laywerrobot/lib/python3.6/site-packages/pandas/core/apply.py

412 lines
12 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
import warnings
import numpy as np
from pandas import compat
from pandas._libs import reduction
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.common import (
is_extension_type,
is_sequence)
from pandas.util._decorators import cache_readonly
from pandas.io.formats.printing import pprint_thing
def frame_apply(obj, func, axis=0, broadcast=None,
raw=False, reduce=None, result_type=None,
ignore_failures=False,
args=None, kwds=None):
""" construct and return a row or column based frame apply object """
axis = obj._get_axis_number(axis)
if axis == 0:
klass = FrameRowApply
elif axis == 1:
klass = FrameColumnApply
return klass(obj, func, broadcast=broadcast,
raw=raw, reduce=reduce, result_type=result_type,
ignore_failures=ignore_failures,
args=args, kwds=kwds)
class FrameApply(object):
def __init__(self, obj, func, broadcast, raw, reduce, result_type,
ignore_failures, args, kwds):
self.obj = obj
self.raw = raw
self.ignore_failures = ignore_failures
self.args = args or ()
self.kwds = kwds or {}
if result_type not in [None, 'reduce', 'broadcast', 'expand']:
raise ValueError("invalid value for result_type, must be one "
"of {None, 'reduce', 'broadcast', 'expand'}")
if broadcast is not None:
warnings.warn("The broadcast argument is deprecated and will "
"be removed in a future version. You can specify "
"result_type='broadcast' to broadcast the result "
"to the original dimensions",
FutureWarning, stacklevel=4)
if broadcast:
result_type = 'broadcast'
if reduce is not None:
warnings.warn("The reduce argument is deprecated and will "
"be removed in a future version. You can specify "
"result_type='reduce' to try to reduce the result "
"to the original dimensions",
FutureWarning, stacklevel=4)
if reduce:
if result_type is not None:
raise ValueError(
"cannot pass both reduce=True and result_type")
result_type = 'reduce'
self.result_type = result_type
# curry if needed
if kwds or args and not isinstance(func, np.ufunc):
def f(x):
return func(x, *args, **kwds)
else:
f = func
self.f = f
# results
self.result = None
self.res_index = None
self.res_columns = None
@property
def columns(self):
return self.obj.columns
@property
def index(self):
return self.obj.index
@cache_readonly
def values(self):
return self.obj.values
@cache_readonly
def dtypes(self):
return self.obj.dtypes
@property
def agg_axis(self):
return self.obj._get_agg_axis(self.axis)
def get_result(self):
""" compute the results """
# all empty
if len(self.columns) == 0 and len(self.index) == 0:
return self.apply_empty_result()
# string dispatch
if isinstance(self.f, compat.string_types):
# Support for `frame.transform('method')`
# Some methods (shift, etc.) require the axis argument, others
# don't, so inspect and insert if nescessary.
func = getattr(self.obj, self.f)
sig = compat.signature(func)
if 'axis' in sig.args:
self.kwds['axis'] = self.axis
return func(*self.args, **self.kwds)
# ufunc
elif isinstance(self.f, np.ufunc):
with np.errstate(all='ignore'):
results = self.f(self.values)
return self.obj._constructor(data=results, index=self.index,
columns=self.columns, copy=False)
# broadcasting
if self.result_type == 'broadcast':
return self.apply_broadcast()
# one axis empty
elif not all(self.obj.shape):
return self.apply_empty_result()
# raw
elif self.raw and not self.obj._is_mixed_type:
return self.apply_raw()
return self.apply_standard()
def apply_empty_result(self):
"""
we have an empty result; at least 1 axis is 0
we will try to apply the function to an empty
series in order to see if this is a reduction function
"""
# we are not asked to reduce or infer reduction
# so just return a copy of the existing object
if self.result_type not in ['reduce', None]:
return self.obj.copy()
# we may need to infer
reduce = self.result_type == 'reduce'
from pandas import Series
if not reduce:
EMPTY_SERIES = Series([])
try:
r = self.f(EMPTY_SERIES, *self.args, **self.kwds)
reduce = not isinstance(r, Series)
except Exception:
pass
if reduce:
return self.obj._constructor_sliced(np.nan, index=self.agg_axis)
else:
return self.obj.copy()
def apply_raw(self):
""" apply to the values as a numpy array """
try:
result = reduction.reduce(self.values, self.f, axis=self.axis)
except Exception:
result = np.apply_along_axis(self.f, self.axis, self.values)
# TODO: mixed type case
if result.ndim == 2:
return self.obj._constructor(result,
index=self.index,
columns=self.columns)
else:
return self.obj._constructor_sliced(result,
index=self.agg_axis)
def apply_broadcast(self, target):
