510 lines
18 KiB
Python
510 lines
18 KiB
Python
|
# Natural Language Toolkit: Nonmonotonic Reasoning
|
||
|
#
|
||
|
# Author: Daniel H. Garrette <dhgarrette@gmail.com>
|
||
|
#
|
||
|
# Copyright (C) 2001-2018 NLTK Project
|
||
|
# URL: <http://nltk.org>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
|
||
|
"""
|
||
|
A module to perform nonmonotonic reasoning. The ideas and demonstrations in
|
||
|
this module are based on "Logical Foundations of Artificial Intelligence" by
|
||
|
Michael R. Genesereth and Nils J. Nilsson.
|
||
|
"""
|
||
|
from __future__ import print_function, unicode_literals
|
||
|
|
||
|
from nltk.inference.prover9 import Prover9, Prover9Command
|
||
|
from collections import defaultdict
|
||
|
from functools import reduce
|
||
|
|
||
|
from nltk.sem.logic import (VariableExpression, EqualityExpression,
|
||
|
ApplicationExpression, Expression,
|
||
|
AbstractVariableExpression, AllExpression,
|
||
|
BooleanExpression, NegatedExpression,
|
||
|
ExistsExpression, Variable, ImpExpression,
|
||
|
AndExpression, unique_variable, operator)
|
||
|
|
||
|
from nltk.inference.api import Prover, ProverCommandDecorator
|
||
|
from nltk.compat import python_2_unicode_compatible
|
||
|
|
||
|
class ProverParseError(Exception): pass
|
||
|
|
||
|
def get_domain(goal, assumptions):
|
||
|
if goal is None:
|
||
|
all_expressions = assumptions
|
||
|
else:
|
||
|
all_expressions = assumptions + [-goal]
|
||
|
return reduce(operator.or_, (a.constants() for a in all_expressions), set())
|
||
|
|
||
|
class ClosedDomainProver(ProverCommandDecorator):
|
||
|
"""
|
||
|
This is a prover decorator that adds domain closure assumptions before
|
||
|
proving.
|
||
|
"""
|
||
|
def assumptions(self):
|
||
|
assumptions = [a for a in self._command.assumptions()]
|
||
|
goal = self._command.goal()
|
||
|
domain = get_domain(goal, assumptions)
|
||
|
return [self.replace_quants(ex, domain) for ex in assumptions]
|
||
|
|
||
|
def goal(self):
|
||
|
goal = self._command.goal()
|
||
|
domain = get_domain(goal, self._command.assumptions())
|
||
|
return self.replace_quants(goal, domain)
|
||
|
|
||
|
def replace_quants(self, ex, domain):
|
||
|
"""
|
||
|
Apply the closed domain assumption to the expression
|
||
|
- Domain = union([e.free()|e.constants() for e in all_expressions])
|
||
|
- translate "exists x.P" to "(z=d1 | z=d2 | ... ) & P.replace(x,z)" OR
|
||
|
"P.replace(x, d1) | P.replace(x, d2) | ..."
|
||
|
- translate "all x.P" to "P.replace(x, d1) & P.replace(x, d2) & ..."
|
||
|
:param ex: ``Expression``
|
||
|
:param domain: set of {Variable}s
|
||
|
:return: ``Expression``
|
||
|
"""
|
||
|
if isinstance(ex, AllExpression):
|
||
|
conjuncts = [ex.term.replace(ex.variable, VariableExpression(d))
|
||
|
for d in domain]
|
||
|
conjuncts = [self.replace_quants(c, domain) for c in conjuncts]
|
||
|
return reduce(lambda x,y: x&y, conjuncts)
|
||
|
elif isinstance(ex, BooleanExpression):
|
||
|
return ex.__class__(self.replace_quants(ex.first, domain),
|
||
|
self.replace_quants(ex.second, domain) )
|
||
|
elif isinstance(ex, NegatedExpression):
|
||
|
return -self.replace_quants(ex.term, domain)
|
||
|
elif isinstance(ex, ExistsExpression):
|
||
|
disjuncts = [ex.term.replace(ex.variable, VariableExpression(d))
|
||
|
for d in domain]
|
||
|
disjuncts = [self.replace_quants(d, domain) for d in disjuncts]
|
||
|
return reduce(lambda x,y: x|y, disjuncts)
|
||
|
else:
|
||
|
return ex
|
||
|
|
||
|
class UniqueNamesProver(ProverCommandDecorator):
|
||
|
"""
|
||
|
This is a prover decorator that adds unique names assumptions before
|
||
|
proving.
