise ValueError("col_fill=None is incompatible "
|
||
|
"with incomplete column name "
|
||
|
"{}".format(name))
|
||
|
col_fill = col_name[0]
|
||
|
|
||
|
lev_num = self.columns._get_level_number(col_level)
|
||
|
name_lst = [col_fill] * lev_num + col_name
|
||
|
missing = self.columns.nlevels - len(name_lst)
|
||
|
name_lst += [col_fill] * missing
|
||
|
name = tuple(name_lst)
|
||
|
# to ndarray and maybe infer different dtype
|
||
|
level_values = _maybe_casted_values(lev, lab)
|
||
|
new_obj.insert(0, name, level_values)
|
||
|
|
||
|
new_obj.index = new_index
|
||
|
if not inplace:
|
||
|
return new_obj
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Reindex-based selection methods
|
||
|
|
||
|
@Appender(_shared_docs['isna'] % _shared_doc_kwargs)
|
||
|
def isna(self):
|
||
|
return super(DataFrame, self).isna()
|
||
|
|
||
|
@Appender(_shared_docs['isna'] % _shared_doc_kwargs)
|
||
|
def isnull(self):
|
||
|
return super(DataFrame, self).isnull()
|
||
|
|
||
|
@Appender(_shared_docs['notna'] % _shared_doc_kwargs)
|
||
|
def notna(self):
|
||
|
return super(DataFrame, self).notna()
|
||
|
|
||
|
@Appender(_shared_docs['notna'] % _shared_doc_kwargs)
|
||
|
def notnull(self):
|
||
|
return super(DataFrame, self).notnull()
|
||
|
|
||
|
def dropna(self, axis=0, how='any', thresh=None, subset=None,
|
||
|
inplace=False):
|
||
|
"""
|
||
|
Remove missing values.
|
||
|
|
||
|
See the :ref:`User Guide <missing_data>` for more on which values are
|
||
|
considered missing, and how to work with missing data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
Determine if rows or columns which contain missing values are
|
||
|
removed.
|
||
|
|
||
|
* 0, or 'index' : Drop rows which contain missing values.
|
||
|
* 1, or 'columns' : Drop columns which contain missing value.
|
||
|
|
||
|
.. deprecated:: 0.23.0: Pass tuple or list to drop on multiple
|
||
|
axes.
|
||
|
how : {'any', 'all'}, default 'any'
|
||
|
Determine if row or column is removed from DataFrame, when we have
|
||
|
at least one NA or all NA.
|
||
|
|
||
|
* 'any' : If any NA values are present, drop that row or column.
|
||
|
* 'all' : If all values are NA, drop that row or column.
|
||
|
thresh : int, optional
|
||
|
Require that many non-NA values.
|
||
|
subset : array-like, optional
|
||
|
Labels along other axis to consider, e.g. if you are dropping rows
|
||
|
these would be a list of columns to include.
|
||
|
inplace : bool, default False
|
||
|
If True, do operation inplace and return None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
DataFrame with NA entries dropped from it.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.isna: Indicate missing values.
|
||
|
DataFrame.notna : Indicate existing (non-missing) values.
|
||
|
DataFrame.fillna : Replace missing values.
|
||
|
Series.dropna : Drop missing values.
|
||
|
Index.dropna : Drop missing indices.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
|
||
|
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
|
||
|
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
|
||
|
... pd.NaT]})
|
||
|
>>> df
|
||
|
name toy born
|
||
|
0 Alfred NaN NaT
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
2 Catwoman Bullwhip NaT
|
||
|
|
||
|
Drop the rows where at least one element is missing.
|
||
|
|
||
|
>>> df.dropna()
|
||
|
name toy born
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
|
||
|
Drop the columns where at least one element is missing.
|
||
|
|
||
|
>>> df.dropna(axis='columns')
|
||
|
name
|
||
|
0 Alfred
|
||
|
1 Batman
|
||
|
2 Catwoman
|
||
|
|
||
|
Drop the rows where all elements are missing.
|
||
|
|
||
|
>>> df.dropna(how='all')
|
||
|
name toy born
|
||
|
0 Alfred NaN NaT
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
2 Catwoman Bullwhip NaT
|
||
|
|
||
|
Keep only the rows with at least 2 non-NA values.
|
||
|
|
||
|
>>> df.dropna(thresh=2)
|
||
|
name toy born
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
2 Catwoman Bullwhip NaT
|
||
|
|
||
|
Define in which columns to look for missing values.
|
||
|
|
||
|
>>> df.dropna(subset=['name', 'born'])
|
||
|
name toy born
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
|
||
|
Keep the DataFrame with valid entries in the same variable.
|
||
|
|
||
|
>>> df.dropna(inplace=True)
|
||
|
>>> df
|
||
|
name toy born
|
||
|
1 Batman Batmobile 1940-04-25
|
||
|
"""
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
if isinstance(axis, (tuple, list)):
|
||
|
# GH20987
|
||
|
msg = ("supplying multiple axes to axis is deprecated and "
|
||
|
"will be removed in a future version.")
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=2)
|
||
|
|
||
|
result = self
|
||
|
for ax in axis:
|
||
|
result = result.dropna(how=how, thresh=thresh, subset=subset,
|
||
|
axis=ax)
|
||
|
else:
|
||
|
axis = self._get_axis_number(axis)
|
||
|
agg_axis = 1 - axis
|
||
|
|
||
|
agg_obj = self
|
||
|
if subset is not None:
|
||
|
ax = self._get_axis(agg_axis)
|
||
|
indices = ax.get_indexer_for(subset)
|
||
|
check = indices == -1
|
||
|
if check.any():
|
||
|
raise KeyError(list(np.compress(check, subset)))
|
||
|
agg_obj = self.take(indices, axis=agg_axis)
|
||
|
|
||
|
count = agg_obj.count(axis=agg_axis)
|
||
|
|
||
|
if thresh is not None:
|
||
|
mask = count >= thresh
|
||
|
elif how == 'any':
|
||
|
mask = count == len(agg_obj._get_axis(agg_axis))
|
||
|
elif how == 'all':
|
||
|
mask = count > 0
|
||
|
else:
|
||
|
if how is not None:
|
||
|
raise ValueError('invalid how option: {h}'.format(h=how))
|
||
|
else:
|
||
|
raise TypeError('must specify how or thresh')
|
||
|
|
||
|
result = self._take(mask.nonzero()[0], axis=axis)
|
||
|
|
||
|
if inplace:
|
||
|
self._update_inplace(result)
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def drop_duplicates(self, subset=None, keep='first', inplace=False):
|
||
|
"""
|
||
|
Return DataFrame with duplicate rows removed, optionally only
|
||
|
considering certain columns
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : column label or sequence of labels, optional
|
||
|
Only consider certain columns for identifying duplicates, by
|
||
|
default use all of the columns
|
||
|
keep : {'first', 'last', False}, default 'first'
|
||
|
- ``first`` : Drop duplicates except for the first occurrence.
|
||
|
- ``last`` : Drop duplicates except for the last occurrence.
|
||
|
- False : Drop all duplicates.
|
||
|
inplace : boolean, default False
|
||
|
Whether to drop duplicates in place or to return a copy
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
deduplicated : DataFrame
|
||
|
"""
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
duplicated = self.duplicated(subset, keep=keep)
|
||
|
|
||
|
if inplace:
|
||
|
inds, = (-duplicated).nonzero()
|
||
|
new_data = self._data.take(inds)
|
||
|
self._update_inplace(new_data)
|
||
|
else:
|
||
|
return self[-duplicated]
|
||
|
|
||
|
def duplicated(self, subset=None, keep='first'):
|
||
|
"""
|
||
|
Return boolean Series denoting duplicate rows, optionally only
|
||
|
considering certain columns
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : column label or sequence of labels, optional
|
||
|
Only consider certain columns for identifying duplicates, by
|
||
|
default use all of the columns
|
||
|
keep : {'first', 'last', False}, default 'first'
|
||
|
- ``first`` : Mark duplicates as ``True`` except for the
|
||
|
first occurrence.
|
||
|
- ``last`` : Mark duplicates as ``True`` except for the
|
||
|
last occurrence.
|
||
|
- False : Mark all duplicates as ``True``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
duplicated : Series
|
||
|
"""
|
||
|
from pandas.core.sorting import get_group_index
|
||
|
from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT
|
||
|
|
||
|
def f(vals):
|
||
|
labels, shape = algorithms.factorize(
|
||
|
vals, size_hint=min(len(self), _SIZE_HINT_LIMIT))
|
||
|
return labels.astype('i8', copy=False), len(shape)
|
||
|
|
||
|
if subset is None:
|
||
|
subset = self.columns
|
||
|
elif (not np.iterable(subset) or
|
||
|
isinstance(subset, compat.string_types) or
|
||
|
isinstance(subset, tuple) and subset in self.columns):
|
||
|
subset = subset,
|
||
|
|
||
|
# Verify all columns in subset exist in the queried dataframe
|
||
|
# Otherwise, raise a KeyError, same as if you try to __getitem__ with a
|
||
|
# key that doesn't exist.
|
||
|
diff = Index(subset).difference(self.columns)
|
||
|
if not diff.empty:
|
||
|
raise KeyError(diff)
|
||
|
|
||
|
vals = (col.values for name, col in self.iteritems()
|
||
|
if name in subset)
|
||
|
labels, shape = map(list, zip(*map(f, vals)))
|
||
|
|
||
|
ids = get_group_index(labels, shape, sort=False, xnull=False)
|
||
|
return Series(duplicated_int64(ids, keep), index=self.index)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Sorting
|
||
|
|
||
|
@Appender(_shared_docs['sort_values'] % _shared_doc_kwargs)
|
||
|
def sort_values(self, by, axis=0, ascending=True, inplace=False,
|
||
|
kind='quicksort', na_position='last'):
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
axis = self._get_axis_number(axis)
|
||
|
stacklevel = 2 # Number of stack levels from df.sort_values
|
||
|
|
||
|
if not isinstance(by, list):
|
||
|
by = [by]
|
||
|
if is_sequence(ascending) and len(by) != len(ascending):
|
||
|
raise ValueError('Length of ascending (%d) != length of by (%d)' %
|
||
|
(len(ascending), len(by)))
|
||
|
if len(by) > 1:
|
||
|
from pandas.core.sorting import lexsort_indexer
|
||
|
|
||
|
keys = []
|
||
|
for x in by:
|
||
|
k = self._get_label_or_level_values(x, axis=axis,
|
||
|
stacklevel=stacklevel)
|
||
|
keys.append(k)
|
||
|
indexer = lexsort_indexer(keys, orders=ascending,
|
||
|
na_position=na_position)
|
||
|
indexer = _ensure_platform_int(indexer)
|
||
|
else:
|
||
|
from pandas.core.sorting import nargsort
|
||
|
|
||
|
by = by[0]
|
||
|
k = self._get_label_or_level_values(by, axis=axis,
|
||
|
stacklevel=stacklevel)
|
||
|
|
||
|
if isinstance(ascending, (tuple, list)):
|
||
|
ascending = ascending[0]
|
||
|
|
||
|
indexer = nargsort(k, kind=kind, ascending=ascending,
|
||
|
na_position=na_position)
|
||
|
|
||
|
new_data = self._data.take(indexer,
|
||
|
axis=self._get_block_manager_axis(axis),
|
||
|
verify=False)
|
||
|
|
||
|
if inplace:
|
||
|
return self._update_inplace(new_data)
|
||
|
else:
|
||
|
return self._constructor(new_data).__finalize__(self)
|
||
|
|
||
|
@Appender(_shared_docs['sort_index'] % _shared_doc_kwargs)
|
||
|
def sort_index(self, axis=0, level=None, ascending=True, inplace=False,
|
||
|
kind='quicksort', na_position='last', sort_remaining=True,
|
||
|
by=None):
|
||
|
|
||
|
# TODO: this can be combined with Series.sort_index impl as
|
||
|
# almost identical
|
||
|
|
||
|
inplace = validate_bool_kwarg(inplace, 'inplace')
|
||
|
# 10726
|
||
|
if by is not None:
|
||
|
warnings.warn("by argument to sort_index is deprecated, "
|
||
|
"please use .sort_values(by=...)",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
if level is not None:
|
||
|
raise ValueError("unable to simultaneously sort by and level")
|
||
|
return self.sort_values(by, axis=axis, ascending=ascending,
|
||
|
inplace=inplace)
|
||
|
|
||
|
axis = self._get_axis_number(axis)
|
||
|
labels = self._get_axis(axis)
|
||
|
|
||
|
# make sure that the axis is lexsorted to start
|
||
|
# if not we need to reconstruct to get the correct indexer
|
||
|
labels = labels._sort_levels_monotonic()
|
||
|
if level is not None:
|
||
|
|
||
|
new_axis, indexer = labels.sortlevel(level, ascending=ascending,
|
||
|
sort_remaining=sort_remaining)
|
||
|
|
||
|
elif isinstance(labels, MultiIndex):
|
||
|
from pandas.core.sorting import lexsort_indexer
|
||
|
|
||
|
indexer = lexsort_indexer(labels._get_labels_for_sorting(),
|
||
|
orders=ascending,
|
||
|
na_position=na_position)
|
||
|
else:
|
||
|
from pandas.core.sorting import nargsort
|
||
|
|
||
|
# Check monotonic-ness before sort an index
|
||
|
# GH11080
|
||
|
if ((ascending and labels.is_monotonic_increasing) or
|
||
|
(not ascending and labels.is_monotonic_decreasing)):
|
||
|
if inplace:
|
||
|
return
|
||
|
else:
|
||
|
return self.copy()
|
||
|
|
||
|
indexer = nargsort(labels, kind=kind, ascending=ascending,
|
||
|
na_position=na_position)
|
||
|
|
||
|
baxis = self._get_block_manager_axis(axis)
|
||
|
new_data = self._data.take(indexer,
|
||
|
axis=baxis,
|
||
|
verify=False)
|
||
|
|
||
|
# reconstruct axis if needed
|
||
|
new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic()
|
||
|
|
||
|
if inplace:
|
||
|
return self._update_inplace(new_data)
|
||
|
else:
|
||
|
return self._constructor(new_data).__finalize__(self)
|
||
|
|
||
|
def sortlevel(self, level=0, axis=0, ascending=True, inplace=False,
|
||
|
sort_remaining=True):
|
||
|
"""Sort multilevel index by chosen axis and primary level. Data will be
|
||
|
lexicographically sorted by the chosen level followed by the other
|
||
|
levels (in order).
|
||
|
|
||
|
.. deprecated:: 0.20.0
|
||
|
Use :meth:`DataFrame.sort_index`
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
ascending : boolean, default True
|
||
|
inplace : boolean, default False
|
||
|
Sort the DataFrame without creating a new instance
|
||
|
sort_remaining : boolean, default True
|
||
|
Sort by the other levels too.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sorted : DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.sort_index(level=...)
|
||
|
|
||
|
"""
|
||
|
warnings.warn("sortlevel is deprecated, use sort_index(level= ...)",
|
||
|
FutureWarning, stacklevel=2)
|
||
|
return self.sort_index(level=level, axis=axis, ascending=ascending,
|
||
|
inplace=inplace, sort_remaining=sort_remaining)
|
||
|
|
||
|
def nlargest(self, n, columns, keep='first'):
|
||
|
"""
|
||
|
Return the first `n` rows ordered by `columns` in descending order.
|
||
|
|
||
|
Return the first `n` rows with the largest values in `columns`, in
|
||
|
descending order. The columns that are not specified are returned as
|
||
|
well, but not used for ordering.
|
||
|
|
||
|
This method is equivalent to
|
||
|
``df.sort_values(columns, ascending=False).head(n)``, but more
|
||
|
performant.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Number of rows to return.
|
||
|
columns : label or list of labels
|
||
|
Column label(s) to order by.
