laywerrobot/lib/python3.6/site-packages/pandas/__init__.py

129 lines
5.3 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# pylint: disable-msg=W0614,W0401,W0611,W0622
# flake8: noqa
__docformat__ = 'restructuredtext'
# Let users know if they're missing any of our hard dependencies
hard_dependencies = ("numpy", "pytz", "dateutil")
missing_dependencies = []
for dependency in hard_dependencies:
try:
__import__(dependency)
except ImportError as e:
missing_dependencies.append(dependency)
if missing_dependencies:
raise ImportError(
"Missing required dependencies {0}".format(missing_dependencies))
del hard_dependencies, dependency, missing_dependencies
# numpy compat
from pandas.compat.numpy import *
try:
from pandas._libs import (hashtable as _hashtable,
lib as _lib,
tslib as _tslib)
except ImportError as e: # pragma: no cover
# hack but overkill to use re
module = str(e).replace('cannot import name ', '')
raise ImportError("C extension: {0} not built. If you want to import "
"pandas from the source directory, you may need to run "
"'python setup.py build_ext --inplace --force' to build "
"the C extensions first.".format(module))
from datetime import datetime
# let init-time option registration happen
import pandas.core.config_init
from pandas.core.api import *
from pandas.core.sparse.api import *
from pandas.tseries.api import *
from pandas.core.computation.api import *
from pandas.core.reshape.api import *
# deprecate tools.plotting, plot_params and scatter_matrix on the top namespace
import pandas.tools.plotting
plot_params = pandas.plotting._style._Options(deprecated=True)
# do not import deprecate to top namespace
scatter_matrix = pandas.util._decorators.deprecate(
'pandas.scatter_matrix', pandas.plotting.scatter_matrix, '0.20.0',
'pandas.plotting.scatter_matrix')
from pandas.util._print_versions import show_versions
from pandas.io.api import *
from pandas.util._tester import test
import pandas.testing
# extension module deprecations
from pandas.util._depr_module import _DeprecatedModule
json = _DeprecatedModule(deprmod='pandas.json',
moved={'dumps': 'pandas.io.json.dumps',
'loads': 'pandas.io.json.loads'})
parser = _DeprecatedModule(deprmod='pandas.parser',
removals=['na_values'],
moved={'CParserError': 'pandas.errors.ParserError'})
lib = _DeprecatedModule(deprmod='pandas.lib', deprmodto=False,
moved={'Timestamp': 'pandas.Timestamp',
'Timedelta': 'pandas.Timedelta',
'NaT': 'pandas.NaT',
'infer_dtype': 'pandas.api.types.infer_dtype'})
tslib = _DeprecatedModule(deprmod='pandas.tslib',
moved={'Timestamp': 'pandas.Timestamp',
'Timedelta': 'pandas.Timedelta',
'NaT': 'pandas.NaT',
'NaTType': 'type(pandas.NaT)',
'OutOfBoundsDatetime': 'pandas.errors.OutOfBoundsDatetime'})
# use the closest tagged version if possible
from ._version import get_versions
v = get_versions()
__version__ = v.get('closest-tag', v['version'])
del get_versions, v
# module level doc-string
__doc__ = """
pandas - a powerful data analysis and manipulation library for Python
=====================================================================
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
Main Features
-------------
Here are just a few of the things that pandas does well:
- Easy handling of missing data in floating point as well as non-floating
point data.
- Size mutability: columns can be inserted and deleted from DataFrame and
higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned
to a set of labels, or the user can simply ignore the labels and let
`Series`, `DataFrame`, etc. automatically align the data for you in
computations.
- Powerful, flexible group by functionality to perform split-apply-combine
operations on data sets, for both aggregating and transforming data.
- Make it easy to convert ragged, differently-indexed data in other Python
and NumPy data structures into DataFrame objects.
- Intelligent label-based slicing, fancy indexing, and subsetting of large
data sets.
- Intuitive merging and joining data sets.
- Flexible reshaping and pivoting of data sets.
- Hierarchical labeling of axes (possible to have multiple labels per tick).
- Robust IO tools for loading data from flat files (CSV and delimited),
Excel files, databases, and saving/loading data from the ultrafast HDF5
format.
- Time series-specific functionality: date range generation and frequency
conversion, moving window statistics, moving window linear regressions,
date shifting and lagging, etc.
"""