|
||
|
"""
|
||
|
def assumptions(self):
|
||
|
"""
|
||
|
- Domain = union([e.free()|e.constants() for e in all_expressions])
|
||
|
- if "d1 = d2" cannot be proven from the premises, then add "d1 != d2"
|
||
|
"""
|
||
|
assumptions = self._command.assumptions()
|
||
|
|
||
|
domain = list(get_domain(self._command.goal(), assumptions))
|
||
|
|
||
|
#build a dictionary of obvious equalities
|
||
|
eq_sets = SetHolder()
|
||
|
for a in assumptions:
|
||
|
if isinstance(a, EqualityExpression):
|
||
|
av = a.first.variable
|
||
|
bv = a.second.variable
|
||
|
#put 'a' and 'b' in the same set
|
||
|
eq_sets[av].add(bv)
|
||
|
|
||
|
new_assumptions = []
|
||
|
for i,a in enumerate(domain):
|
||
|
for b in domain[i+1:]:
|
||
|
#if a and b are not already in the same equality set
|
||
|
if b not in eq_sets[a]:
|
||
|
newEqEx = EqualityExpression(VariableExpression(a),
|
||
|
VariableExpression(b))
|
||
|
if Prover9().prove(newEqEx, assumptions):
|
||
|
#we can prove that the names are the same entity.
|
||
|
#remember that they are equal so we don't re-check.
|
||
|
eq_sets[a].add(b)
|
||
|
else:
|
||
|
#we can't prove it, so assume unique names
|
||
|
new_assumptions.append(-newEqEx)
|
||
|
|
||
|
return assumptions + new_assumptions
|
||
|
|
||
|
class SetHolder(list):
|
||
|
"""
|
||
|
A list of sets of Variables.
|
||
|
"""
|
||
|
def __getitem__(self, item):
|
||
|
"""
|
||
|
:param item: ``Variable``
|
||
|
:return: the set containing 'item'
|
||
|
"""
|
||
|
assert isinstance(item, Variable)
|
||
|
for s in self:
|
||
|
if item in s:
|
||
|
return s
|
||
|
#item is not found in any existing set. so create a new set
|
||
|
new = set([item])
|
||
|
self.append(new)
|
||
|
return new
|
||
|
|
||
|
class ClosedWorldProver(ProverCommandDecorator):
|
||
|
"""
|
||
|
This is a prover decorator that completes predicates before proving.
|
||
|
|
||
|
If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion of "P".
|
||
|
If the assumptions contain "all x.(ostrich(x) -> bird(x))", then "all x.(bird(x) -> ostrich(x))" is the completion of "bird".
|
||
|
If the assumptions don't contain anything that are "P", then "all x.-P(x)" is the completion of "P".