|
||
|
keep : {'first', 'last'}, default 'first'
|
||
|
Where there are duplicate values:
|
||
|
|
||
|
- `first` : prioritize the first occurrence(s)
|
||
|
- `last` : prioritize the last occurrence(s)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
The first `n` rows ordered by the given columns in descending
|
||
|
order.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
|
||
|
ascending order.
|
||
|
DataFrame.sort_values : Sort DataFrame by the values
|
||
|
DataFrame.head : Return the first `n` rows without re-ordering.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function cannot be used with all column types. For example, when
|
||
|
specifying columns with `object` or `category` dtypes, ``TypeError`` is
|
||
|
raised.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'a': [1, 10, 8, 10, -1],
|
||
|
... 'b': list('abdce'),
|
||
|
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
|
||
|
>>> df
|
||
|
a b c
|
||
|
0 1 a 1.0
|
||
|
1 10 b 2.0
|
||
|
2 8 d NaN
|
||
|
3 10 c 3.0
|
||
|
4 -1 e 4.0
|
||
|
|
||
|
In the following example, we will use ``nlargest`` to select the three
|
||
|
rows having the largest values in column "a".
|
||
|
|
||
|
>>> df.nlargest(3, 'a')
|
||
|
a b c
|
||
|
1 10 b 2.0
|
||
|
3 10 c 3.0
|
||
|
2 8 d NaN
|
||
|
|
||
|
When using ``keep='last'``, ties are resolved in reverse order:
|
||
|
|
||
|
>>> df.nlargest(3, 'a', keep='last')
|
||
|
a b c
|
||
|
3 10 c 3.0
|
||
|
1 10 b 2.0
|
||
|
2 8 d NaN
|
||
|
|
||
|
To order by the largest values in column "a" and then "c", we can
|
||
|
specify multiple columns like in the next example.
|
||
|
|
||
|
>>> df.nlargest(3, ['a', 'c'])
|
||
|
a b c
|
||
|
3 10 c 3.0
|
||
|
1 10 b 2.0
|
||
|
2 8 d NaN
|
||
|
|
||
|
Attempting to use ``nlargest`` on non-numeric dtypes will raise a
|
||
|
``TypeError``:
|
||
|
|
||
|
>>> df.nlargest(3, 'b')
|
||
|
Traceback (most recent call last):
|
||
|
TypeError: Column 'b' has dtype object, cannot use method 'nlargest'
|
||
|
"""
|
||
|
return algorithms.SelectNFrame(self,
|
||
|
n=n,
|
||
|
keep=keep,
|
||
|
columns=columns).nlargest()
|
||
|
|
||
|
def nsmallest(self, n, columns, keep='first'):
|
||
|
"""Get the rows of a DataFrame sorted by the `n` smallest
|
||
|
values of `columns`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Number of items to retrieve
|
||
|
columns : list or str
|
||
|
Column name or names to order by
|
||
|
keep : {'first', 'last'}, default 'first'
|
||
|
Where there are duplicate values:
|
||
|
- ``first`` : take the first occurrence.
|
||
|
- ``last`` : take the last occurrence.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'a': [1, 10, 8, 11, -1],
|
||
|
... 'b': list('abdce'),
|
||
|
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
|
||
|
>>> df.nsmallest(3, 'a')
|
||
|
a b c
|
||
|
4 -1 e 4
|
||
|
0 1 a 1
|
||
|
2 8 d NaN
|
||
|
"""
|
||
|
return algorithms.SelectNFrame(self,
|
||
|
n=n,
|
||
|
keep=keep,
|
||
|
columns=columns).nsmallest()
|
||
|
|
||
|
def swaplevel(self, i=-2, j=-1, axis=0):
|
||
|
"""
|
||
|
Swap levels i and j in a MultiIndex on a particular axis
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
i, j : int, string (can be mixed)
|
||
|
Level of index to be swapped. Can pass level name as string.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
swapped : type of caller (new object)
|
||
|
|
||
|
.. versionchanged:: 0.18.1
|
||
|
|
||
|
The indexes ``i`` and ``j`` are now optional, and default to
|
||
|
the two innermost levels of the index.
|
||
|
|
||
|
"""
|
||
|
result = self.copy()
|
||
|
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if axis == 0:
|
||
|
result.index = result.index.swaplevel(i, j)
|
||
|
else:
|
||
|
result.columns = result.columns.swaplevel(i, j)
|
||
|
return result
|
||
|
|
||
|
def reorder_levels(self, order, axis=0):
|
||
|
"""
|
||
|
Rearrange index levels using input order.
|
||
|
May not drop or duplicate levels
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
order : list of int or list of str
|
||
|
List representing new level order. Reference level by number
|
||
|
(position) or by key (label).
|
||
|
axis : int
|
||
|
Where to reorder levels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
type of caller (new object)
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if not isinstance(self._get_axis(axis),
|
||
|
MultiIndex): # pragma: no cover
|
||
|
raise TypeError('Can only reorder levels on a hierarchical axis.')
|
||
|
|
||
|
result = self.copy()
|
||
|
|
||
|
if axis == 0:
|
||
|
result.index = result.index.reorder_levels(order)
|
||
|
else:
|
||
|
result.columns = result.columns.reorder_levels(order)
|
||
|
return result
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Arithmetic / combination related
|
||
|
|
||
|
def _combine_frame(self, other, func, fill_value=None, level=None):
|
||
|
this, other = self.align(other, join='outer', level=level, copy=False)
|
||
|
new_index, new_columns = this.index, this.columns
|
||
|
|
||
|
def _arith_op(left, right):
|
||
|
# for the mixed_type case where we iterate over columns,
|
||
|
# _arith_op(left, right) is equivalent to
|
||
|
# left._binop(right, func, fill_value=fill_value)
|
||
|
left, right = ops.fill_binop(left, right, fill_value)
|
||
|
return func(left, right)
|
||
|
|
||
|
if this._is_mixed_type or other._is_mixed_type:
|
||
|
# iterate over columns
|
||
|
if this.columns.is_unique:
|
||
|
# unique columns
|
||
|
result = {col: _arith_op(this[col], other[col])
|
||
|
for col in this}
|
||
|
result = self._constructor(result, index=new_index,
|
||
|
columns=new_columns, copy=False)
|
||
|
else:
|
||
|
# non-unique columns
|
||
|
result = {i: _arith_op(this.iloc[:, i], other.iloc[:, i])
|
||
|
for i, col in enumerate(this.columns)}
|
||
|
result = self._constructor(result, index=new_index, copy=False)
|
||
|
result.columns = new_columns
|
||
|
return result
|
||
|
|
||
|
else:
|
||
|
result = _arith_op(this.values, other.values)
|
||
|
|
||
|
return self._constructor(result, index=new_index, columns=new_columns,
|
||
|
copy=False)
|
||
|
|
||
|
def _combine_match_index(self, other, func, level=None):
|
||
|
left, right = self.align(other, join='outer', axis=0, level=level,
|
||
|
copy=False)
|
||
|
new_data = func(left.values.T, right.values).T
|
||
|
return self._constructor(new_data,
|
||
|
index=left.index, columns=self.columns,
|
||
|
copy=False)
|
||
|
|
||
|
def _combine_match_columns(self, other, func, level=None, try_cast=True):
|
||
|
left, right = self.align(other, join='outer', axis=1, level=level,
|
||
|
copy=False)
|
||
|
|
||
|
new_data = left._data.eval(func=func, other=right,
|
||
|
axes=[left.columns, self.index],
|
||
|
try_cast=try_cast)
|
||
|
return self._constructor(new_data)
|
||
|
|
||
|
def _combine_const(self, other, func, errors='raise', try_cast=True):
|
||
|
new_data = self._data.eval(func=func, other=other,
|
||
|
errors=errors,
|
||
|
try_cast=try_cast)
|
||
|
return self._constructor(new_data)
|
||
|
|
||
|
def _compare_frame(self, other, func, str_rep):
|
||
|
# compare_frame assumes self._indexed_same(other)
|
||
|
|
||
|
import pandas.core.computation.expressions as expressions
|
||
|
# unique
|
||
|
if self.columns.is_unique:
|
||
|
|
||
|
def _compare(a, b):
|
||
|
return {col: func(a[col], b[col]) for col in a.columns}
|
||
|
|
||
|
new_data = expressions.evaluate(_compare, str_rep, self, other)
|
||
|
return self._constructor(data=new_data, index=self.index,
|
||
|
columns=self.columns, copy=False)
|
||
|
# non-unique
|
||
|
else:
|
||
|
|
||
|
def _compare(a, b):
|
||
|
return {i: func(a.iloc[:, i], b.iloc[:, i])
|
||
|
for i, col in enumerate(a.columns)}
|
||
|
|
||
|
new_data = expressions.evaluate(_compare, str_rep, self, other)
|
||
|
result = self._constructor(data=new_data, index=self.index,
|
||
|
copy=False)
|
||
|
result.columns = self.columns
|
||
|
return result
|
||
|
|
||
|
def combine(self, other, func, fill_value=None, overwrite=True):
|
||
|
"""
|
||
|
Add two DataFrame objects and do not propagate NaN values, so if for a
|
||
|
(column, time) one frame is missing a value, it will default to the
|
||
|
other frame's value (which might be NaN as well)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame
|
||
|
func : function
|
||
|
Function that takes two series as inputs and return a Series or a
|
||
|
scalar
|
||
|
fill_value : scalar value
|
||
|
overwrite : boolean, default True
|
||
|
If True then overwrite values for common keys in the calling frame
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : DataFrame
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df1 = DataFrame({'A': [0, 0], 'B': [4, 4]})
|
||
|
>>> df2 = DataFrame({'A': [1, 1], 'B': [3, 3]})
|
||
|
>>> df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2)
|
||
|
A B
|
||
|
0 0 3
|
||
|
1 0 3
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.combine_first : Combine two DataFrame objects and default to
|
||
|
non-null values in frame calling the method
|
||
|
"""
|
||
|
other_idxlen = len(other.index) # save for compare
|
||
|
|
||
|
this, other = self.align(other, copy=False)
|
||
|
new_index = this.index
|
||
|
|
||
|
if other.empty and len(new_index) == len(self.index):
|
||
|
return self.copy()
|
||
|
|
||
|
if self.empty and len(other) == other_idxlen:
|
||
|
return other.copy()
|
||
|
|
||
|
# sorts if possible
|
||
|
new_columns = this.columns.union(other.columns)
|
||
|
do_fill = fill_value is not None
|
||
|
|
||
|
result = {}
|
||
|
for col in new_columns:
|
||
|
series = this[col]
|
||
|
otherSeries = other[col]
|
||
|
|
||
|
this_dtype = series.dtype
|
||
|
other_dtype = otherSeries.dtype
|
||
|
|
||
|
this_mask = isna(series)
|
||
|
other_mask = isna(otherSeries)
|
||
|
|
||
|
# don't overwrite columns unecessarily
|
||
|
# DO propagate if this column is not in the intersection
|
||
|
if not overwrite and other_mask.all():
|
||
|
result[col] = this[col].copy()
|
||
|
continue
|
||
|
|
||
|
if do_fill:
|
||
|
series = series.copy()
|
||
|
otherSeries = otherSeries.copy()
|
||
|
series[this_mask] = fill_value
|
||
|
otherSeries[other_mask] = fill_value
|
||
|
|
||
|
# if we have different dtypes, possibly promote
|
||
|
new_dtype = this_dtype
|
||
|
if not is_dtype_equal(this_dtype, other_dtype):
|
||
|
new_dtype = find_common_type([this_dtype, other_dtype])
|
||
|
if not is_dtype_equal(this_dtype, new_dtype):
|
||
|
series = series.astype(new_dtype)
|
||
|
if not is_dtype_equal(other_dtype, new_dtype):
|
||
|
otherSeries = otherSeries.astype(new_dtype)
|
||
|
|
||
|
# see if we need to be represented as i8 (datetimelike)
|
||
|
# try to keep us at this dtype
|
||
|
needs_i8_conversion_i = needs_i8_conversion(new_dtype)
|
||
|
if needs_i8_conversion_i:
|
||
|
arr = func(series, otherSeries, True)
|
||
|
else:
|
||
|
arr = func(series, otherSeries)
|
||
|
|
||
|
arr = maybe_downcast_to_dtype(arr, this_dtype)
|
||
|
|
||
|
result[col] = arr
|
||
|
|
||
|
# convert_objects just in case
|
||
|
return self._constructor(result, index=new_index,
|
||
|
columns=new_columns)._convert(datetime=True,
|
||
|
copy=False)
|
||
|
|
||
|
def combine_first(self, other):
|
||
|
"""
|
||
|
Combine two DataFrame objects and default to non-null values in frame
|
||
|
calling the method. Result index columns will be the union of the
|
||
|
respective indexes and columns
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
combined : DataFrame
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
df1's values prioritized, use values from df2 to fill holes:
|
||
|
|
||
|
>>> df1 = pd.DataFrame([[1, np.nan]])
|
||
|
>>> df2 = pd.DataFrame([[3, 4]])
|
||
|
>>> df1.combine_first(df2)
|
||
|
0 1
|
||
|
0 1 4.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.combine : Perform series-wise operation on two DataFrames
|
||
|
using a given function
|
||
|
"""
|
||
|
import pandas.core.computation.expressions as expressions
|
||
|
|
||
|
def combiner(x, y, needs_i8_conversion=False):
|
||
|
x_values = x.values if hasattr(x, 'values') else x
|
||
|
y_values = y.values if hasattr(y, 'values') else y
|
||
|
if needs_i8_conversion:
|
||
|
mask = isna(x)
|
||
|
x_values = x_values.view('i8')
|
||
|
y_values = y_values.view('i8')
|
||
|
else:
|
||
|
mask = isna(x_values)
|
||
|
|
||
|
return expressions.where(mask, y_values, x_values)
|
||
|
|
||
|
return self.combine(other, combiner, overwrite=False)
|
||
|
|
||
|
def update(self, other, join='left', overwrite=True, filter_func=None,
|
||
|
raise_conflict=False):
|
||
|
"""
|
||
|
Modify in place using non-NA values from another DataFrame.
|
||
|
|
||
|
Aligns on indices. There is no return value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame, or object coercible into a DataFrame
|
||
|
Should have at least one matching index/column label
|
||
|
with the original DataFrame. If a Series is passed,
|
||
|
its name attribute must be set, and that will be
|
||
|
used as the column name to align with the original DataFrame.
|
||
|
join : {'left'}, default 'left'
|
||
|
Only left join is implemented, keeping the index and columns of the
|
||
|
original object.
|
||
|
overwrite : bool, default True
|
||
|
How to handle non-NA values for overlapping keys:
|
||
|
|
||
|
* True: overwrite original DataFrame's values
|
||
|
with values from `other`.
|
||
|
* False: only update values that are NA in
|
||
|
the original DataFrame.
|
||
|
|
||
|
filter_func : callable(1d-array) -> boolean 1d-array, optional
|
||
|
Can choose to replace values other than NA. Return True for values
|
||
|
that should be updated.
|
||
|
raise_conflict : bool, default False
|
||
|
If True, will raise a ValueError if the DataFrame and `other`
|
||
|
both contain non-NA data in the same place.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
When `raise_conflict` is True and there's overlapping non-NA data.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
dict.update : Similar method for dictionaries.
|
||
|
DataFrame.merge : For column(s)-on-columns(s) operations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3],
|
||
|
... 'B': [400, 500, 600]})
|
||
|
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
|
||
|
... 'C': [7, 8, 9]})
|
||
|
>>> df.update(new_df)
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 4
|
||
|
1 2 5
|
||
|
2 3 6
|
||
|
|
||
|
The DataFrame's length does not increase as a result of the update,
|
||
|
only values at matching index/column labels are updated.
