272 lines
7.5 KiB
Python
272 lines
7.5 KiB
Python
|
# This file is part of h5py, a Python interface to the HDF5 library.
|
||
|
#
|
||
|
# http://www.h5py.org
|
||
|
#
|
||
|
# Copyright 2008-2013 Andrew Collette and contributors
|
||
|
#
|
||
|
# License: Standard 3-clause BSD; see "license.txt" for full license terms
|
||
|
# and contributor agreement.
|
||
|
|
||
|
"""
|
||
|
Attribute data transfer testing module
|
||
|
|
||
|
Covers all data read/write and type-conversion operations for attributes.
|
||
|
"""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
|
||
|
import six
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..common import TestCase, ut
|
||
|
|
||
|
import h5py
|
||
|
from h5py import h5a, h5s, h5t
|
||
|
from h5py.highlevel import File
|
||
|
from h5py._hl.base import is_empty_dataspace
|
||
|
|
||
|
class BaseAttrs(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
self.f = File(self.mktemp(), 'w')
|
||
|
|
||
|
def tearDown(self):
|
||
|
if self.f:
|
||
|
self.f.close()
|
||
|
|
||
|
class TestScalar(BaseAttrs):
|
||
|
|
||
|
"""
|
||
|
Feature: Scalar types map correctly to array scalars
|
||
|
"""
|
||
|
|
||
|
def test_int(self):
|
||
|
""" Integers are read as correct NumPy type """
|
||
|
self.f.attrs['x'] = np.array(1, dtype=np.int8)
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertIsInstance(out, np.int8)
|
||
|
|
||
|
def test_compound(self):
|
||
|
""" Compound scalars are read as numpy.void """
|
||
|
dt = np.dtype([('a','i'),('b','f')])
|
||
|
data = np.array((1,4.2), dtype=dt)
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertIsInstance(out, np.void)
|
||
|
self.assertEqual(out, data)
|
||
|
self.assertEqual(out['b'], data['b'])
|
||
|
|
||
|
class TestArray(BaseAttrs):
|
||
|
|
||
|
"""
|
||
|
Feature: Non-scalar types are correctly retrieved as ndarrays
|
||
|
"""
|
||
|
|
||
|
def test_single(self):
|
||
|
""" Single-element arrays are correctly recovered """
|
||
|
data = np.ndarray((1,), dtype='f')
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertIsInstance(out, np.ndarray)
|
||
|
self.assertEqual(out.shape, (1,))
|
||
|
|
||
|
def test_multi(self):
|
||
|
""" Rank-1 arrays are correctly recovered """
|
||
|
data = np.ndarray((42,), dtype='f')
|
||
|
data[:] = 42.0
|
||
|
data[10:35] = -47.0
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertIsInstance(out, np.ndarray)
|
||
|
self.assertEqual(out.shape, (42,))
|
||
|
self.assertArrayEqual(out, data)
|
||
|
|
||
|
class TestTypes(BaseAttrs):
|
||
|
|
||
|
"""
|
||
|
Feature: All supported types can be stored in attributes
|
||
|
"""
|
||
|
|
||
|
def test_int(self):
|
||
|
""" Storage of integer types """
|
||
|
dtypes = (np.int8, np.int16, np.int32, np.int64,
|
||
|
np.uint8, np.uint16, np.uint32, np.uint64)
|
||
|
for dt in dtypes:
|
||
|
data = np.ndarray((1,), dtype=dt)
|
||
|
data[...] = 42
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, dt)
|
||
|
self.assertArrayEqual(out, data)
|
||
|
|
||
|
def test_float(self):
|
||
|
""" Storage of floating point types """
|
||
|
dtypes = tuple(np.dtype(x) for x in ('<f4','>f4','<f8','>f8'))
|
||
|
|
||
|
for dt in dtypes:
|
||
|
data = np.ndarray((1,), dtype=dt)
|
||
|
data[...] = 42.3
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, dt)
|
||
|
self.assertArrayEqual(out, data)
|
||
|
|
||
|
def test_complex(self):
|
||
|
""" Storage of complex types """
|
||
|
dtypes = tuple(np.dtype(x) for x in ('<c8','>c8','<c16','>c16'))
|
||
|
|
||
|
for dt in dtypes:
|
||
|
data = np.ndarray((1,), dtype=dt)
|
||
|
data[...] = -4.2j+35.9
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, dt)
|
||
|
self.assertArrayEqual(out, data)
|
||
|
|
||
|
def test_string(self):
|
||
|
""" Storage of fixed-length strings """
|
||
|
dtypes = tuple(np.dtype(x) for x in ('|S1', '|S10'))
|
||
|
|
||
|
for dt in dtypes:
|
||
|
data = np.ndarray((1,), dtype=dt)
|
||
|
data[...] = 'h'
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, dt)
|
||
|
self.assertEqual(out[0], data[0])
|
||
|
|
||
|
def test_bool(self):
|
||
|
""" Storage of NumPy booleans """
|
||
|
|
||
|
data = np.ndarray((2,), dtype=np.bool_)
|
||
|
data[...] = True, False
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, data.dtype)
|
||
|
self.assertEqual(out[0], data[0])
|
||
|
self.assertEqual(out[1], data[1])
|
||
|
|
||
|
def test_vlen_string_array(self):
|
||
|
""" Storage of vlen byte string arrays"""
|
||
|
dt = h5py.special_dtype(vlen=bytes)
|
||
|
|
||
|
data = np.ndarray((2,), dtype=dt)
|
||
|
data[...] = b"Hello", b"Hi there! This is HDF5!"