|
||
|
|
||
|
walk(Socrates)
|
||
|
Socrates != Bill
|
||
|
+ all x.(walk(x) -> (x=Socrates))
|
||
|
----------------
|
||
|
-walk(Bill)
|
||
|
|
||
|
see(Socrates, John)
|
||
|
see(John, Mary)
|
||
|
Socrates != John
|
||
|
John != Mary
|
||
|
+ all x.all y.(see(x,y) -> ((x=Socrates & y=John) | (x=John & y=Mary)))
|
||
|
----------------
|
||
|
-see(Socrates, Mary)
|
||
|
|
||
|
all x.(ostrich(x) -> bird(x))
|
||
|
bird(Tweety)
|
||
|
-ostrich(Sam)
|
||
|
Sam != Tweety
|
||
|
+ all x.(bird(x) -> (ostrich(x) | x=Tweety))
|
||
|
+ all x.-ostrich(x)
|
||
|
-------------------
|
||
|
-bird(Sam)
|
||
|
"""
|
||
|
def assumptions(self):
|
||
|
assumptions = self._command.assumptions()
|
||
|
|
||
|
predicates = self._make_predicate_dict(assumptions)
|
||
|
|
||
|
new_assumptions = []
|
||
|
for p in predicates:
|
||
|
predHolder = predicates[p]
|
||
|
new_sig = self._make_unique_signature(predHolder)
|
||
|
new_sig_exs = [VariableExpression(v) for v in new_sig]
|
||
|
|
||
|
disjuncts = []
|
||
|
|
||
|
#Turn the signatures into disjuncts
|
||
|
for sig in predHolder.signatures:
|
||
|
equality_exs = []
|
||
|
for v1,v2 in zip(new_sig_exs, sig):
|
||
|
equality_exs.append(EqualityExpression(v1,v2))
|
||
|
disjuncts.append(reduce(lambda x,y: x&y, equality_exs))
|
||
|
|
||
|
#Turn the properties into disjuncts
|
||
|
for prop in predHolder.properties:
|
||
|
#replace variables from the signature with new sig variables
|
||
|
bindings = {}
|
||
|
for v1,v2 in zip(new_sig_exs, prop[0]):
|
||
|
bindings[v2] = v1
|
||
|
disjuncts.append(prop[1].substitute_bindings(bindings))
|
||
|
|
||
|
#make the assumption
|
||
|
if disjuncts:
|
||
|
#disjuncts exist, so make an implication
|
||
|
antecedent = self._make_antecedent(p, new_sig)
|
||
|
consequent = reduce(lambda x,y: x|y, disjuncts)
|
||
|
accum = ImpExpression(antecedent, consequent)
|
||
|
else:
|
||
|
#nothing has property 'p'
|
||
|
accum = NegatedExpression(self._make_antecedent(p, new_sig))
|
||
|
|
||
|
#quantify the implication
|
||
|
for new_sig_var in new_sig[::-1]:
|
||
|
accum = AllExpression(new_sig_var, accum)
|
||
|
new_assumptions.append(accum)
|
||
|
|
||
|
return assumptions + new_assumptions
|
||
|
|
||
|
def _make_unique_signature(self, predHolder):
|
||
|
"""
|
||
|
This method figures out how many arguments the predicate takes and
|
||
|
returns a tuple containing that number of unique variables.
|
||
|
"""
|
||
|
return tuple(unique_variable() for i in range(predHolder.signature_len))
|
||
|
|
||
|
def _make_antecedent(self, predicate, signature):
|
||
|
"""
|
||
|
Return an application expression with 'predicate' as the predicate
|
||
|
and 'signature' as the list of arguments.
|
||
|
"""
|
||
|
antecedent = predicate
|
||
|
for v in signature:
|
||
|
antecedent = antecedent(VariableExpression(v))
|
||
|
return antecedent
|
||
|
|
||
|
def _make_predicate_dict(self, assumptions):
|
||
|
"""
|
||
|
Create a dictionary of predicates from the assumptions.
|
||
|
|
||
|
:param assumptions: a list of ``Expression``s
|
||
|
:return: dict mapping ``AbstractVariableExpression`` to ``PredHolder``
|
||
|
"""
|
||
|
predicates = defaultdict(PredHolder)
|
||
|
for a in assumptions:
|
||
|
self._map_predicates(a, predicates)
|
||
|
return predicates
|
||
|
|
||
|
def _map_predicates(self, expression, predDict):
|
||
|
if isinstance(expression, ApplicationExpression):
|
||
|
func, args = expression.uncurry()
|
||
|
if isinstance(func, AbstractVariableExpression):
|
||
|
predDict[func].append_sig(tuple(args))
|
||
|
elif isinstance(expression, AndExpression):
|
||
|
self._map_predicates(expression.first, predDict)
|
||
|
self._map_predicates(expression.second, predDict)
|
||
|
elif isinstance(expression, AllExpression):
|
||
|
#collect all the universally quantified variables
|
||
|
sig = [expression.variable]
|
||
|
term = expression.term
|
||
|
while isinstance(term, AllExpression):
|
||
|
sig.append(term.variable)
|
||
|
term = term.term
|
||
|
if isinstance(term, ImpExpression):
|
||
|
if isinstance(term.first, ApplicationExpression) and \
|
||
|
isinstance(term.second, ApplicationExpression):
|
||
|
func1, args1 = term.first.uncurry()
|
||
|
func2, args2 = term.second.uncurry()
|
||
|
if isinstance(func1, AbstractVariableExpression) and \
|
||
|
isinstance(func2, AbstractVariableExpression) and \
|
||
|
sig == [v.variable for v in args1] and \
|
||
|
sig == [v.variable for v in args2]:
|
||
|
predDict[func2].append_prop((tuple(sig), term.first))
|
||
|
predDict[func1].validate_sig_len(sig)
|
||
|
|
||
|
@python_2_unicode_compatible
|
||
|
class PredHolder(object):
|
||
|
"""
|
||
|
This class will be used by a dictionary that will store information
|
||
|
about predicates to be used by the ``ClosedWorldProver``.