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
|
||
|
... 'B': ['x', 'y', 'z']})
|
||
|
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
|
||
|
>>> df.update(new_df)
|
||
|
>>> df
|
||
|
A B
|
||
|
0 a d
|
||
|
1 b e
|
||
|
2 c f
|
||
|
|
||
|
For Series, it's name attribute must be set.
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
|
||
|
... 'B': ['x', 'y', 'z']})
|
||
|
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
|
||
|
>>> df.update(new_column)
|
||
|
>>> df
|
||
|
A B
|
||
|
0 a d
|
||
|
1 b y
|
||
|
2 c e
|
||
|
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
|
||
|
... 'B': ['x', 'y', 'z']})
|
||
|
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
|
||
|
>>> df.update(new_df)
|
||
|
>>> df
|
||
|
A B
|
||
|
0 a x
|
||
|
1 b d
|
||
|
2 c e
|
||
|
|
||
|
If `other` contains NaNs the corresponding values are not updated
|
||
|
in the original dataframe.
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3],
|
||
|
... 'B': [400, 500, 600]})
|
||
|
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
|
||
|
>>> df.update(new_df)
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 4.0
|
||
|
1 2 500.0
|
||
|
2 3 6.0
|
||
|
"""
|
||
|
import pandas.core.computation.expressions as expressions
|
||
|
# TODO: Support other joins
|
||
|
if join != 'left': # pragma: no cover
|
||
|
raise NotImplementedError("Only left join is supported")
|
||
|
|
||
|
if not isinstance(other, DataFrame):
|
||
|
other = DataFrame(other)
|
||
|
|
||
|
other = other.reindex_like(self)
|
||
|
|
||
|
for col in self.columns:
|
||
|
this = self[col].values
|
||
|
that = other[col].values
|
||
|
if filter_func is not None:
|
||
|
with np.errstate(all='ignore'):
|
||
|
mask = ~filter_func(this) | isna(that)
|
||
|
else:
|
||
|
if raise_conflict:
|
||
|
mask_this = notna(that)
|
||
|
mask_that = notna(this)
|
||
|
if any(mask_this & mask_that):
|
||
|
raise ValueError("Data overlaps.")
|
||
|
|
||
|
if overwrite:
|
||
|
mask = isna(that)
|
||
|
else:
|
||
|
mask = notna(this)
|
||
|
|
||
|
# don't overwrite columns unecessarily
|
||
|
if mask.all():
|
||
|
continue
|
||
|
|
||
|
self[col] = expressions.where(mask, this, that)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Data reshaping
|
||
|
|
||
|
def pivot(self, index=None, columns=None, values=None):
|
||
|
"""
|
||
|
Return reshaped DataFrame organized by given index / column values.
|
||
|
|
||
|
Reshape data (produce a "pivot" table) based on column values. Uses
|
||
|
unique values from specified `index` / `columns` to form axes of the
|
||
|
resulting DataFrame. This function does not support data
|
||
|
aggregation, multiple values will result in a MultiIndex in the
|
||
|
columns. See the :ref:`User Guide <reshaping>` for more on reshaping.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : string or object, optional
|
||
|
Column to use to make new frame's index. If None, uses
|
||
|
existing index.
|
||
|
columns : string or object
|
||
|
Column to use to make new frame's columns.
|
||
|
values : string, object or a list of the previous, optional
|
||
|
Column(s) to use for populating new frame's values. If not
|
||
|
specified, all remaining columns will be used and the result will
|
||
|
have hierarchically indexed columns.
|
||
|
|
||
|
.. versionchanged :: 0.23.0
|
||
|
Also accept list of column names.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
Returns reshaped DataFrame.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError:
|
||
|
When there are any `index`, `columns` combinations with multiple
|
||
|
values. `DataFrame.pivot_table` when you need to aggregate.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.pivot_table : generalization of pivot that can handle
|
||
|
duplicate values for one index/column pair.
|
||
|
DataFrame.unstack : pivot based on the index values instead of a
|
||
|
column.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For finer-tuned control, see hierarchical indexing documentation along
|
||
|
with the related stack/unstack methods.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
|
||
|
... 'two'],
|
||
|
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
|
||
|
... 'baz': [1, 2, 3, 4, 5, 6],
|
||
|
... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
|
||
|
>>> df
|
||
|
foo bar baz zoo
|
||
|
0 one A 1 x
|
||
|
1 one B 2 y
|
||
|
2 one C 3 z
|
||
|
3 two A 4 q
|
||
|
4 two B 5 w
|
||
|
5 two C 6 t
|
||
|
|
||
|
>>> df.pivot(index='foo', columns='bar', values='baz')
|
||
|
bar A B C
|
||
|
foo
|
||
|
one 1 2 3
|
||
|
two 4 5 6
|
||
|
|
||
|
>>> df.pivot(index='foo', columns='bar')['baz']
|
||
|
bar A B C
|
||
|
foo
|
||
|
one 1 2 3
|
||
|
two 4 5 6
|
||
|
|
||
|
>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
|
||
|
baz zoo
|
||
|
bar A B C A B C
|
||
|
foo
|
||
|
one 1 2 3 x y z
|
||
|
two 4 5 6 q w t
|
||
|
|
||
|
A ValueError is raised if there are any duplicates.
|
||
|
|
||
|
>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
|
||
|
... "bar": ['A', 'A', 'B', 'C'],
|
||
|
... "baz": [1, 2, 3, 4]})
|
||
|
>>> df
|
||
|
foo bar baz
|
||
|
0 one A 1
|
||
|
1 one A 2
|
||
|
2 two B 3
|
||
|
3 two C 4
|
||
|
|
||
|
Notice that the first two rows are the same for our `index`
|
||
|
and `columns` arguments.
|
||
|
|
||
|
>>> df.pivot(index='foo', columns='bar', values='baz')
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Index contains duplicate entries, cannot reshape
|
||
|
"""
|
||
|
from pandas.core.reshape.reshape import pivot
|
||
|
return pivot(self, index=index, columns=columns, values=values)
|
||
|
|
||
|
_shared_docs['pivot_table'] = """
|
||
|
Create a spreadsheet-style pivot table as a DataFrame. The levels in
|
||
|
the pivot table will be stored in MultiIndex objects (hierarchical
|
||
|
indexes) on the index and columns of the result DataFrame
|
||
|
|
||
|
Parameters
|
||
|
----------%s
|
||
|
values : column to aggregate, optional
|
||
|
index : column, Grouper, array, or list of the previous
|
||
|
If an array is passed, it must be the same length as the data. The
|
||
|
list can contain any of the other types (except list).
|
||
|
Keys to group by on the pivot table index. If an array is passed,
|
||
|
it is being used as the same manner as column values.
|
||
|
columns : column, Grouper, array, or list of the previous
|
||
|
If an array is passed, it must be the same length as the data. The
|
||
|
list can contain any of the other types (except list).
|
||
|
Keys to group by on the pivot table column. If an array is passed,
|
||
|
it is being used as the same manner as column values.
|
||
|
aggfunc : function, list of functions, dict, default numpy.mean
|
||
|
If list of functions passed, the resulting pivot table will have
|
||
|
hierarchical columns whose top level are the function names
|
||
|
(inferred from the function objects themselves)
|
||
|
If dict is passed, the key is column to aggregate and value
|
||
|
is function or list of functions
|
||
|
fill_value : scalar, default None
|
||
|
Value to replace missing values with
|
||
|
margins : boolean, default False
|
||
|
Add all row / columns (e.g. for subtotal / grand totals)
|
||
|
dropna : boolean, default True
|
||
|
Do not include columns whose entries are all NaN
|
||
|
margins_name : string, default 'All'
|
||
|
Name of the row / column that will contain the totals
|
||
|
when margins is True.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
|
||
|
... "bar", "bar", "bar", "bar"],
|
||
|
... "B": ["one", "one", "one", "two", "two",
|
||
|
... "one", "one", "two", "two"],
|
||
|
... "C": ["small", "large", "large", "small",
|
||
|
... "small", "large", "small", "small",
|
||
|
... "large"],
|
||
|
... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7]})
|
||
|
>>> df
|
||
|
A B C D
|
||
|
0 foo one small 1
|
||
|
1 foo one large 2
|
||
|
2 foo one large 2
|
||
|
3 foo two small 3
|
||
|
4 foo two small 3
|
||
|
5 bar one large 4
|
||
|
6 bar one small 5
|
||
|
7 bar two small 6
|
||
|
8 bar two large 7
|
||
|
|
||
|
>>> table = pivot_table(df, values='D', index=['A', 'B'],
|
||
|
... columns=['C'], aggfunc=np.sum)
|
||
|
>>> table
|
||
|
C large small
|
||
|
A B
|
||
|
bar one 4.0 5.0
|
||
|
two 7.0 6.0
|
||
|
foo one 4.0 1.0
|
||
|
two NaN 6.0
|
||
|
|
||
|
>>> table = pivot_table(df, values='D', index=['A', 'B'],
|
||
|
... columns=['C'], aggfunc=np.sum)
|
||
|
>>> table
|
||
|
C large small
|
||
|
A B
|
||
|
bar one 4.0 5.0
|
||
|
two 7.0 6.0
|
||
|
foo one 4.0 1.0
|
||
|
two NaN 6.0
|
||
|
|
||
|
>>> table = pivot_table(df, values=['D', 'E'], index=['A', 'C'],
|
||
|
... aggfunc={'D': np.mean,
|
||
|
... 'E': [min, max, np.mean]})
|
||
|
>>> table
|
||
|
D E
|
||
|
mean max median min
|
||
|
A C
|
||
|
bar large 5.500000 16 14.5 13
|
||
|
small 5.500000 15 14.5 14
|
||
|
foo large 2.000000 10 9.5 9
|
||
|
small 2.333333 12 11.0 8
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
table : DataFrame
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.pivot : pivot without aggregation that can handle
|
||
|
non-numeric data
|
||
|
"""
|
||
|
|
||
|
@Substitution('')
|
||
|
@Appender(_shared_docs['pivot_table'])
|
||
|
def pivot_table(self, values=None, index=None, columns=None,
|
||
|
aggfunc='mean', fill_value=None, margins=False,
|
||
|
dropna=True, margins_name='All'):
|
||
|
from pandas.core.reshape.pivot import pivot_table
|
||
|
return pivot_table(self, values=values, index=index, columns=columns,
|
||
|
aggfunc=aggfunc, fill_value=fill_value,
|
||
|
margins=margins, dropna=dropna,
|
||
|
margins_name=margins_name)
|
||
|
|
||
|
def stack(self, level=-1, dropna=True):
|
||
|
"""
|
||
|
Stack the prescribed level(s) from columns to index.
|
||
|
|
||
|
Return a reshaped DataFrame or Series having a multi-level
|
||
|
index with one or more new inner-most levels compared to the current
|
||
|
DataFrame. The new inner-most levels are created by pivoting the
|
||
|
columns of the current dataframe:
|
||
|
|
||
|
- if the columns have a single level, the output is a Series;
|
||
|
- if the columns have multiple levels, the new index
|
||
|
level(s) is (are) taken from the prescribed level(s) and
|
||
|
the output is a DataFrame.
|
||
|
|
||
|
The new index levels are sorted.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int, str, list, default -1
|
||
|
Level(s) to stack from the column axis onto the index
|
||
|
axis, defined as one index or label, or a list of indices
|
||
|
or labels.
|
||
|
dropna : bool, default True
|
||
|
Whether to drop rows in the resulting Frame/Series with
|
||
|
missing values. Stacking a column level onto the index
|
||
|
axis can create combinations of index and column values
|
||
|
that are missing from the original dataframe. See Examples
|
||
|
section.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame or Series
|
||
|
Stacked dataframe or series.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.unstack : Unstack prescribed level(s) from index axis
|
||
|
onto column axis.
|
||
|
DataFrame.pivot : Reshape dataframe from long format to wide
|
||
|
format.
|
||
|
DataFrame.pivot_table : Create a spreadsheet-style pivot table
|
||
|
as a DataFrame.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function is named by analogy with a collection of books
|
||
|
being re-organised from being side by side on a horizontal
|
||
|
position (the columns of the dataframe) to being stacked
|
||
|
vertically on top of of each other (in the index of the
|
||
|
dataframe).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
**Single level columns**
|
||
|
|
||
|
>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
|
||
|
... index=['cat', 'dog'],
|
||
|
... columns=['weight', 'height'])
|
||
|
|
||
|
Stacking a dataframe with a single level column axis returns a Series:
|
||
|
|
||
|
>>> df_single_level_cols
|
||
|
weight height
|
||
|
cat 0 1
|
||
|
dog 2 3
|
||
|
>>> df_single_level_cols.stack()
|
||
|
cat weight 0
|
||
|
height 1
|
||
|
dog weight 2
|
||
|
height 3
|
||
|
dtype: int64
|
||
|
|
||
|
**Multi level columns: simple case**
|
||
|
|
||
|
>>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
|
||
|
... ('weight', 'pounds')])
|
||
|
>>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
|
||
|
... index=['cat', 'dog'],
|
||
|
... columns=multicol1)
|
||
|
|
||
|
Stacking a dataframe with a multi-level column axis:
|
||
|
|
||
|
>>> df_multi_level_cols1
|
||
|
weight
|
||
|
kg pounds
|
||
|
cat 1 2
|
||
|
dog 2 4
|
||
|
>>> df_multi_level_cols1.stack()
|
||
|
weight
|
||
|
cat kg 1
|
||
|
pounds 2
|
||
|
dog kg 2
|
||
|
pounds 4
|
||
|
|
||
|
**Missing values**
|
||
|
|
||
|
>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
|
||
|
... ('height', 'm')])
|
||
|
>>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
|
||
|
... index=['cat', 'dog'],
|
||
|
... columns=multicol2)
|
||
|
|
||
|
It is common to have missing values when stacking a dataframe
|
||
|
with multi-level columns, as the stacked dataframe typically
|
||
|
has more values than the original dataframe. Missing values
|
||
|
are filled with NaNs:
|
||
|
|
||
|
>>> df_multi_level_cols2
|
||
|
weight height
|
||
|
kg m
|
||
|
cat 1.0 2.0
|
||
|
dog 3.0 4.0
|
||
|
>>> df_multi_level_cols2.stack()
|
||
|
height weight
|
||
|
cat kg NaN 1.0
|
||
|
m 2.0 NaN
|
||
|
dog kg NaN 3.0
|
||
|
m 4.0 NaN
|
||
|
|
||
|
**Prescribing the level(s) to be stacked**
|
||
|
|
||
|
The first parameter controls which level or levels are stacked:
|
||
|
|
||
|
>>> df_multi_level_cols2.stack(0)
|
||
|
kg m
|
||
|
cat height NaN 2.0
|
||
|
weight 1.0 NaN
|
||
|
dog height NaN 4.0
|
||
|
weight 3.0 NaN
|
||
|
>>> df_multi_level_cols2.stack([0, 1])
|
||
|
cat height m 2.0
|
||
|
weight kg 1.0
|
||
|
dog height m 4.0
|
||
|
weight kg 3.0
|
||
|
dtype: float64
|
||
|
|
||
|
**Dropping missing values**
|
||
|
|
||
|
>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
|
||
|
... index=['cat', 'dog'],
|
||
|
... columns=multicol2)
|
||
|
|
||
|
Note that rows where all values are missing are dropped by
|
||
|
default but this behaviour can be controlled via the dropna
|
||
|
keyword parameter:
|
||
|
|
||
|
>>> df_multi_level_cols3
|
||
|
weight height
|
||
|
kg m
|
||
|
cat NaN 1.0
|
||
|
dog 2.0 3.0
|
||
|
>>> df_multi_level_cols3.stack(dropna=False)
|
||
|
height weight
|
||
|
cat kg NaN NaN
|
||
|
m 1.0 NaN
|
||
|
dog kg NaN 2.0
|
||
|
m 3.0 NaN
|
||
|
>>> df_multi_level_cols3.stack(dropna=True)
|
||
|
height weight
|
||
|
cat m 1.0 NaN
|
||
|
dog kg NaN 2.0
|
||
|
m 3.0 NaN
|
||
|
"""
|
||
|
from pandas.core.reshape.reshape import stack, stack_multiple
|
||
|
|
||
|
if isinstance(level, (tuple, list)):
|
||
|
return stack_multiple(self, level, dropna=dropna)
|
||
|
else:
|
||
|
return stack(self, level, dropna=dropna)
|
||
|
|
||
|
def unstack(self, level=-1, fill_value=None):
|
||
|
"""
|
||
|
Pivot a level of the (necessarily hierarchical) index labels, returning
|
||
|
a DataFrame having a new level of column labels whose inner-most level
|
||
|
consists of the pivoted index labels. If the index is not a MultiIndex,
|
||
|
the output will be a Series (the analogue of stack when the columns are
|
||
|
not a MultiIndex).