|
||
|
|
||
|
self.f.attrs['x'] = data
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out.dtype, dt)
|
||
|
self.assertEqual(out[0], data[0])
|
||
|
self.assertEqual(out[1], data[1])
|
||
|
|
||
|
def test_string_scalar(self):
|
||
|
""" Storage of variable-length byte string scalars (auto-creation) """
|
||
|
|
||
|
self.f.attrs['x'] = b'Hello'
|
||
|
out = self.f.attrs['x']
|
||
|
|
||
|
self.assertEqual(out,b'Hello')
|
||
|
self.assertEqual(type(out), bytes)
|
||
|
|
||
|
aid = h5py.h5a.open(self.f.id, b"x")
|
||
|
tid = aid.get_type()
|
||
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
|
||
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII)
|
||
|
self.assertTrue(tid.is_variable_str())
|
||
|
|
||
|
def test_unicode_scalar(self):
|
||
|
""" Storage of variable-length unicode strings (auto-creation) """
|
||
|
|
||
|
self.f.attrs['x'] = u"Hello" + six.unichr(0x2340) + u"!!"
|
||
|
out = self.f.attrs['x']
|
||
|
self.assertEqual(out, u"Hello" + six.unichr(0x2340) + u"!!")
|
||
|
self.assertEqual(type(out), six.text_type)
|
||
|
|
||
|
aid = h5py.h5a.open(self.f.id, b"x")
|
||
|
tid = aid.get_type()
|
||
|
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
|
||
|
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8)
|
||
|
self.assertTrue(tid.is_variable_str())
|
||
|
|
||
|
|
||
|
class TestEmpty(BaseAttrs):
|
||
|
|
||
|
def setUp(self):
|
||
|
BaseAttrs.setUp(self)
|
||
|
sid = h5s.create(h5s.NULL)
|
||
|
tid = h5t.C_S1.copy()
|
||
|
tid.set_size(10)
|
||
|
aid = h5a.create(self.f.id, b'x', tid, sid)
|
||
|
self.empty_obj = h5py.Empty(np.dtype("S10"))
|
||
|
|
||
|
def test_read(self):
|
||
|
self.assertEqual(
|
||
|
self.empty_obj, self.f.attrs['x']
|
||
|
)
|
||
|
|
||
|
def test_write(self):
|
||
|
self.f.attrs["y"] = self.empty_obj
|
||
|
self.assertTrue(is_empty_dataspace(h5a.open(self.f.id, b'y')))
|
||
|
|
||
|
def test_modify(self):
|
||
|
with self.assertRaises(IOError):
|
||
|
self.f.attrs.modify('x', 1)
|
||
|
|
||
|
def test_values(self):
|
||
|
# list() is for Py3 where these are iterators
|
||
|
values = list(self.f.attrs.values())
|
||
|
self.assertEqual(
|
||
|
[self.empty_obj], values
|
||
|
)
|
||
|
|
||
|
def test_items(self):
|
||
|
items = list(self.f.attrs.items())
|
||
|
self.assertEqual(
|
||
|
[(u"x", self.empty_obj)], items
|
||
|
)
|
||
|
|
||
|
def test_itervalues(self):
|
||
|
values = list(six.itervalues(self.f.attrs))
|
||
|
self.assertEqual(
|
||
|
[self.empty_obj], values
|
||
|
)
|
||
|
|
||
|
def test_iteritems(self):
|
||
|
items = list(six.iteritems(self.f.attrs))
|
||
|
self.assertEqual(
|
||
|
[(u"x", self.empty_obj)], items
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestWriteException(BaseAttrs):
|
||
|
|
||
|
"""
|
||
|
Ensure failed attribute writes don't leave garbage behind.
|
||
|
"""
|
||
|
|
||
|
def test_write(self):
|
||
|
""" ValueError on string write wipes out attribute """
|
||
|
|
||
|
s = b"Hello\x00\Hello"
|
||
|
|
||
|
try:
|
||
|
self.f.attrs['x'] = s
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
with self.assertRaises(KeyError):
|
||
|
self.f.attrs['x']
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|