|
||
|
|
||
|
The 'signatures' property is a list of tuples defining signatures for
|
||
|
which the predicate is true. For instance, 'see(john, mary)' would be
|
||
|
result in the signature '(john,mary)' for 'see'.
|
||
|
|
||
|
The second element of the pair is a list of pairs such that the first
|
||
|
element of the pair is a tuple of variables and the second element is an
|
||
|
expression of those variables that makes the predicate true. For instance,
|
||
|
'all x.all y.(see(x,y) -> know(x,y))' would result in "((x,y),('see(x,y)'))"
|
||
|
for 'know'.
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.signatures = []
|
||
|
self.properties = []
|
||
|
self.signature_len = None
|
||
|
|
||
|
def append_sig(self, new_sig):
|
||
|
self.validate_sig_len(new_sig)
|
||
|
self.signatures.append(new_sig)
|
||
|
|
||
|
def append_prop(self, new_prop):
|
||
|
self.validate_sig_len(new_prop[0])
|
||
|
self.properties.append(new_prop)
|
||
|
|
||
|
def validate_sig_len(self, new_sig):
|
||
|
if self.signature_len is None:
|
||
|
self.signature_len = len(new_sig)
|
||
|
elif self.signature_len != len(new_sig):
|
||
|
raise Exception("Signature lengths do not match")
|
||
|
|
||
|
def __str__(self):
|
||
|
return '(%s,%s,%s)' % (self.signatures, self.properties,
|
||
|
self.signature_len)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "%s" % self
|
||
|
|
||
|
def closed_domain_demo():
|
||
|
lexpr = Expression.fromstring
|
||
|
|
||
|
p1 = lexpr(r'exists x.walk(x)')
|
||
|
p2 = lexpr(r'man(Socrates)')
|
||
|
c = lexpr(r'walk(Socrates)')
|
||
|
prover = Prover9Command(c, [p1,p2])
|
||
|
print(prover.prove())
|
||
|
cdp = ClosedDomainProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cdp.assumptions(): print(' ', a)
|
||
|
print('goal:', cdp.goal())
|
||
|
print(cdp.prove())
|
||
|
|
||
|
p1 = lexpr(r'exists x.walk(x)')
|
||
|
p2 = lexpr(r'man(Socrates)')
|
||
|
p3 = lexpr(r'-walk(Bill)')
|
||
|
c = lexpr(r'walk(Socrates)')
|
||
|
prover = Prover9Command(c, [p1,p2,p3])
|
||
|
print(prover.prove())
|
||
|
cdp = ClosedDomainProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cdp.assumptions(): print(' ', a)
|
||
|
print('goal:', cdp.goal())
|
||
|
print(cdp.prove())
|
||
|
|
||
|
p1 = lexpr(r'exists x.walk(x)')
|
||
|
p2 = lexpr(r'man(Socrates)')
|
||
|
p3 = lexpr(r'-walk(Bill)')
|
||
|
c = lexpr(r'walk(Socrates)')
|
||
|
prover = Prover9Command(c, [p1,p2,p3])
|
||
|
print(prover.prove())
|
||
|
cdp = ClosedDomainProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cdp.assumptions(): print(' ', a)
|
||
|
print('goal:', cdp.goal())
|
||
|
print(cdp.prove())
|
||
|
|
||
|
p1 = lexpr(r'walk(Socrates)')
|
||
|
p2 = lexpr(r'walk(Bill)')
|
||
|
c = lexpr(r'all x.walk(x)')
|
||
|