|
||
|
The level involved will automatically get sorted.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
level : int, string, or list of these, default -1 (last level)
|
||
|
Level(s) of index to unstack, can pass level name
|
||
|
fill_value : replace NaN with this value if the unstack produces
|
||
|
missing values
|
||
|
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.pivot : Pivot a table based on column values.
|
||
|
DataFrame.stack : Pivot a level of the column labels (inverse operation
|
||
|
from `unstack`).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
|
||
|
... ('two', 'a'), ('two', 'b')])
|
||
|
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
|
||
|
>>> s
|
||
|
one a 1.0
|
||
|
b 2.0
|
||
|
two a 3.0
|
||
|
b 4.0
|
||
|
dtype: float64
|
||
|
|
||
|
>>> s.unstack(level=-1)
|
||
|
a b
|
||
|
one 1.0 2.0
|
||
|
two 3.0 4.0
|
||
|
|
||
|
>>> s.unstack(level=0)
|
||
|
one two
|
||
|
a 1.0 3.0
|
||
|
b 2.0 4.0
|
||
|
|
||
|
>>> df = s.unstack(level=0)
|
||
|
>>> df.unstack()
|
||
|
one a 1.0
|
||
|
b 2.0
|
||
|
two a 3.0
|
||
|
b 4.0
|
||
|
dtype: float64
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
unstacked : DataFrame or Series
|
||
|
"""
|
||
|
from pandas.core.reshape.reshape import unstack
|
||
|
return unstack(self, level, fill_value)
|
||
|
|
||
|
_shared_docs['melt'] = ("""
|
||
|
"Unpivots" a DataFrame from wide format to long format, optionally
|
||
|
leaving identifier variables set.
|
||
|
|
||
|
This function is useful to massage a DataFrame into a format where one
|
||
|
or more columns are identifier variables (`id_vars`), while all other
|
||
|
columns, considered measured variables (`value_vars`), are "unpivoted" to
|
||
|
the row axis, leaving just two non-identifier columns, 'variable' and
|
||
|
'value'.
|
||
|
|
||
|
%(versionadded)s
|
||
|
Parameters
|
||
|
----------
|
||
|
frame : DataFrame
|
||
|
id_vars : tuple, list, or ndarray, optional
|
||
|
Column(s) to use as identifier variables.
|
||
|
value_vars : tuple, list, or ndarray, optional
|
||
|
Column(s) to unpivot. If not specified, uses all columns that
|
||
|
are not set as `id_vars`.
|
||
|
var_name : scalar
|
||
|
Name to use for the 'variable' column. If None it uses
|
||
|
``frame.columns.name`` or 'variable'.
|
||
|
value_name : scalar, default 'value'
|
||
|
Name to use for the 'value' column.
|
||
|
col_level : int or string, optional
|
||
|
If columns are a MultiIndex then use this level to melt.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
%(other)s
|
||
|
pivot_table
|
||
|
DataFrame.pivot
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pandas as pd
|
||
|
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
|
||
|
... 'B': {0: 1, 1: 3, 2: 5},
|
||
|
... 'C': {0: 2, 1: 4, 2: 6}})
|
||
|
>>> df
|
||
|
A B C
|
||
|
0 a 1 2
|
||
|
1 b 3 4
|
||
|
2 c 5 6
|
||
|
|
||
|
>>> %(caller)sid_vars=['A'], value_vars=['B'])
|
||
|
A variable value
|
||
|
0 a B 1
|
||
|
1 b B 3
|
||
|
2 c B 5
|
||
|
|
||
|
>>> %(caller)sid_vars=['A'], value_vars=['B', 'C'])
|
||
|
A variable value
|
||
|
0 a B 1
|
||
|
1 b B 3
|
||
|
2 c B 5
|
||
|
3 a C 2
|
||
|
4 b C 4
|
||
|
5 c C 6
|
||
|
|
||
|
The names of 'variable' and 'value' columns can be customized:
|
||
|
|
||
|
>>> %(caller)sid_vars=['A'], value_vars=['B'],
|
||
|
... var_name='myVarname', value_name='myValname')
|
||
|
A myVarname myValname
|
||
|
0 a B 1
|
||
|
1 b B 3
|
||
|
2 c B 5
|
||
|
|
||
|
If you have multi-index columns:
|
||
|
|
||
|
>>> df.columns = [list('ABC'), list('DEF')]
|
||
|
>>> df
|
||
|
A B C
|
||
|
D E F
|
||
|
0 a 1 2
|
||
|
1 b 3 4
|
||
|
2 c 5 6
|
||
|
|
||
|
>>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B'])
|
||
|
A variable value
|
||
|
0 a B 1
|
||
|
1 b B 3
|
||
|
2 c B 5
|
||
|
|
||
|
>>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')])
|
||
|
(A, D) variable_0 variable_1 value
|
||
|
0 a B E 1
|
||
|
1 b B E 3
|
||
|
2 c B E 5
|
||
|
|
||
|
""")
|
||
|
|
||
|
@Appender(_shared_docs['melt'] %
|
||
|
dict(caller='df.melt(',
|
||
|
versionadded='.. versionadded:: 0.20.0\n',
|
||
|
other='melt'))
|
||
|
def melt(self, id_vars=None, value_vars=None, var_name=None,
|
||
|
value_name='value', col_level=None):
|
||
|
from pandas.core.reshape.melt import melt
|
||
|
return melt(self, id_vars=id_vars, value_vars=value_vars,
|
||
|
var_name=var_name, value_name=value_name,
|
||
|
col_level=col_level)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Time series-related
|
||
|
|
||
|
def diff(self, periods=1, axis=0):
|
||
|
"""
|
||
|
First discrete difference of element.
|
||
|
|
||
|
Calculates the difference of a DataFrame element compared with another
|
||
|
element in the DataFrame (default is the element in the same column
|
||
|
of the previous row).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
periods : int, default 1
|
||
|
Periods to shift for calculating difference, accepts negative
|
||
|
values.
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
Take difference over rows (0) or columns (1).
|
||
|
|
||
|
.. versionadded:: 0.16.1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
diffed : DataFrame
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.diff: First discrete difference for a Series.
|
||
|
DataFrame.pct_change: Percent change over given number of periods.
|
||
|
DataFrame.shift: Shift index by desired number of periods with an
|
||
|
optional time freq.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Difference with previous row
|
||
|
|
||
|
>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
|
||
|
... 'b': [1, 1, 2, 3, 5, 8],
|
||
|
... 'c': [1, 4, 9, 16, 25, 36]})
|
||
|
>>> df
|
||
|
a b c
|
||
|
0 1 1 1
|
||
|
1 2 1 4
|
||
|
2 3 2 9
|
||
|
3 4 3 16
|
||
|
4 5 5 25
|
||
|
5 6 8 36
|
||
|
|
||
|
>>> df.diff()
|
||
|
a b c
|
||
|
0 NaN NaN NaN
|
||
|
1 1.0 0.0 3.0
|
||
|
2 1.0 1.0 5.0
|
||
|
3 1.0 1.0 7.0
|
||
|
4 1.0 2.0 9.0
|
||
|
5 1.0 3.0 11.0
|
||
|
|
||
|
Difference with previous column
|
||
|
|
||
|
>>> df.diff(axis=1)
|
||
|
a b c
|
||
|
0 NaN 0.0 0.0
|
||
|
1 NaN -1.0 3.0
|
||
|
2 NaN -1.0 7.0
|
||
|
3 NaN -1.0 13.0
|
||
|
4 NaN 0.0 20.0
|
||
|
5 NaN 2.0 28.0
|
||
|
|
||
|
Difference with 3rd previous row
|
||
|
|
||
|
>>> df.diff(periods=3)
|
||
|
a b c
|
||
|
0 NaN NaN NaN
|
||
|
1 NaN NaN NaN
|
||
|
2 NaN NaN NaN
|
||
|
3 3.0 2.0 15.0
|
||
|
4 3.0 4.0 21.0
|
||
|
5 3.0 6.0 27.0
|
||
|
|
||
|
Difference with following row
|
||
|
|
||
|
>>> df.diff(periods=-1)
|
||
|
a b c
|
||
|
0 -1.0 0.0 -3.0
|
||
|
1 -1.0 -1.0 -5.0
|
||
|
2 -1.0 -1.0 -7.0
|
||
|
3 -1.0 -2.0 -9.0
|
||
|
4 -1.0 -3.0 -11.0
|
||
|
5 NaN NaN NaN
|
||
|
"""
|
||
|
bm_axis = self._get_block_manager_axis(axis)
|
||
|
new_data = self._data.diff(n=periods, axis=bm_axis)
|
||
|
return self._constructor(new_data)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Function application
|
||
|
|
||
|
def _gotitem(self,
|
||
|
key, # type: Union[str, List[str]]
|
||
|
ndim, # type: int
|
||
|
subset=None # type: Union[Series, DataFrame, None]
|
||
|
):
|
||
|
# type: (...) -> Union[Series, DataFrame]
|
||
|
"""
|
||
|
sub-classes to define
|
||
|
return a sliced object
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : string / list of selections
|
||
|
ndim : 1,2
|
||
|
requested ndim of result
|
||
|
subset : object, default None
|
||
|
subset to act on
|
||
|
"""
|
||
|
if subset is None:
|
||
|
subset = self
|
||
|
elif subset.ndim == 1: # is Series
|
||
|
return subset
|
||
|
|
||
|
# TODO: _shallow_copy(subset)?
|
||
|
return subset[key]
|
||
|
|
||
|
_agg_doc = dedent("""
|
||
|
The aggregation operations are always performed over an axis, either the
|
||
|
index (default) or the column axis. This behavior is different from
|
||
|
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
|
||
|
`var`), where the default is to compute the aggregation of the flattened
|
||
|
array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d,
|
||
|
axis=0)``.
|
||
|
|
||
|
`agg` is an alias for `aggregate`. Use the alias.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([[1, 2, 3],
|
||
|
... [4, 5, 6],
|
||
|
... [7, 8, 9],
|
||
|
... [np.nan, np.nan, np.nan]],
|
||
|
... columns=['A', 'B', 'C'])
|
||
|
|
||
|
Aggregate these functions over the rows.
|
||
|
|
||
|
>>> df.agg(['sum', 'min'])
|
||
|
A B C
|
||
|
sum 12.0 15.0 18.0
|
||
|
min 1.0 2.0 3.0
|
||
|
|
||
|
Different aggregations per column.
|
||
|
|
||
|
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
|
||
|
A B
|
||
|
max NaN 8.0
|
||
|
min 1.0 2.0
|
||
|
sum 12.0 NaN
|
||
|
|
||
|
Aggregate over the columns.
|
||
|
|
||
|
>>> df.agg("mean", axis="columns")
|
||
|
0 2.0
|
||
|
1 5.0
|
||
|
2 8.0
|
||
|
3 NaN
|
||
|
dtype: float64
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.apply : Perform any type of operations.
|
||
|
DataFrame.transform : Perform transformation type operations.
|
||
|
pandas.core.groupby.GroupBy : Perform operations over groups.
|
||
|
pandas.core.resample.Resampler : Perform operations over resampled bins.
|
||
|
pandas.core.window.Rolling : Perform operations over rolling window.
|
||
|
pandas.core.window.Expanding : Perform operations over expanding window.
|
||
|
pandas.core.window.EWM : Perform operation over exponential weighted
|
||
|
window.
|
||
|
""")
|
||
|
|
||
|
@Appender(_agg_doc)
|
||
|
@Appender(_shared_docs['aggregate'] % dict(
|
||
|
versionadded='.. versionadded:: 0.20.0',
|
||
|
**_shared_doc_kwargs))
|
||
|
def aggregate(self, func, axis=0, *args, **kwargs):
|
||
|
axis = self._get_axis_number(axis)
|
||
|
|
||
|
# TODO: flipped axis
|
||
|
result = None
|
||
|
if axis == 0:
|
||
|
try:
|
||
|
result, how = self._aggregate(func, axis=0, *args, **kwargs)
|
||
|
except TypeError:
|
||
|
pass
|
||
|
if result is None:
|
||
|
return self.apply(func, axis=axis, args=args, **kwargs)
|
||
|
return result
|
||
|
|
||
|
agg = aggregate
|
||
|
|
||
|
def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
|
||
|
result_type=None, args=(), **kwds):
|
||
|
"""
|
||
|
Apply a function along an axis of the DataFrame.
|
||
|
|
||
|
Objects passed to the function are Series objects whose index is
|
||
|
either the DataFrame's index (``axis=0``) or the DataFrame's columns
|
||
|
(``axis=1``). By default (``result_type=None``), the final return type
|
||
|
is inferred from the return type of the applied function. Otherwise,
|
||
|
it depends on the `result_type` argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
Function to apply to each column or row.
