128 lines
3.4 KiB
Python
128 lines
3.4 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
#
|
||
|
# Copyright (C) 2013 Radim Rehurek <radimrehurek@seznam.cz>
|
||
|
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
|
||
|
|
||
|
"""This module contains functions to perform segmentation on a list of topics."""
|
||
|
|
||
|
import logging
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def s_one_pre(topics):
|
||
|
"""Performs segmentation on a list of topics.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Segmentation is defined as
|
||
|
:math:`s_{pre} = {(W', W^{*}) | W' = w_{i}; W^{*} = {w_j}; w_{i}, w_{j} \in W; i > j}`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
topics : list of np.array
|
||
|
list of topics obtained from an algorithm such as LDA.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of list of (int, int)
|
||
|
:math:`(W', W^{*})` for all unique topic ids.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from gensim.topic_coherence import segmentation
|
||
|
>>>
|
||
|
>>> topics = [np.array([1, 2, 3]), np.array([4, 5, 6])]
|
||
|
>>> segmentation.s_one_pre(topics)
|
||
|
[[(2, 1), (3, 1), (3, 2)], [(5, 4), (6, 4), (6, 5)]]
|
||
|
|
||
|
"""
|
||
|
s_one_pre_res = []
|
||
|
|
||
|
for top_words in topics:
|
||
|
s_one_pre_t = []
|
||
|
for w_prime_index, w_prime in enumerate(top_words[1:]):
|
||
|
for w_star in top_words[:w_prime_index + 1]:
|
||
|
s_one_pre_t.append((w_prime, w_star))
|
||
|
s_one_pre_res.append(s_one_pre_t)
|
||
|
|
||
|
return s_one_pre_res
|
||
|
|
||
|
|
||
|
def s_one_one(topics):
|
||
|
"""Perform segmentation on a list of topics.
|
||
|
Segmentation is defined as
|
||
|
:math:`s_{one} = {(W', W^{*}) | W' = {w_i}; W^{*} = {w_j}; w_{i}, w_{j} \in W; i \\neq j}`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
topics : list of `numpy.ndarray`
|
||
|
List of topics obtained from an algorithm such as LDA.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of list of (int, int).
|
||
|
:math:`(W', W^{*})` for all unique topic ids.
|
||
|
|
||
|
Examples
|
||
|
-------
|
||
|
>>> import numpy as np
|
||
|
>>> from gensim.topic_coherence import segmentation
|
||
|
>>>
|
||
|
>>> topics = [np.array([1, 2, 3]), np.array([4, 5, 6])]
|
||
|
>>> segmentation.s_one_one(topics)
|
||
|
[[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)], [(4, 5), (4, 6), (5, 4), (5, 6), (6, 4), (6, 5)]]
|
||
|
|
||
|
"""
|
||
|
s_one_one_res = []
|
||
|
|
||
|
for top_words in topics:
|
||
|
s_one_one_t = []
|
||
|
for w_prime_index, w_prime in enumerate(top_words):
|
||
|
for w_star_index, w_star in enumerate(top_words):
|
||
|
if w_prime_index == w_star_index:
|
||
|
continue
|
||
|
else:
|
||
|
s_one_one_t.append((w_prime, w_star))
|
||
|
s_one_one_res.append(s_one_one_t)
|
||
|
|
||
|
return s_one_one_res
|
||
|
|
||
|
|
||
|
def s_one_set(topics):
|
||
|
"""Perform s_one_set segmentation on a list of topics.
|
||
|
Segmentation is defined as
|
||
|
:math:`s_{set} = {(W', W^{*}) | W' = {w_i}; w_{i} \in W; W^{*} = W}`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
topics : list of `numpy.ndarray`
|
||
|
List of topics obtained from an algorithm such as LDA.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of list of (int, int).
|
||
|
:math:`(W', W^{*})` for all unique topic ids.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from gensim.topic_coherence import segmentation
|
||
|
>>>
|
||
|
>>> topics = [np.array([9, 10, 7])]
|
||
|
>>> segmentation.s_one_set(topics)
|
||
|
[[(9, array([ 9, 10, 7])), (10, array([ 9, 10, 7])), (7, array([ 9, 10, 7]))]]
|
||
|
|
||
|
"""
|
||
|
s_one_set_res = []
|
||
|
|
||
|
for top_words in topics:
|
||
|
s_one_set_t = []
|
||
|
for w_prime in top_words:
|
||
|
s_one_set_t.append((w_prime, top_words))
|
||
|
s_one_set_res.append(s_one_set_t)
|
||
|
|
||
|
return s_one_set_res
|