prover = Prover9Command(c, [p1,p2])
|
||
|
print(prover.prove())
|
||
|
cdp = ClosedDomainProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cdp.assumptions(): print(' ', a)
|
||
|
print('goal:', cdp.goal())
|
||
|
print(cdp.prove())
|
||
|
|
||
|
p1 = lexpr(r'girl(mary)')
|
||
|
p2 = lexpr(r'dog(rover)')
|
||
|
p3 = lexpr(r'all x.(girl(x) -> -dog(x))')
|
||
|
p4 = lexpr(r'all x.(dog(x) -> -girl(x))')
|
||
|
p5 = lexpr(r'chase(mary, rover)')
|
||
|
c = lexpr(r'exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))')
|
||
|
prover = Prover9Command(c, [p1,p2,p3,p4,p5])
|
||
|
print(prover.prove())
|
||
|
cdp = ClosedDomainProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cdp.assumptions(): print(' ', a)
|
||
|
print('goal:', cdp.goal())
|
||
|
print(cdp.prove())
|
||
|
|
||
|
def unique_names_demo():
|
||
|
lexpr = Expression.fromstring
|
||
|
|
||
|
p1 = lexpr(r'man(Socrates)')
|
||
|
p2 = lexpr(r'man(Bill)')
|
||
|
c = lexpr(r'exists x.exists y.(x != y)')
|
||
|
prover = Prover9Command(c, [p1,p2])
|
||
|
print(prover.prove())
|
||
|
unp = UniqueNamesProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in unp.assumptions(): print(' ', a)
|
||
|
print('goal:', unp.goal())
|
||
|
print(unp.prove())
|
||
|
|
||
|
p1 = lexpr(r'all x.(walk(x) -> (x = Socrates))')
|
||
|
p2 = lexpr(r'Bill = William')
|
||
|
p3 = lexpr(r'Bill = Billy')
|
||
|
c = lexpr(r'-walk(William)')
|
||
|
prover = Prover9Command(c, [p1,p2,p3])
|
||
|
print(prover.prove())
|
||
|
unp = UniqueNamesProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in unp.assumptions(): print(' ', a)
|
||
|
print('goal:', unp.goal())
|
||
|
print(unp.prove())
|
||
|
|
||
|
def closed_world_demo():
|
||
|
lexpr = Expression.fromstring
|
||
|
|
||
|
p1 = lexpr(r'walk(Socrates)')
|
||
|
p2 = lexpr(r'(Socrates != Bill)')
|
||
|
c = lexpr(r'-walk(Bill)')
|
||
|
prover = Prover9Command(c, [p1,p2])
|
||
|
print(prover.prove())
|
||
|
cwp = ClosedWorldProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cwp.assumptions(): print(' ', a)
|
||
|
print('goal:', cwp.goal())
|
||
|
print(cwp.prove())
|
||
|
|
||
|
p1 = lexpr(r'see(Socrates, John)')
|
||
|
p2 = lexpr(r'see(John, Mary)')
|
||
|
p3 = lexpr(r'(Socrates != John)')
|
||
|
p4 = lexpr(r'(John != Mary)')
|
||
|
c = lexpr(r'-see(Socrates, Mary)')
|
||
|
prover = Prover9Command(c, [p1,p2,p3,p4])
|
||
|
print(prover.prove())
|
||
|
cwp = ClosedWorldProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cwp.assumptions(): print(' ', a)
|
||
|
print('goal:', cwp.goal())
|
||
|
print(cwp.prove())
|
||
|
|
||
|
p1 = lexpr(r'all x.(ostrich(x) -> bird(x))')
|
||
|
p2 = lexpr(r'bird(Tweety)')
|
||
|
p3 = lexpr(r'-ostrich(Sam)')
|
||
|
p4 = lexpr(r'Sam != Tweety')
|
||
|
c = lexpr(r'-bird(Sam)')
|
||
|