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
Axis along which the function is applied:
|
||
|
|
||
|
* 0 or 'index': apply function to each column.
|
||
|
* 1 or 'columns': apply function to each row.
|
||
|
broadcast : bool, optional
|
||
|
Only relevant for aggregation functions:
|
||
|
|
||
|
* ``False`` or ``None`` : returns a Series whose length is the
|
||
|
length of the index or the number of columns (based on the
|
||
|
`axis` parameter)
|
||
|
* ``True`` : results will be broadcast to the original shape
|
||
|
of the frame, the original index and columns will be retained.
|
||
|
|
||
|
.. deprecated:: 0.23.0
|
||
|
This argument will be removed in a future version, replaced
|
||
|
by result_type='broadcast'.
|
||
|
|
||
|
raw : bool, default False
|
||
|
* ``False`` : passes each row or column as a Series to the
|
||
|
function.
|
||
|
* ``True`` : the passed function will receive ndarray objects
|
||
|
instead.
|
||
|
If you are just applying a NumPy reduction function this will
|
||
|
achieve much better performance.
|
||
|
reduce : bool or None, default None
|
||
|
Try to apply reduction procedures. If the DataFrame is empty,
|
||
|
`apply` will use `reduce` to determine whether the result
|
||
|
should be a Series or a DataFrame. If ``reduce=None`` (the
|
||
|
default), `apply`'s return value will be guessed by calling
|
||
|
`func` on an empty Series
|
||
|
(note: while guessing, exceptions raised by `func` will be
|
||
|
ignored).
|
||
|
If ``reduce=True`` a Series will always be returned, and if
|
||
|
``reduce=False`` a DataFrame will always be returned.
|
||
|
|
||
|
.. deprecated:: 0.23.0
|
||
|
This argument will be removed in a future version, replaced
|
||
|
by ``result_type='reduce'``.
|
||
|
|
||
|
result_type : {'expand', 'reduce', 'broadcast', None}, default None
|
||
|
These only act when ``axis=1`` (columns):
|
||
|
|
||
|
* 'expand' : list-like results will be turned into columns.
|
||
|
* 'reduce' : returns a Series if possible rather than expanding
|
||
|
list-like results. This is the opposite of 'expand'.
|
||
|
* 'broadcast' : results will be broadcast to the original shape
|
||
|
of the DataFrame, the original index and columns will be
|
||
|
retained.
|
||
|
|
||
|
The default behaviour (None) depends on the return value of the
|
||
|
applied function: list-like results will be returned as a Series
|
||
|
of those. However if the apply function returns a Series these
|
||
|
are expanded to columns.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
args : tuple
|
||
|
Positional arguments to pass to `func` in addition to the
|
||
|
array/series.
|
||
|
**kwds
|
||
|
Additional keyword arguments to pass as keywords arguments to
|
||
|
`func`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
In the current implementation apply calls `func` twice on the
|
||
|
first column/row to decide whether it can take a fast or slow
|
||
|
code path. This can lead to unexpected behavior if `func` has
|
||
|
side-effects, as they will take effect twice for the first
|
||
|
column/row.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.applymap: For elementwise operations
|
||
|
DataFrame.aggregate: only perform aggregating type operations
|
||
|
DataFrame.transform: only perform transformating type operations
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> df = pd.DataFrame([[4, 9],] * 3, columns=['A', 'B'])
|
||
|
>>> df
|
||
|
A B
|
||
|
0 4 9
|
||
|
1 4 9
|
||
|
2 4 9
|
||
|
|
||
|
Using a numpy universal function (in this case the same as
|
||
|
``np.sqrt(df)``):
|
||
|
|
||
|
>>> df.apply(np.sqrt)
|
||
|
A B
|
||
|
0 2.0 3.0
|
||
|
1 2.0 3.0
|
||
|
2 2.0 3.0
|
||
|
|
||
|
Using a reducing function on either axis
|
||
|
|
||
|
>>> df.apply(np.sum, axis=0)
|
||
|
A 12
|
||
|
B 27
|
||
|
dtype: int64
|
||
|
|
||
|
>>> df.apply(np.sum, axis=1)
|
||
|
0 13
|
||
|
1 13
|
||
|
2 13
|
||
|
dtype: int64
|
||
|
|
||
|
Retuning a list-like will result in a Series
|
||
|
|
||
|
>>> df.apply(lambda x: [1, 2], axis=1)
|
||
|
0 [1, 2]
|
||
|
1 [1, 2]
|
||
|
2 [1, 2]
|
||
|
dtype: object
|
||
|
|
||
|
Passing result_type='expand' will expand list-like results
|
||
|
to columns of a Dataframe
|
||
|
|
||
|
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
|
||
|
0 1
|
||
|
0 1 2
|
||
|
1 1 2
|
||
|
2 1 2
|
||
|
|
||
|
Returning a Series inside the function is similar to passing
|
||
|
``result_type='expand'``. The resulting column names
|
||
|
will be the Series index.
|
||
|
|
||
|
>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
|
||
|
foo bar
|
||
|
0 1 2
|
||
|
1 1 2
|
||
|
2 1 2
|
||
|
|
||
|
Passing ``result_type='broadcast'`` will ensure the same shape
|
||
|
result, whether list-like or scalar is returned by the function,
|
||
|
and broadcast it along the axis. The resulting column names will
|
||
|
be the originals.
|
||
|
|
||
|
>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
|
||
|
A B
|
||
|
0 1 2
|
||
|
1 1 2
|
||
|
2 1 2
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
applied : Series or DataFrame
|
||
|
"""
|
||
|
from pandas.core.apply import frame_apply
|
||
|
op = frame_apply(self,
|
||
|
func=func,
|
||
|
axis=axis,
|
||
|
broadcast=broadcast,
|
||
|
raw=raw,
|
||
|
reduce=reduce,
|
||
|
result_type=result_type,
|
||
|
args=args,
|
||
|
kwds=kwds)
|
||
|
return op.get_result()
|
||
|
|
||
|
def applymap(self, func):
|
||
|
"""
|
||
|
Apply a function to a Dataframe elementwise.
|
||
|
|
||
|
This method applies a function that accepts and returns a scalar
|
||
|
to every element of a DataFrame.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
Python function, returns a single value from a single value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
Transformed DataFrame.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.apply : Apply a function along input axis of DataFrame
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
|
||
|
>>> df
|
||
|
0 1
|
||
|
0 1.000 2.120
|
||
|
1 3.356 4.567
|
||
|
|
||
|
>>> df.applymap(lambda x: len(str(x)))
|
||
|
0 1
|
||
|
0 3 4
|
||
|
1 5 5
|
||
|
|
||
|
Note that a vectorized version of `func` often exists, which will
|
||
|
be much faster. You could square each number elementwise.
|
||
|
|
||
|
>>> df.applymap(lambda x: x**2)
|
||
|
0 1
|
||
|
0 1.000000 4.494400
|
||
|
1 11.262736 20.857489
|
||
|
|
||
|
But it's better to avoid applymap in that case.
|
||
|
|
||
|
>>> df ** 2
|
||
|
0 1
|
||
|
0 1.000000 4.494400
|
||
|
1 11.262736 20.857489
|
||
|
"""
|
||
|
|
||
|
# if we have a dtype == 'M8[ns]', provide boxed values
|
||
|
def infer(x):
|
||
|
if x.empty:
|
||
|
return lib.map_infer(x, func)
|
||
|
return lib.map_infer(x.astype(object).values, func)
|
||
|
|
||
|
return self.apply(infer)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Merging / joining methods
|
||
|
|
||
|
def append(self, other, ignore_index=False,
|
||
|
verify_integrity=False, sort=None):
|
||
|
"""
|
||
|
Append rows of `other` to the end of this frame, returning a new
|
||
|
object. Columns not in this frame are added as new columns.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame or Series/dict-like object, or list of these
|
||
|
The data to append.
|
||
|
ignore_index : boolean, default False
|
||
|
If True, do not use the index labels.
|
||
|
verify_integrity : boolean, default False
|
||
|
If True, raise ValueError on creating index with duplicates.
|
||
|
sort : boolean, default None
|
||
|
Sort columns if the columns of `self` and `other` are not aligned.
|
||
|
The default sorting is deprecated and will change to not-sorting
|
||
|
in a future version of pandas. Explicitly pass ``sort=True`` to
|
||
|
silence the warning and sort. Explicitly pass ``sort=False`` to
|
||
|
silence the warning and not sort.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
appended : DataFrame
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If a list of dict/series is passed and the keys are all contained in
|
||
|
the DataFrame's index, the order of the columns in the resulting
|
||
|
DataFrame will be unchanged.
|
||
|
|
||
|
Iteratively appending rows to a DataFrame can be more computationally
|
||
|
intensive than a single concatenate. A better solution is to append
|
||
|
those rows to a list and then concatenate the list with the original
|
||
|
DataFrame all at once.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
pandas.concat : General function to concatenate DataFrame, Series
|
||
|
or Panel objects
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
|
||
|
>>> df
|
||
|
A B
|
||
|
0 1 2
|
||
|
1 3 4
|
||
|
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
|
||
|
>>> df.append(df2)
|
||
|
A B
|
||
|
0 1 2
|
||
|
1 3 4
|
||
|
0 5 6
|
||
|
1 7 8
|
||
|
|
||
|
With `ignore_index` set to True:
|
||
|
|
||
|
>>> df.append(df2, ignore_index=True)
|
||
|
A B
|
||
|
0 1 2
|
||
|
1 3 4
|
||
|
2 5 6
|
||
|
3 7 8
|
||
|
|
||
|
The following, while not recommended methods for generating DataFrames,
|
||
|
show two ways to generate a DataFrame from multiple data sources.
|
||
|
|
||
|
Less efficient:
|
||
|
|
||
|
>>> df = pd.DataFrame(columns=['A'])
|
||
|
>>> for i in range(5):
|
||
|
... df = df.append({'A': i}, ignore_index=True)
|
||
|
>>> df
|
||
|
A
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
3 3
|
||
|
4 4
|
||
|
|
||
|
More efficient:
|
||
|
|
||
|
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
|
||
|
... ignore_index=True)
|
||
|
A
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
3 3
|
||
|
4 4
|
||
|
|
||
|
"""
|
||
|
if isinstance(other, (Series, dict)):
|
||
|
if isinstance(other, dict):
|
||
|
other = Series(other)
|
||
|
if other.name is None and not ignore_index:
|
||
|
raise TypeError('Can only append a Series if ignore_index=True'
|
||
|
' or if the Series has a name')
|
||
|
|
||
|
if other.name is None:
|
||
|
index = None
|
||
|
else:
|
||
|
# other must have the same index name as self, otherwise
|
||
|
# index name will be reset
|
||
|
index = Index([other.name], name=self.index.name)
|
||
|
|
||
|
idx_diff = other.index.difference(self.columns)
|
||
|
try:
|
||
|
combined_columns = self.columns.append(idx_diff)
|
||
|
except TypeError:
|
||
|
combined_columns = self.columns.astype(object).append(idx_diff)
|
||
|
other = other.reindex(combined_columns, copy=False)
|
||
|
other = DataFrame(other.values.reshape((1, len(other))),
|
||
|
index=index,
|
||
|
columns=combined_columns)
|
||
|
other = other._convert(datetime=True, timedelta=True)
|
||
|
if not self.columns.equals(combined_columns):
|
||
|
self = self.reindex(columns=combined_columns)
|
||
|
elif isinstance(other, list) and not isinstance(other[0], DataFrame):
|
||
|
other = DataFrame(other)
|
||
|
if (self.columns.get_indexer(other.columns) >= 0).all():
|
||
|
other = other.loc[:, self.columns]
|
||
|
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
if isinstance(other, (list, tuple)):
|
||
|
to_concat = [self] + other
|
||
|
else:
|
||
|
to_concat = [self, other]
|
||
|
return concat(to_concat, ignore_index=ignore_index,
|
||
|
verify_integrity=verify_integrity,
|
||
|
sort=sort)
|
||
|
|
||
|
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',
|
||
|
sort=False):
|
||
|
"""
|
||
|
Join columns with other DataFrame either on index or on a key
|
||
|
column. Efficiently Join multiple DataFrame objects by index at once by
|
||
|
passing a list.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame, Series with name field set, or list of DataFrame
|
||
|
Index should be similar to one of the columns in this one. If a
|
||
|
Series is passed, its name attribute must be set, and that will be
|
||
|
used as the column name in the resulting joined DataFrame
|
||
|
on : name, tuple/list of names, or array-like
|
||
|
Column or index level name(s) in the caller to join on the index
|
||
|
in `other`, otherwise joins index-on-index. If multiple
|
||
|
values given, the `other` DataFrame must have a MultiIndex. Can
|
||
|
pass an array as the join key if it is not already contained in
|
||
|
the calling DataFrame. Like an Excel VLOOKUP operation
|
||
|
how : {'left', 'right', 'outer', 'inner'}, default: 'left'
|
||
|
How to handle the operation of the two objects.
|
||
|
|
||
|
* left: use calling frame's index (or column if on is specified)
|
||
|
* right: use other frame's index
|
||
|
* outer: form union of calling frame's index (or column if on is
|
||
|
specified) with other frame's index, and sort it
|
||
|
lexicographically
|
||
|
* inner: form intersection of calling frame's index (or column if
|
||
|
on is specified) with other frame's index, preserving the order
|
||
|
of the calling's one
|
||
|
lsuffix : string
|
||
|
Suffix to use from left frame's overlapping columns
|
||
|
rsuffix : string
|
||
|
Suffix to use from right frame's overlapping columns
|
||
|
sort : boolean, default False
|
||
|
Order result DataFrame lexicographically by the join key. If False,
|
||
|
the order of the join key depends on the join type (how keyword)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
on, lsuffix, and rsuffix options are not supported when passing a list
|
||
|
of DataFrame objects
|
||
|
|
||
|
Support for specifying index levels as the `on` parameter was added
|
||
|
in version 0.23.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
|
||
|
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
|
||
|
|
||
|
>>> caller
|
||
|
A key
|
||
|
0 A0 K0
|
||
|
1 A1 K1
|
||
|
2 A2 K2
|
||
|
3 A3 K3
|
||
|
4 A4 K4
|
||
|
5 A5 K5
|
||
|
|
||
|
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
|
||
|
... 'B': ['B0', 'B1', 'B2']})
|
||
|
|
||
|
>>> other
|
||
|
B key
|
||
|
0 B0 K0
|
||
|
1 B1 K1
|
||
|
2 B2 K2
|
||
|
|
||
|
Join DataFrames using their indexes.
|
||
|
|
||
|
>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
|
||
|
|
||
|
>>> A key_caller B key_other
|
||
|
0 A0 K0 B0 K0
|
||
|
1 A1 K1 B1 K1
|
||
|
2 A2 K2 B2 K2
|
||
|
3 A3 K3 NaN NaN
|
||
|
4 A4 K4 NaN NaN
|
||
|
5 A5 K5 NaN NaN
|
||
|
|
||
|
|
||
|
If we want to join using the key columns, we need to set key to be
|
||
|
the index in both caller and other. The joined DataFrame will have
|
||
|
key as its index.
|
||
|
|
||
|
>>> caller.set_index('key').join(other.set_index('key'))
|
||
|
|
||
|
>>> A B
|
||
|
key
|
||
|
K0 A0 B0
|
||
|
K1 A1 B1
|
||
|
K2 A2 B2
|
||
|
K3 A3 NaN
|
||
|
K4 A4 NaN
|
||
|
K5 A5 NaN
|
||
|
|
||
|
Another option to join using the key columns is to use the on
|
||
|
parameter. DataFrame.join always uses other's index but we can use any
|
||
|
column in the caller. This method preserves the original caller's
|
||
|
index in the result.
|
||
|
|
||
|
>>> caller.join(other.set_index('key'), on='key')
|
||
|
|
||
|
>>> A key B
|
||
|
0 A0 K0 B0
|
||
|
1 A1 K1 B1
|
||
|
2 A2 K2 B2
|
||
|
3 A3 K3 NaN
|
||
|
4 A4 K4 NaN
|
||
|
5 A5 K5 NaN
|
||
|
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
DataFrame.merge : For column(s)-on-columns(s) operations
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
joined : DataFrame
|
||
|
"""
|
||
|
# For SparseDataFrame's benefit
|
||
|
return self._join_compat(other, on=on, how=how, lsuffix=lsuffix,
|
||
|
rsuffix=rsuffix, sort=sort)
|
||
|
|
||
|
def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='',
|
||
|
sort=False):
|
||
|
from pandas.core.reshape.merge import merge
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
|
||
|
if isinstance(other, Series):
|
||
|
if other.name is None:
|
||
|
raise ValueError('Other Series must have a name')
|
||
|
other = DataFrame({other.name: other})
|
||
|
|
||
|
if isinstance(other, DataFrame):
|
||
|
return merge(self, other, left_on=on, how=how,
|
||
|
left_index=on is None, right_index=True,
|
||
|
suffixes=(lsuffix, rsuffix), sort=sort)
|
||
|
else:
|
||
|
if on is not None:
|
||
|
raise ValueError('Joining multiple DataFrames only supported'
|
||
|
' for joining on index')
|
||
|
|
||
|
frames = [self] + list(other)
|
||
|
|
||
|
can_concat = all(df.index.is_unique for df in frames)
|
||
|
|
||
|
# join indexes only using concat
|
||
|
if can_concat:
|
||
|
if how == 'left':
|
||
|
how = 'outer'
|
||
|
join_axes = [self.index]
|
||
|
else:
|
||
|
join_axes = None
|
||
|
return concat(frames, axis=1, join=how, join_axes=join_axes,
|
||
|
verify_integrity=True)
|
||
|
|
||
|
joined = frames[0]
|
||
|
|
||
|
for frame in frames[1:]:
|
||
|
joined = merge(joined, frame, how=how, left_index=True,
|
||
|
right_index=True)
|
||
|
|
||
|
return joined
|
||
|
|
||
|
@Substitution('')
|
||
|
@Appender(_merge_doc, indents=2)
|
||
|
def merge(self, right, how='inner', on=None, left_on=None, right_on=None,
|
||
|
left_index=False, right_index=False, sort=False,
|
||
|
suffixes=('_x', '_y'), copy=True, indicator=False,
|
||
|
validate=None):
|
||
|
from pandas.core.reshape.merge import merge
|
||
|
return merge(self, right, how=how, on=on, left_on=left_on,
|
||
|
right_on=right_on, left_index=left_index,
|
||
|
right_index=right_index, sort=sort, suffixes=suffixes,
|
||
|
copy=copy, indicator=indicator, validate=validate)
|
||
|
|
||
|
def round(self, decimals=0, *args, **kwargs):
|
||
|
"""
|
||
|
Round a DataFrame to a variable number of decimal places.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decimals : int, dict, Series
|
||
|
Number of decimal places to round each column to. If an int is
|
||
|
given, round each column to the same number of places.