result_values = np.empty_like(target.values)
# axis which we want to compare compliance
result_compare = target.shape[0]
for i, col in enumerate(target.columns):
res = self.f(target[col])
ares = np.asarray(res).ndim
# must be a scalar or 1d
if ares > 1:
raise ValueError("too many dims to broadcast")
elif ares == 1:
# must match return dim
if result_compare != len(res):
raise ValueError("cannot broadcast result")
result_values[:, i] = res
# we *always* preserve the original index / columns
result = self.obj._constructor(result_values,
index=target.index,
columns=target.columns)
return result
def apply_standard(self):
# try to reduce first (by default)
# this only matters if the reduction in values is of different dtype
# e.g. if we want to apply to a SparseFrame, then can't directly reduce
# we cannot reduce using non-numpy dtypes,
# as demonstrated in gh-12244
if (self.result_type in ['reduce', None] and
not self.dtypes.apply(is_extension_type).any()):
# Create a dummy Series from an empty array
from pandas import Series
values = self.values
index = self.obj._get_axis(self.axis)
labels = self.agg_axis
empty_arr = np.empty(len(index), dtype=values.dtype)
dummy = Series(empty_arr, index=index, dtype=values.dtype)
try:
result = reduction.reduce(values, self.f,
axis=self.axis,
dummy=dummy,
labels=labels)
return self.obj._constructor_sliced(result, index=labels)
except Exception:
pass
# compute the result using the series generator
self.apply_series_generator()
# wrap results
return self.wrap_results()
def apply_series_generator(self):
series_gen = self.series_generator
res_index = self.result_index
i = None
keys = []
results = {}
if self.ignore_failures:
successes = []
for i, v in enumerate(series_gen):
try:
results[i] = self.f(v)
keys.append(v.name)
successes.append(i)
except Exception:
pass
# so will work with MultiIndex
if len(successes) < len(res_index):
res_index = res_index.take(successes)
else:
try:
for i, v in enumerate(series_gen):
results[i] = self.f(v)
keys.append(v.name)
except Exception as e:
if hasattr(e, 'args'):
# make sure i is defined
if i is not None:
k = res_index[i]
e.args = e.args + ('occurred at index %s' %
pprint_thing(k), )
raise
self.results = results
self.res_index = res_index
self.res_columns = self.result_columns
def wrap_results(self):
results = self.results
# see if we can infer the results
if len(results) > 0 and is_sequence(results[0]):
return self.wrap_results_for_axis()
# dict of scalars
result = self.obj._constructor_sliced(results)
result.index = self.res_index
return result
class FrameRowApply(FrameApply):
axis = 0
def get_result(self):
# dispatch to agg
if isinstance(self.f, (list, dict)):
return self.obj.aggregate(self.f, axis=self.axis,
*self.args, **self.kwds)
return super(FrameRowApply, self).get_result()
def apply_broadcast(self):
return super(FrameRowApply, self).apply_broadcast(self.obj)
@property
def series_generator(self):
return (self.obj._ixs(i, axis=1)
for i in range(len(self.columns)))
@property
def result_index(self):
return self.columns
@property
def result_columns(self):
return self.index
def wrap_results_for_axis(self):
""" return the results for the rows """
results = self.results
result = self.obj._constructor(data=results)
if not isinstance(results[0], ABCSeries):
try:
result.index = self.res_columns
except ValueError:
pass
try:
result.columns = self.res_index
except ValueError:
pass
return result
class FrameColumnApply(FrameApply):
axis = 1
def apply_broadcast(self):
result = super(FrameColumnApply, self).apply_broadcast(self.obj.T)
return result.T
@property
def series_generator(self):
constructor = self.obj._constructor_sliced
return (constructor(arr, index=self.columns, name=name)
for i, (arr, name) in enumerate(zip(self.values,
self.index)))
@property
def result_index(self):
return self.index
@property
def result_columns(self):
return self.columns
def wrap_results_for_axis(self):
""" return the results for the columns """
results = self.results
# we have requested to expand
if self.result_type == 'expand':
result = self.infer_to_same_shape()
# we have a non-series and don't want inference
elif not isinstance(results[0], ABCSeries):
from pandas import Series
result = Series(results)
result.index = self.res_index
# we may want to infer results
else:
result = self.infer_to_same_shape()
return result
def infer_to_same_shape(self):
""" infer the results to the same shape as the input object """
results = self.results
result = self.obj._constructor(data=results)
result = result.T
# set the index
result.index = self.res_index
# infer dtypes
result = result.infer_objects()
return result