prover = Prover9Command(c, [p1,p2,p3,p4])
|
||
|
print(prover.prove())
|
||
|
cwp = ClosedWorldProver(prover)
|
||
|
print('assumptions:')
|
||
|
for a in cwp.assumptions(): print(' ', a)
|
||
|
print('goal:', cwp.goal())
|
||
|
print(cwp.prove())
|
||
|
|
||
|
def combination_prover_demo():
|
||
|
lexpr = Expression.fromstring
|
||
|
|
||
|
p1 = lexpr(r'see(Socrates, John)')
|
||
|
p2 = lexpr(r'see(John, Mary)')
|
||
|
c = lexpr(r'-see(Socrates, Mary)')
|
||
|
prover = Prover9Command(c, [p1,p2])
|
||
|
print(prover.prove())
|
||
|
command = ClosedDomainProver(
|
||
|
UniqueNamesProver(
|
||
|
ClosedWorldProver(prover)))
|
||
|
for a in command.assumptions(): print(a)
|
||
|
print(command.prove())
|
||
|
|
||
|
def default_reasoning_demo():
|
||
|
lexpr = Expression.fromstring
|
||
|
|
||
|
premises = []
|
||
|
|
||
|
#define taxonomy
|
||
|
premises.append(lexpr(r'all x.(elephant(x) -> animal(x))'))
|
||
|
premises.append(lexpr(r'all x.(bird(x) -> animal(x))'))
|
||
|
premises.append(lexpr(r'all x.(dove(x) -> bird(x))'))
|
||
|
premises.append(lexpr(r'all x.(ostrich(x) -> bird(x))'))
|
||
|
premises.append(lexpr(r'all x.(flying_ostrich(x) -> ostrich(x))'))
|
||
|
|
||
|
#default properties
|
||
|
premises.append(lexpr(r'all x.((animal(x) & -Ab1(x)) -> -fly(x))')) #normal animals don't fly
|
||
|
premises.append(lexpr(r'all x.((bird(x) & -Ab2(x)) -> fly(x))')) #normal birds fly
|
||
|
premises.append(lexpr(r'all x.((ostrich(x) & -Ab3(x)) -> -fly(x))')) #normal ostriches don't fly
|
||
|
|
||
|
#specify abnormal entities
|
||
|
premises.append(lexpr(r'all x.(bird(x) -> Ab1(x))')) #flight
|
||
|
premises.append(lexpr(r'all x.(ostrich(x) -> Ab2(x))')) #non-flying bird
|
||
|
premises.append(lexpr(r'all x.(flying_ostrich(x) -> Ab3(x))')) #flying ostrich
|
||
|
|
||
|
#define entities
|
||
|
premises.append(lexpr(r'elephant(E)'))
|
||
|
premises.append(lexpr(r'dove(D)'))
|
||
|
premises.append(lexpr(r'ostrich(O)'))
|
||
|
|
||
|
#print the assumptions
|
||
|
prover = Prover9Command(None, premises)
|
||
|
command = UniqueNamesProver(ClosedWorldProver(prover))
|
||
|
for a in command.assumptions(): print(a)
|
||
|
|
||
|
print_proof('-fly(E)', premises)
|
||
|
print_proof('fly(D)', premises)
|
||
|
print_proof('-fly(O)', premises)
|
||
|
|
||
|
def print_proof(goal, premises):
|
||
|
lexpr = Expression.fromstring
|
||
|
prover = Prover9Command(lexpr(goal), premises)
|
||
|
command = UniqueNamesProver(ClosedWorldProver(prover))
|
||
|
print(goal, prover.prove(), command.prove())
|
||
|
|
||
|
def demo():
|
||
|
closed_domain_demo()
|
||
|
unique_names_demo()
|
||
|
closed_world_demo()
|
||
|
combination_prover_demo()
|
||
|
default_reasoning_demo()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
demo()
|