|
||
|
Otherwise dict and Series round to variable numbers of places.
|
||
|
Column names should be in the keys if `decimals` is a
|
||
|
dict-like, or in the index if `decimals` is a Series. Any
|
||
|
columns not included in `decimals` will be left as is. Elements
|
||
|
of `decimals` which are not columns of the input will be
|
||
|
ignored.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.random([3, 3]),
|
||
|
... columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
|
||
|
>>> df
|
||
|
A B C
|
||
|
first 0.028208 0.992815 0.173891
|
||
|
second 0.038683 0.645646 0.577595
|
||
|
third 0.877076 0.149370 0.491027
|
||
|
>>> df.round(2)
|
||
|
A B C
|
||
|
first 0.03 0.99 0.17
|
||
|
second 0.04 0.65 0.58
|
||
|
third 0.88 0.15 0.49
|
||
|
>>> df.round({'A': 1, 'C': 2})
|
||
|
A B C
|
||
|
first 0.0 0.992815 0.17
|
||
|
second 0.0 0.645646 0.58
|
||
|
third 0.9 0.149370 0.49
|
||
|
>>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C'])
|
||
|
>>> df.round(decimals)
|
||
|
A B C
|
||
|
first 0.0 1 0.17
|
||
|
second 0.0 1 0.58
|
||
|
third 0.9 0 0.49
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame object
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
numpy.around
|
||
|
Series.round
|
||
|
|
||
|
"""
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
|
||
|
def _dict_round(df, decimals):
|
||
|
for col, vals in df.iteritems():
|
||
|
try:
|
||
|
yield _series_round(vals, decimals[col])
|
||
|
except KeyError:
|
||
|
yield vals
|
||
|
|
||
|
def _series_round(s, decimals):
|
||
|
if is_integer_dtype(s) or is_float_dtype(s):
|
||
|
return s.round(decimals)
|
||
|
return s
|
||
|
|
||
|
nv.validate_round(args, kwargs)
|
||
|
|
||
|
if isinstance(decimals, (dict, Series)):
|
||
|
if isinstance(decimals, Series):
|
||
|
if not decimals.index.is_unique:
|
||
|
raise ValueError("Index of decimals must be unique")
|
||
|
new_cols = [col for col in _dict_round(self, decimals)]
|
||
|
elif is_integer(decimals):
|
||
|
# Dispatch to Series.round
|
||
|
new_cols = [_series_round(v, decimals)
|
||
|
for _, v in self.iteritems()]
|
||
|
else:
|
||
|
raise TypeError("decimals must be an integer, a dict-like or a "
|
||
|
"Series")
|
||
|
|
||
|
if len(new_cols) > 0:
|
||
|
return self._constructor(concat(new_cols, axis=1),
|
||
|
index=self.index,
|
||
|
columns=self.columns)
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Statistical methods, etc.
|
||
|
|
||
|
def corr(self, method='pearson', min_periods=1):
|
||
|
"""
|
||
|
Compute pairwise correlation of columns, excluding NA/null values
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
method : {'pearson', 'kendall', 'spearman'}
|
||
|
* pearson : standard correlation coefficient
|
||
|
* kendall : Kendall Tau correlation coefficient
|
||
|
* spearman : Spearman rank correlation
|
||
|
min_periods : int, optional
|
||
|
Minimum number of observations required per pair of columns
|
||
|
to have a valid result. Currently only available for pearson
|
||
|
and spearman correlation
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : DataFrame
|
||
|
"""
|
||
|
numeric_df = self._get_numeric_data()
|
||
|
cols = numeric_df.columns
|
||
|
idx = cols.copy()
|
||
|
mat = numeric_df.values
|
||
|
|
||
|
if method == 'pearson':
|
||
|
correl = libalgos.nancorr(_ensure_float64(mat), minp=min_periods)
|
||
|
elif method == 'spearman':
|
||
|
correl = libalgos.nancorr_spearman(_ensure_float64(mat),
|
||
|
minp=min_periods)
|
||
|
else:
|
||
|
if min_periods is None:
|
||
|
min_periods = 1
|
||
|
mat = _ensure_float64(mat).T
|
||
|
corrf = nanops.get_corr_func(method)
|
||
|
K = len(cols)
|
||
|
correl = np.empty((K, K), dtype=float)
|
||
|
mask = np.isfinite(mat)
|
||
|
for i, ac in enumerate(mat):
|
||
|
for j, bc in enumerate(mat):
|
||
|
if i > j:
|
||
|
continue
|
||
|
|
||
|
valid = mask[i] & mask[j]
|
||
|
if valid.sum() < min_periods:
|
||
|
c = np.nan
|
||
|
elif i == j:
|
||
|
c = 1.
|
||
|
elif not valid.all():
|
||
|
c = corrf(ac[valid], bc[valid])
|
||
|
else:
|
||
|
c = corrf(ac, bc)
|
||
|
correl[i, j] = c
|
||
|
correl[j, i] = c
|
||
|
|
||
|
return self._constructor(correl, index=idx, columns=cols)
|
||
|
|
||
|
def cov(self, min_periods=None):
|
||
|
"""
|
||
|
Compute pairwise covariance of columns, excluding NA/null values.
|
||
|
|
||
|
Compute the pairwise covariance among the series of a DataFrame.
|
||
|
The returned data frame is the `covariance matrix
|
||
|
<https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns
|
||
|
of the DataFrame.
|
||
|
|
||
|
Both NA and null values are automatically excluded from the
|
||
|
calculation. (See the note below about bias from missing values.)
|
||
|
A threshold can be set for the minimum number of
|
||
|
observations for each value created. Comparisons with observations
|
||
|
below this threshold will be returned as ``NaN``.
|
||
|
|
||
|
This method is generally used for the analysis of time series data to
|
||
|
understand the relationship between different measures
|
||
|
across time.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
min_periods : int, optional
|
||
|
Minimum number of observations required per pair of columns
|
||
|
to have a valid result.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
The covariance matrix of the series of the DataFrame.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.Series.cov : compute covariance with another Series
|
||
|
pandas.core.window.EWM.cov: expoential weighted sample covariance
|
||
|
pandas.core.window.Expanding.cov : expanding sample covariance
|
||
|
pandas.core.window.Rolling.cov : rolling sample covariance
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Returns the covariance matrix of the DataFrame's time series.
|
||
|
The covariance is normalized by N-1.
|
||
|
|
||
|
For DataFrames that have Series that are missing data (assuming that
|
||
|
data is `missing at random
|
||
|
<https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__)
|
||
|
the returned covariance matrix will be an unbiased estimate
|
||
|
of the variance and covariance between the member Series.
|
||
|
|
||
|
However, for many applications this estimate may not be acceptable
|
||
|
because the estimate covariance matrix is not guaranteed to be positive
|
||
|
semi-definite. This could lead to estimate correlations having
|
||
|
absolute values which are greater than one, and/or a non-invertible
|
||
|
covariance matrix. See `Estimation of covariance matrices
|
||
|
<http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_
|
||
|
matrices>`__ for more details.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
|
||
|
... columns=['dogs', 'cats'])
|
||
|
>>> df.cov()
|
||
|
dogs cats
|
||
|
dogs 0.666667 -1.000000
|
||
|
cats -1.000000 1.666667
|
||
|
|
||
|
>>> np.random.seed(42)
|
||
|
>>> df = pd.DataFrame(np.random.randn(1000, 5),
|
||
|
... columns=['a', 'b', 'c', 'd', 'e'])
|
||
|
>>> df.cov()
|
||
|
a b c d e
|
||
|
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
|
||
|
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
|
||
|
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
|
||
|
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
|
||
|
e 0.014144 0.009826 -0.000271 -0.013692 0.977795
|
||
|
|
||
|
**Minimum number of periods**
|
||
|
|
||
|
This method also supports an optional ``min_periods`` keyword
|
||
|
that specifies the required minimum number of non-NA observations for
|
||
|
each column pair in order to have a valid result:
|
||
|
|
||
|
>>> np.random.seed(42)
|
||
|
>>> df = pd.DataFrame(np.random.randn(20, 3),
|
||
|
... columns=['a', 'b', 'c'])
|
||
|
>>> df.loc[df.index[:5], 'a'] = np.nan
|
||
|
>>> df.loc[df.index[5:10], 'b'] = np.nan
|
||
|
>>> df.cov(min_periods=12)
|
||
|
a b c
|
||
|
a 0.316741 NaN -0.150812
|
||
|
b NaN 1.248003 0.191417
|
||
|
c -0.150812 0.191417 0.895202
|
||
|
"""
|
||
|
numeric_df = self._get_numeric_data()
|
||
|
cols = numeric_df.columns
|
||
|
idx = cols.copy()
|
||
|
mat = numeric_df.values
|
||
|
|
||
|
if notna(mat).all():
|
||
|
if min_periods is not None and min_periods > len(mat):
|
||
|
baseCov = np.empty((mat.shape[1], mat.shape[1]))
|
||
|
baseCov.fill(np.nan)
|
||
|
else:
|
||
|
baseCov = np.cov(mat.T)
|
||
|
baseCov = baseCov.reshape((len(cols), len(cols)))
|
||
|
else:
|
||
|
baseCov = libalgos.nancorr(_ensure_float64(mat), cov=True,
|
||
|
minp=min_periods)
|
||
|
|
||
|
return self._constructor(baseCov, index=idx, columns=cols)
|
||
|
|
||
|
def corrwith(self, other, axis=0, drop=False):
|
||
|
"""
|
||
|
Compute pairwise correlation between rows or columns of two DataFrame
|
||
|
objects.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : DataFrame, Series
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
0 or 'index' to compute column-wise, 1 or 'columns' for row-wise
|
||
|
drop : boolean, default False
|
||
|
Drop missing indices from result, default returns union of all
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
correls : Series
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
this = self._get_numeric_data()
|
||
|
|
||
|
if isinstance(other, Series):
|
||
|
return this.apply(other.corr, axis=axis)
|
||
|
|
||
|
other = other._get_numeric_data()
|
||
|
|
||
|
left, right = this.align(other, join='inner', copy=False)
|
||
|
|
||
|
# mask missing values
|
||
|
left = left + right * 0
|
||
|
right = right + left * 0
|
||
|
|
||
|
if axis == 1:
|
||
|
left = left.T
|
||
|
right = right.T
|
||
|
|
||
|
# demeaned data
|
||
|
ldem = left - left.mean()
|
||
|
rdem = right - right.mean()
|
||
|
|
||
|
num = (ldem * rdem).sum()
|
||
|
dom = (left.count() - 1) * left.std() * right.std()
|
||
|
|
||
|
correl = num / dom
|
||
|
|
||
|
if not drop:
|
||
|
raxis = 1 if axis == 0 else 0
|
||
|
result_index = this._get_axis(raxis).union(other._get_axis(raxis))
|
||
|
correl = correl.reindex(result_index)
|
||
|
|
||
|
return correl
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# ndarray-like stats methods
|
||
|
|
||
|
def count(self, axis=0, level=None, numeric_only=False):
|
||
|
"""
|
||
|
Count non-NA cells for each column or row.
|
||
|
|
||
|
The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
|
||
|
on `pandas.options.mode.use_inf_as_na`) are considered NA.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
If 0 or 'index' counts are generated for each column.
|
||
|
If 1 or 'columns' counts are generated for each **row**.
|
||
|
level : int or str, optional
|
||
|
If the axis is a `MultiIndex` (hierarchical), count along a
|
||
|
particular `level`, collapsing into a `DataFrame`.
|
||
|
A `str` specifies the level name.
|
||
|
numeric_only : boolean, default False
|
||
|
Include only `float`, `int` or `boolean` data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or DataFrame
|
||
|
For each column/row the number of non-NA/null entries.
|
||
|
If `level` is specified returns a `DataFrame`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.count: number of non-NA elements in a Series
|
||
|
DataFrame.shape: number of DataFrame rows and columns (including NA
|
||
|
elements)
|
||
|
DataFrame.isna: boolean same-sized DataFrame showing places of NA
|
||
|
elements
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Constructing DataFrame from a dictionary:
|
||
|
|
||
|
>>> df = pd.DataFrame({"Person":
|
||
|
... ["John", "Myla", None, "John", "Myla"],
|
||
|
... "Age": [24., np.nan, 21., 33, 26],
|
||
|
... "Single": [False, True, True, True, False]})
|
||
|
>>> df
|
||
|
Person Age Single
|
||
|
0 John 24.0 False
|
||
|
1 Myla NaN True
|
||
|
2 None 21.0 True
|
||
|
3 John 33.0 True
|
||
|
4 Myla 26.0 False
|
||
|
|
||
|
Notice the uncounted NA values:
|
||
|
|
||
|
>>> df.count()
|
||
|
Person 4
|
||
|
Age 4
|
||
|
Single 5
|
||
|
dtype: int64
|
||
|
|
||
|
Counts for each **row**:
|
||
|
|
||
|
>>> df.count(axis='columns')
|
||
|
0 3
|
||
|
1 2
|
||
|
2 2
|
||
|
3 3
|
||
|
4 3
|
||
|
dtype: int64
|
||
|
|
||
|
Counts for one level of a `MultiIndex`:
|
||
|
|
||
|
>>> df.set_index(["Person", "Single"]).count(level="Person")
|
||
|
Age
|
||
|
Person
|
||
|
John 2
|
||
|
Myla 1
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if level is not None:
|
||
|
return self._count_level(level, axis=axis,
|
||
|
numeric_only=numeric_only)
|
||
|
|
||
|
if numeric_only:
|
||
|
frame = self._get_numeric_data()
|
||
|
else:
|
||
|
frame = self
|
||
|
|
||
|
# GH #423
|
||
|
if len(frame._get_axis(axis)) == 0:
|
||
|
result = Series(0, index=frame._get_agg_axis(axis))
|
||
|
else:
|
||
|
if frame._is_mixed_type or frame._data.any_extension_types:
|
||
|
# the or any_extension_types is really only hit for single-
|
||
|
# column frames with an extension array
|
||
|
result = notna(frame).sum(axis=axis)
|
||
|
else:
|
||
|
# GH13407
|
||
|
series_counts = notna(frame).sum(axis=axis)
|
||
|
counts = series_counts.values
|
||
|
result = Series(counts, index=frame._get_agg_axis(axis))
|
||
|
|
||
|
return result.astype('int64')
|
||
|
|
||
|
def _count_level(self, level, axis=0, numeric_only=False):
|
||
|
if numeric_only:
|
||
|
frame = self._get_numeric_data()
|
||
|
else:
|
||
|
frame = self
|
||
|
|
||
|
count_axis = frame._get_axis(axis)
|
||
|
agg_axis = frame._get_agg_axis(axis)
|
||
|
|
||
|
if not isinstance(count_axis, MultiIndex):
|
||
|
raise TypeError("Can only count levels on hierarchical "
|
||
|
"{ax}.".format(ax=self._get_axis_name(axis)))
|
||
|
|
||
|
if frame._is_mixed_type:
|
||
|
# Since we have mixed types, calling notna(frame.values) might
|
||
|
# upcast everything to object
|
||
|
mask = notna(frame).values
|
||
|
else:
|
||
|
# But use the speedup when we have homogeneous dtypes
|
||
|
mask = notna(frame.values)
|
||
|
|
||
|
if axis == 1:
|
||
|
# We're transposing the mask rather than frame to avoid potential
|
||
|
# upcasts to object, which induces a ~20x slowdown
|
||
|
mask = mask.T
|
||
|
|
||
|
if isinstance(level, compat.string_types):
|
||
|
level = count_axis._get_level_number(level)
|
||
|
|
||
|
level_index = count_axis.levels[level]
|
||
|
labels = _ensure_int64(count_axis.labels[level])
|
||
|
counts = lib.count_level_2d(mask, labels, len(level_index), axis=0)
|
||
|
|
||
|
result = DataFrame(counts, index=level_index, columns=agg_axis)
|
||
|
|
||
|
if axis == 1:
|
||
|
# Undo our earlier transpose
|
||
|
return result.T
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
|
||
|
filter_type=None, **kwds):
|
||
|
if axis is None and filter_type == 'bool':
|
||
|
labels = None
|
||
|
constructor = None
|
||
|
else:
|
||
|
# TODO: Make other agg func handle axis=None properly
|
||
|
axis = self._get_axis_number(axis)
|
||
|
labels = self._get_agg_axis(axis)
|
||
|
constructor = self._constructor
|
||
|
|
||
|
def f(x):
|
||
|
return op(x, axis=axis, skipna=skipna, **kwds)
|
||
|
|
||
|
# exclude timedelta/datetime unless we are uniform types
|
||
|
if axis == 1 and self._is_mixed_type and self._is_datelike_mixed_type:
|
||
|
numeric_only = True
|
||
|
|
||
|
if numeric_only is None:
|
||
|
try:
|
||
|
values = self.values
|
||
|
result = f(values)
|
||
|
|
||
|
if (filter_type == 'bool' and is_object_dtype(values) and
|
||
|
axis is None):
|
||
|
# work around https://github.com/numpy/numpy/issues/10489
|
||
|
# TODO: combine with hasattr(result, 'dtype') further down
|
||
|
# hard since we don't have `values` down there.
|
||
|
result = np.bool_(result)
|
||
|
except Exception as e:
|
||
|
|
||
|
# try by-column first
|
||
|
if filter_type is None and axis == 0:
|
||
|
try:
|
||
|
|
||
|
# this can end up with a non-reduction
|
||
|
# but not always. if the types are mixed
|
||
|
# with datelike then need to make sure a series
|
||
|
|
||
|
# we only end up here if we have not specified
|
||
|
# numeric_only and yet we have tried a
|
||
|
# column-by-column reduction, where we have mixed type.
|
||
|
# So let's just do what we can
|
||
|
from pandas.core.apply import frame_apply
|
||
|
opa = frame_apply(self,
|
||
|
func=f,
|
||
|
result_type='expand',
|
||
|
ignore_failures=True)
|
||
|
result = opa.get_result()
|
||
|
if result.ndim == self.ndim:
|
||
|
result = result.iloc[0]
|
||
|
return result
|
||
|
except Exception:
|
||
|
pass
|
||
|
|
||
|
if filter_type is None or filter_type == 'numeric':
|
||
|
data = self._get_numeric_data()
|
||
|
elif filter_type == 'bool':
|
||
|
data = self._get_bool_data()
|
||
|
else: # pragma: no cover
|
||
|
e = NotImplementedError(
|
||
|
"Handling exception with filter_type {f} not"
|
||
|
"implemented.".format(f=filter_type))
|
||
|
raise_with_traceback(e)
|
||
|
with np.errstate(all='ignore'):
|
||
|
result = f(data.values)
|
||
|
labels = data._get_agg_axis(axis)
|
||
|
else:
|
||
|
if numeric_only:
|
||
|
if filter_type is None or filter_type == 'numeric':
|
||
|
data = self._get_numeric_data()
|
||
|
elif filter_type == 'bool':
|
||
|
data = self._get_bool_data()
|
||
|
else: # pragma: no cover
|
||
|
msg = ("Generating numeric_only data with filter_type {f}"
|
||
|
"not supported.".format(f=filter_type))
|
||
|
raise NotImplementedError(msg)
|
||
|
values = data.values
|
||
|
labels = data._get_agg_axis(axis)
|
||
|
else:
|
||
|
values = self.values
|
||
|
result = f(values)
|
||
|
|
||
|
if hasattr(result, 'dtype') and is_object_dtype(result.dtype):
|
||
|
try:
|
||
|
if filter_type is None or filter_type == 'numeric':
|
||
|
result = result.astype(np.float64)
|
||
|
elif filter_type == 'bool' and notna(result).all():
|
||
|
result = result.astype(np.bool_)
|
||
|
except (ValueError, TypeError):
|
||
|
|
||
|
# try to coerce to the original dtypes item by item if we can
|
||
|
if axis == 0:
|
||
|
result = coerce_to_dtypes(result, self.dtypes)
|
||
|
|
||
|
if constructor is not None:
|
||
|
result = Series(result, index=labels)
|
||
|
return result
|
||
|
|
||
|
def nunique(self, axis=0, dropna=True):
|
||
|
"""
|
||
|
Return Series with number of distinct observations over requested
|
||
|
axis.
|
||
|
|
||
|
.. versionadded:: 0.20.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
dropna : boolean, default True
|
||
|
Don't include NaN in the counts.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
nunique : Series
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]})
|
||
|
>>> df.nunique()
|
||
|
A 3
|
||
|
B 1
|
||
|
|
||
|
>>> df.nunique(axis=1)
|
||
|
0 1
|
||
|
1 2
|
||
|
2 2
|
||
|
"""
|
||
|
return self.apply(Series.nunique, axis=axis, dropna=dropna)
|
||
|
|
||
|
def idxmin(self, axis=0, skipna=True):
|
||
|
"""
|
||
|
Return index of first occurrence of minimum over requested axis.
|
||
|
NA/null values are excluded.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
0 or 'index' for row-wise, 1 or 'columns' for column-wise
|
||
|
skipna : boolean, default True
|
||
|
Exclude NA/null values. If an entire row/column is NA, the result
|
||
|
will be NA.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
* If the row/column is empty
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
idxmin : Series
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is the DataFrame version of ``ndarray.argmin``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.idxmin
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna)
|
||
|
index = self._get_axis(axis)
|
||
|
result = [index[i] if i >= 0 else np.nan for i in indices]
|
||
|
return Series(result, index=self._get_agg_axis(axis))
|
||
|
|
||
|
def idxmax(self, axis=0, skipna=True):
|
||
|
"""
|
||
|
Return index of first occurrence of maximum over requested axis.
|
||
|
NA/null values are excluded.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
0 or 'index' for row-wise, 1 or 'columns' for column-wise
|
||
|
skipna : boolean, default True
|
||
|
Exclude NA/null values. If an entire row/column is NA, the result
|
||
|
will be NA.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
* If the row/column is empty
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
idxmax : Series
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method is the DataFrame version of ``ndarray.argmax``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.idxmax
|
||
|
"""
|
||
|
axis = self._get_axis_number(axis)
|
||
|
indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna)
|
||
|
index = self._get_axis(axis)
|
||
|
result = [index[i] if i >= 0 else np.nan for i in indices]
|
||
|
return Series(result, index=self._get_agg_axis(axis))
|
||
|
|
||
|
def _get_agg_axis(self, axis_num):
|
||
|
""" let's be explicit about this """
|
||
|
if axis_num == 0:
|
||
|
return self.columns
|
||
|
elif axis_num == 1:
|
||
|
return self.index
|
||
|
else:
|
||
|
raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num)
|
||
|
|
||
|
def mode(self, axis=0, numeric_only=False):
|
||
|
"""
|
||
|
Gets the mode(s) of each element along the axis selected. Adds a row
|
||
|
for each mode per label, fills in gaps with nan.
|
||
|
|
||
|
Note that there could be multiple values returned for the selected
|
||
|
axis (when more than one item share the maximum frequency), which is
|
||
|
the reason why a dataframe is returned. If you want to impute missing
|
||
|
values with the mode in a dataframe ``df``, you can just do this:
|
||
|
``df.fillna(df.mode().iloc[0])``
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
* 0 or 'index' : get mode of each column
|
||
|
* 1 or 'columns' : get mode of each row
|
||
|
numeric_only : boolean, default False
|
||
|
if True, only apply to numeric columns
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
modes : DataFrame (sorted)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]})
|
||
|
>>> df.mode()
|
||
|
A
|
||
|
0 1
|
||
|
1 2
|
||
|
"""
|
||
|
data = self if not numeric_only else self._get_numeric_data()
|
||
|
|
||
|
def f(s):
|
||
|
return s.mode()
|
||
|
|
||
|
return data.apply(f, axis=axis)
|
||
|
|
||
|
def quantile(self, q=0.5, axis=0, numeric_only=True,
|
||
|
interpolation='linear'):
|
||
|
"""
|
||
|
Return values at the given quantile over requested axis, a la
|
||
|
numpy.percentile.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
q : float or array-like, default 0.5 (50% quantile)
|
||
|
0 <= q <= 1, the quantile(s) to compute
|
||
|
axis : {0, 1, 'index', 'columns'} (default 0)
|
||
|
0 or 'index' for row-wise, 1 or 'columns' for column-wise
|
||
|
numeric_only : boolean, default True
|
||
|
If False, the quantile of datetime and timedelta data will be
|
||
|
computed as well
|
||
|
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
|
||
|
.. versionadded:: 0.18.0
|
||
|
|
||
|
This optional parameter specifies the interpolation method to use,
|
||
|
when the desired quantile lies between two data points `i` and `j`:
|
||
|
|
||
|
* linear: `i + (j - i) * fraction`, where `fraction` is the
|
||
|
fractional part of the index surrounded by `i` and `j`.
|
||
|
* lower: `i`.
|
||
|
* higher: `j`.
|
||
|
* nearest: `i` or `j` whichever is nearest.
|
||
|
* midpoint: (`i` + `j`) / 2.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
quantiles : Series or DataFrame
|
||
|
|
||
|
- If ``q`` is an array, a DataFrame will be returned where the
|
||
|
index is ``q``, the columns are the columns of self, and the
|
||
|
values are the quantiles.
|
||
|
- If ``q`` is a float, a Series will be returned where the
|
||
|
index is the columns of self and the values are the quantiles.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
|
||
|
columns=['a', 'b'])
|
||
|
>>> df.quantile(.1)
|
||
|
a 1.3
|
||
|
b 3.7
|
||
|
dtype: float64
|
||
|
>>> df.quantile([.1, .5])
|
||
|
a b
|
||
|
0.1 1.3 3.7
|
||
|
0.5 2.5 55.0
|
||
|
|
||
|
Specifying `numeric_only=False` will also compute the quantile of
|
||
|
datetime and timedelta data.
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2],
|
||
|
'B': [pd.Timestamp('2010'),
|
||
|
pd.Timestamp('2011')],
|
||
|
'C': [pd.Timedelta('1 days'),
|
||
|
pd.Timedelta('2 days')]})
|
||
|
>>> df.quantile(0.5, numeric_only=False)
|
||
|
A 1.5
|
||
|
B 2010-07-02 12:00:00
|
||
|
C 1 days 12:00:00
|
||
|
Name: 0.5, dtype: object
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pandas.core.window.Rolling.quantile
|
||
|
"""
|
||
|
self._check_percentile(q)
|
||
|
|
||
|
data = self._get_numeric_data() if numeric_only else self
|
||
|
axis = self._get_axis_number(axis)
|
||
|
is_transposed = axis == 1
|
||
|
|
||
|
if is_transposed:
|
||
|
data = data.T
|
||
|
|
||
|
result = data._data.quantile(qs=q,
|
||
|
axis=1,
|
||
|
interpolation=interpolation,
|
||
|
transposed=is_transposed)
|
||
|
|
||
|
if result.ndim == 2:
|
||
|
result = self._constructor(result)
|
||
|
else:
|
||
|
result = self._constructor_sliced(result, name=q)
|
||
|
|
||
|
if is_transposed:
|
||
|
result = result.T
|
||
|
|
||
|
return result
|
||
|
|
||
|
def to_timestamp(self, freq=None, how='start', axis=0, copy=True):
|
||
|
"""
|
||
|
Cast to DatetimeIndex of timestamps, at *beginning* of period
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : string, default frequency of PeriodIndex
|
||
|
Desired frequency
|
||
|
how : {'s', 'e', 'start', 'end'}
|
||
|
Convention for converting period to timestamp; start of period
|
||
|
vs. end
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
The axis to convert (the index by default)
|
||
|
copy : boolean, default True
|
||
|
If false then underlying input data is not copied
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : DataFrame with DatetimeIndex
|
||
|
"""
|
||
|
new_data = self._data
|
||
|
if copy:
|
||
|
new_data = new_data.copy()
|
||
|
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if axis == 0:
|
||
|
new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how))
|
||
|
elif axis == 1:
|
||
|
new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how))
|
||
|
else: # pragma: no cover
|
||
|
raise AssertionError('Axis must be 0 or 1. Got {ax!s}'.format(
|
||
|
ax=axis))
|
||
|
|
||
|
return self._constructor(new_data)
|
||
|
|
||
|
def to_period(self, freq=None, axis=0, copy=True):
|
||
|
"""
|
||
|
Convert DataFrame from DatetimeIndex to PeriodIndex with desired
|
||
|
frequency (inferred from index if not passed)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : string, default
|
||
|
axis : {0 or 'index', 1 or 'columns'}, default 0
|
||
|
The axis to convert (the index by default)
|
||
|
copy : boolean, default True
|
||
|
If False then underlying input data is not copied
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ts : TimeSeries with PeriodIndex
|
||
|
"""
|
||
|
new_data = self._data
|
||
|
if copy:
|
||
|
new_data = new_data.copy()
|
||
|
|
||
|
axis = self._get_axis_number(axis)
|
||
|
if axis == 0:
|
||
|
new_data.set_axis(1, self.index.to_period(freq=freq))
|
||
|
elif axis == 1:
|
||
|
new_data.set_axis(0, self.columns.to_period(freq=freq))
|
||
|
else: # pragma: no cover
|
||
|
raise AssertionError('Axis must be 0 or 1. Got {ax!s}'.format(
|
||
|
ax=axis))
|
||
|
|
||
|
return self._constructor(new_data)
|
||
|
|
||
|
def isin(self, values):
|
||
|
"""
|
||
|
Return boolean DataFrame showing whether each element in the
|
||
|
DataFrame is contained in values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : iterable, Series, DataFrame or dictionary
|
||
|
The result will only be true at a location if all the
|
||
|
labels match. If `values` is a Series, that's the index. If
|
||
|
`values` is a dictionary, the keys must be the column names,
|
||
|
which must match. If `values` is a DataFrame,
|
||
|
then both the index and column labels must match.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
|
||
|
DataFrame of booleans
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
When ``values`` is a list:
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
|
||
|
>>> df.isin([1, 3, 12, 'a'])
|
||
|
A B
|
||
|
0 True True
|
||
|
1 False False
|
||
|
2 True False
|
||
|
|
||
|
When ``values`` is a dict:
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
|
||
|
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
|
||
|
A B
|
||
|
0 True False # Note that B didn't match the 1 here.
|
||
|
1 False True
|
||
|
2 True True
|
||
|
|
||
|
When ``values`` is a Series or DataFrame:
|
||
|
|
||
|
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
|
||
|
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
|
||
|
>>> df.isin(other)
|
||
|
A B
|
||
|
0 True False
|
||
|
1 False False # Column A in `other` has a 3, but not at index 1.
|
||
|
2 True True
|
||
|
"""
|
||
|
if isinstance(values, dict):
|
||
|
from pandas.core.reshape.concat import concat
|
||
|
values = collections.defaultdict(list, values)
|
||
|
return concat((self.iloc[:, [i]].isin(values[col])
|
||
|
for i, col in enumerate(self.columns)), axis=1)
|
||
|
elif isinstance(values, Series):
|
||
|
if not values.index.is_unique:
|
||
|
raise ValueError("cannot compute isin with "
|
||
|
"a duplicate axis.")
|
||
|
return self.eq(values.reindex_like(self), axis='index')
|
||
|
elif isinstance(values, DataFrame):
|
||
|
if not (values.columns.is_unique and values.index.is_unique):
|
||
|
raise ValueError("cannot compute isin with "
|
||
|
"a duplicate axis.")
|
||
|
return self.eq(values.reindex_like(self))
|
||
|
else:
|
||
|
if not is_list_like(values):
|
||
|
raise TypeError("only list-like or dict-like objects are "
|
||
|
"allowed to be passed to DataFrame.isin(), "
|
||
|
"you passed a "
|
||
|
"{0!r}".format(type(values).__name__))
|
||
|
return DataFrame(
|
||
|
algorithms.isin(self.values.ravel(),
|
||
|
values).reshape(self.shape), self.index,
|
||
|
self.columns)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Add plotting methods to DataFrame
|
||
|
plot = CachedAccessor("plot", gfx.FramePlotMethods)
|
||
|
hist = gfx.hist_frame
|
||
|
boxplot = gfx.boxplot_frame
|
||
|
|
||
|
|
||
|
DataFrame._setup_axes(['index', 'columns'], info_axis=1, stat_axis=0,
|
||
|
axes_are_reversed=True, aliases={'rows': 0},
|
||
|
docs={
|
||
|
'index': 'The index (row labels) of the DataFrame.',
|
||
|
'columns': 'The column labels of the DataFrame.'})
|
||
|
DataFrame._add_numeric_operations()
|
||
|
DataFrame._add_series_or_dataframe_operations()
|
||
|
|
||
|
ops.add_flex_arithmetic_methods(DataFrame)
|
||
|
ops.add_special_arithmetic_methods(DataFrame)
|
||
|
|
||
|
|
||
|
def _arrays_to_mgr(arrays, arr_names, index, columns, dtype=None):
|
||
|
"""
|
||
|
Segregate Series based on type and coerce into matrices.
|
||
|
Needs to handle a lot of exceptional cases.
|
||
|
"""
|
||
|
# figure out the index, if necessary
|
||
|
if index is None:
|
||
|
index = extract_index(arrays)
|
||
|
|
||
|
# don't force copy because getting jammed in an ndarray anyway
|
||
|
arrays = _homogenize(arrays, index, dtype)
|
||
|
|
||
|
# from BlockManager perspective
|
||
|
axes = [_ensure_index(columns), _ensure_index(index)]
|
||
|
|
||
|
return create_block_manager_from_arrays(arrays, arr_names, axes)
|
||
|
|
||
|
|
||
|
def extract_index(data):
|
||
|
from pandas.core.index import _union_indexes
|
||
|
|
||
|
index = None
|
||
|
if len(data) == 0:
|
||
|
index = Index([])
|
||
|
elif len(data) > 0:
|
||
|
raw_lengths = []
|
||
|
indexes = []
|
||
|
|
||
|
have_raw_arrays = False
|
||
|
have_series = False
|
||
|
have_dicts = False
|
||
|
|
||
|
for v in data:
|
||
|
if isinstance(v, Series):
|
||
|
have_series = True
|
||
|
indexes.append(v.index)
|
||
|
elif isinstance(v, dict):
|
||
|
have_dicts = True
|
||
|
indexes.append(list(v.keys()))
|
||
|
elif is_list_like(v) and getattr(v, 'ndim', 1) == 1:
|
||
|
have_raw_arrays = True
|
||
|
raw_lengths.append(len(v))
|
||
|
|
||
|
if not indexes and not raw_lengths:
|
||
|
raise ValueError('If using all scalar values, you must pass'
|
||
|
' an index')
|
||
|
|
||
|
if have_series or have_dicts:
|
||
|
index = _union_indexes(indexes)
|
||
|
|
||
|
if have_raw_arrays:
|
||
|
lengths = list(set(raw_lengths))
|
||
|
if len(lengths) > 1:
|
||
|
raise ValueError('arrays must all be same length')
|
||
|
|
||
|
if have_dicts:
|
||
|
raise ValueError('Mixing dicts with non-Series may lead to '
|
||
|
'ambiguous ordering.')
|
||
|
|
||
|
if have_series:
|
||
|
if lengths[0] != len(index):
|
||
|
msg = ('array length %d does not match index length %d' %
|
||
|
(lengths[0], len(index)))
|
||
|
raise ValueError(msg)
|
||
|
else:
|
||
|
index = com._default_index(lengths[0])
|
||
|
|
||
|
return _ensure_index(index)
|
||
|
|
||
|
|
||
|
def _prep_ndarray(values, copy=True):
|
||
|
if not isinstance(values, (np.ndarray, Series, Index)):
|
||
|
if len(values) == 0:
|
||
|
return np.empty((0, 0), dtype=object)
|
||
|
|
||
|
def convert(v):
|
||
|
return maybe_convert_platform(v)
|
||
|
|
||
|
# we could have a 1-dim or 2-dim list here
|
||
|
# this is equiv of np.asarray, but does object conversion
|
||
|
# and platform dtype preservation
|
||
|
try:
|
||
|
if is_list_like(values[0]) or hasattr(values[0], 'len'):
|
||
|
values = np.array([convert(v) for v in values])
|
||
|
else:
|
||
|
values = convert(values)
|
||
|
except:
|
||
|
values = convert(values)
|
||
|
|
||
|
else:
|
||
|
|
||
|
# drop subclass info, do not copy data
|
||
|
values = np.asarray(values)
|
||
|
if copy:
|
||
|
values = values.copy()
|
||
|
|
||
|
if values.ndim == 1:
|
||
|
values = values.reshape((values.shape[0], 1))
|
||
|
elif values.ndim != 2:
|
||
|
raise ValueError('Must pass 2-d input')
|
||
|
|
||
|
return values
|
||
|
|
||
|
|
||
|
def _to_arrays(data, columns, coerce_float=False, dtype=None):
|
||
|
"""
|
||
|
Return list of arrays, columns
|
||
|
"""
|
||
|
if isinstance(data, DataFrame):
|
||
|
if columns is not None:
|
||
|
arrays = [data._ixs(i, axis=1).values
|
||
|
for i, col in enumerate(data.columns) if col in columns]
|
||
|
else:
|
||
|
columns = data.columns
|
||
|
arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]
|
||
|
|
||
|
return arrays, columns
|
||
|
|
||
|
if not len(data):
|
||
|
if isinstance(data, np.ndarray):
|
||
|
columns = data.dtype.names
|
||
|
if columns is not None:
|
||
|
return [[]] * len(columns), columns
|
||
|
return [], [] # columns if columns is not None else []
|
||
|
if isinstance(data[0], (list, tuple)):
|
||
|
return _list_to_arrays(data, columns, coerce_float=coerce_float,
|
||
|
dtype=dtype)
|
||
|
elif isinstance(data[0], collections.Mapping):
|
||
|
return _list_of_dict_to_arrays(data, columns,
|
||
|
coerce_float=coerce_float, dtype=dtype)
|
||
|
elif isinstance(data[0], Series):
|
||
|
return _list_of_series_to_arrays(data, columns,
|
||
|
coerce_float=coerce_float,
|
||
|
dtype=dtype)
|
||
|
elif isinstance(data[0], Categorical):
|
||
|
if columns is None:
|
||
|
columns = com._default_index(len(data))
|
||
|
return data, columns
|
||
|
elif (isinstance(data, (np.ndarray, Series, Index)) and
|
||
|
data.dtype.names is not None):
|
||
|
|
||
|
columns = list(data.dtype.names)
|
||
|
arrays = [data[k] for k in columns]
|
||
|
return arrays, columns
|
||
|
else:
|
||
|
# last ditch effort
|
||
|
data = lmap(tuple, data)
|
||
|
return _list_to_arrays(data, columns, coerce_float=coerce_float,
|
||
|
dtype=dtype)
|
||
|
|
||
|
|
||
|
def _masked_rec_array_to_mgr(data, index, columns, dtype, copy):
|
||
|
""" extract from a masked rec array and create the manager """
|
||
|
|
||
|
# essentially process a record array then fill it
|
||
|
fill_value = data.fill_value
|
||
|
fdata = ma.getdata(data)
|
||
|
if index is None:
|
||
|
index = _get_names_from_index(fdata)
|
||
|
if index is None:
|
||
|
index = com._default_index(len(data))
|
||
|
index = _ensure_index(index)
|
||
|
|
||
|
if columns is not None:
|
||
|
columns = _ensure_index(columns)
|
||
|
arrays, arr_columns = _to_arrays(fdata, columns)
|
||
|
|
||
|
# fill if needed
|
||
|
new_arrays = []
|
||
|
for fv, arr, col in zip(fill_value, arrays, arr_columns):
|
||
|
mask = ma.getmaskarray(data[col])
|
||
|
if mask.any():
|
||
|
arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
|
||
|
arr[mask] = fv
|
||
|
new_arrays.append(arr)
|
||
|
|
||
|
# create the manager
|
||
|
arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns)
|
||
|
if columns is None:
|
||
|
columns = arr_columns
|
||
|
|
||
|
mgr = _arrays_to_mgr(arrays, arr_columns, index, columns)
|
||
|
|
||
|
if copy:
|
||
|
mgr = mgr.copy()
|
||
|
return mgr
|
||
|
|
||
|
|
||
|
def _reorder_arrays(arrays, arr_columns, columns):
|
||
|
# reorder according to the columns
|
||
|
if (columns is not None and len(columns) and arr_columns is not None and
|
||
|
len(arr_columns)):
|
||
|
indexer = _ensure_index(arr_columns).get_indexer(columns)
|
||
|
arr_columns = _ensure_index([arr_columns[i] for i in indexer])
|
||
|
arrays = [arrays[i] for i in indexer]
|
||
|
return arrays, arr_columns
|
||
|
|
||
|
|
||
|
def _list_to_arrays(data, columns, coerce_float=False, dtype=None):
|
||
|
if len(data) > 0 and isinstance(data[0], tuple):
|
||
|
content = list(lib.to_object_array_tuples(data).T)
|
||
|
else:
|
||
|
# list of lists
|
||
|
content = list(lib.to_object_array(data).T)
|
||
|
return _convert_object_array(content, columns, dtype=dtype,
|
||
|
coerce_float=coerce_float)
|
||
|
|
||
|
|
||
|
def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None):
|
||
|
from pandas.core.index import _get_objs_combined_axis
|
||
|
|
||
|
if columns is None:
|
||
|
columns = _get_objs_combined_axis(data, sort=False)
|
||
|
|
||
|
indexer_cache = {}
|
||
|
|
||
|
aligned_values = []
|
||
|
for s in data:
|
||
|
index = getattr(s, 'index', None)
|
||
|
if index is None:
|
||
|
index = com._default_index(len(s))
|
||
|
|
||
|
if id(index) in indexer_cache:
|
||
|
indexer = indexer_cache[id(index)]
|
||
|
else:
|
||
|
indexer = indexer_cache[id(index)] = index.get_indexer(columns)
|
||
|
|
||
|
values = com._values_from_object(s)
|
||
|
aligned_values.append(algorithms.take_1d(values, indexer))
|
||
|
|
||
|
values = np.vstack(aligned_values)
|
||
|
|
||
|
if values.dtype == np.object_:
|
||
|
content = list(values.T)
|
||
|
return _convert_object_array(content, columns, dtype=dtype,
|
||
|
coerce_float=coerce_float)
|
||
|
else:
|
||
|
return values.T, columns
|
||
|
|
||
|
|
||
|
def _list_of_dict_to_arrays(data, columns, coerce_float=False, dtype=None):
|
||
|
if columns is None:
|
||
|
gen = (list(x.keys()) for x in data)
|
||
|
sort = not any(isinstance(d, OrderedDict) for d in data)
|
||
|
columns = lib.fast_unique_multiple_list_gen(gen, sort=sort)
|
||
|
|
||
|
# assure that they are of the base dict class and not of derived
|
||
|
# classes
|
||
|
data = [(type(d) is dict) and d or dict(d) for d in data]
|
||
|
|
||
|
content = list(lib.dicts_to_array(data, list(columns)).T)
|
||
|
return _convert_object_array(content, columns, dtype=dtype,
|
||
|
coerce_float=coerce_float)
|
||
|
|
||
|
|
||
|
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
|
||
|
if columns is None:
|
||
|
columns = com._default_index(len(content))
|
||
|
else:
|
||
|
if len(columns) != len(content): # pragma: no cover
|
||
|
# caller's responsibility to check for this...
|
||
|
raise AssertionError('{col:d} columns passed, passed data had '
|
||
|
'{con} columns'.format(col=len(columns),
|
||
|
con=len(content)))
|
||
|
|
||
|
# provide soft conversion of object dtypes
|
||
|
def convert(arr):
|
||
|
if dtype != object and dtype != np.object:
|
||
|
arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
|
||
|
arr = maybe_cast_to_datetime(arr, dtype)
|
||
|
return arr
|
||
|
|
||
|
arrays = [convert(arr) for arr in content]
|
||
|
|
||
|
return arrays, columns
|
||
|
|
||
|
|
||
|
def _get_names_from_index(data):
|
||
|
has_some_name = any(getattr(s, 'name', None) is not None for s in data)
|
||
|
if not has_some_name:
|
||
|
return com._default_index(len(data))
|
||
|
|
||
|
index = lrange(len(data))
|
||
|
count = 0
|
||
|
for i, s in enumerate(data):
|
||
|
n = getattr(s, 'name', None)
|
||
|
if n is not None:
|
||
|
index[i] = n
|
||
|
else:
|
||
|
index[i] = 'Unnamed %d' % count
|
||
|
count += 1
|
||
|
|
||
|
return index
|
||
|
|
||
|
|
||
|
def _homogenize(data, index, dtype=None):
|
||
|
from pandas.core.series import _sanitize_array
|
||
|
|
||
|
oindex = None
|
||
|
homogenized = []
|
||
|
|
||
|
for v in data:
|
||
|
if isinstance(v, Series):
|
||
|
if dtype is not None:
|
||
|
v = v.astype(dtype)
|
||
|
if v.index is not index:
|
||
|
# Forces alignment. No need to copy data since we
|
||
|
# are putting it into an ndarray later
|
||
|
v = v.reindex(index, copy=False)
|
||
|
else:
|
||
|
if isinstance(v, dict):
|
||
|
if oindex is None:
|
||
|
oindex = index.astype('O')
|
||
|
|
||
|
if isinstance(index, (DatetimeIndex, TimedeltaIndex)):
|
||
|
v = com._dict_compat(v)
|
||
|
else:
|
||
|
v = dict(v)
|
||
|
v = lib.fast_multiget(v, oindex.values, default=np.nan)
|
||
|
v = _sanitize_array(v, index, dtype=dtype, copy=False,
|
||
|
raise_cast_failure=False)
|
||
|
|
||
|
homogenized.append(v)
|
||
|
|
||
|
return homogenized
|
||
|
|
||
|
|
||
|
def _from_nested_dict(data):
|
||
|
# TODO: this should be seriously cythonized
|
||
|
new_data = OrderedDict()
|
||
|
for index, s in compat.iteritems(data):
|
||
|
for col, v in compat.iteritems(s):
|
||
|
new_data[col] = new_data.get(col, OrderedDict())
|
||
|
new_data[col][index] = v
|
||
|
return new_data
|
||
|
|
||
|
|
||
|
def _put_str(s, space):
|
||
|
return u'{s}'.format(s=s)[:space].ljust(space)
|