laywerrobot/lib/python3.6/site-packages/gensim/topic_coherence/probability_estimation.py

235 lines
8.8 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2013 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""This module contains functions to perform segmentation on a list of topics."""
import itertools
import logging
from gensim.topic_coherence.text_analysis import (
CorpusAccumulator, WordOccurrenceAccumulator, ParallelWordOccurrenceAccumulator,
WordVectorsAccumulator)
logger = logging.getLogger(__name__)
def p_boolean_document(corpus, segmented_topics):
"""Perform the boolean document probability estimation. Boolean document estimates the probability of a single word
as the number of documents in which the word occurs divided by the total number of documents.
Parameters
----------
corpus : iterable of list of (int, int)
The corpus of documents.
segmented_topics: list of (int, int).
Each tuple (word_id_set1, word_id_set2) is either a single integer, or a `numpy.ndarray` of integers.
Returns
-------
:class:`~gensim.topic_coherence.text_analysis.CorpusAccumulator`
Word occurrence accumulator instance that can be used to lookup token frequencies and co-occurrence frequencies.
Examples
---------
>>> from gensim.topic_coherence import probability_estimation
>>> from gensim.corpora.hashdictionary import HashDictionary
>>>
>>>
>>> texts = [
... ['human', 'interface', 'computer'],
... ['eps', 'user', 'interface', 'system'],
... ['system', 'human', 'system', 'eps'],
... ['user', 'response', 'time'],
... ['trees'],
... ['graph', 'trees']
... ]
>>> dictionary = HashDictionary(texts)
>>> w2id = dictionary.token2id
>>>
>>> # create segmented_topics
>>> segmented_topics = [
... [(w2id['system'], w2id['graph']),(w2id['computer'], w2id['graph']),(w2id['computer'], w2id['system'])],
... [(w2id['computer'], w2id['graph']),(w2id['user'], w2id['graph']),(w2id['user'], w2id['computer'])]
... ]
>>>
>>> # create corpus
>>> corpus = [dictionary.doc2bow(text) for text in texts]
>>>
>>> result = probability_estimation.p_boolean_document(corpus, segmented_topics)
>>> result.index_to_dict()
{10608: set([0]), 12736: set([1, 3]), 18451: set([5]), 5798: set([1, 2])}
"""
top_ids = unique_ids_from_segments(segmented_topics)
return CorpusAccumulator(top_ids).accumulate(corpus)
def p_boolean_sliding_window(texts, segmented_topics, dictionary, window_size, processes=1):
"""Perform the boolean sliding window probability estimation.
Parameters
----------
texts : iterable of iterable of str
Input text
segmented_topics: list of (int, int)
Each tuple (word_id_set1, word_id_set2) is either a single integer, or a `numpy.ndarray` of integers.
dictionary : :class:`~gensim.corpora.dictionary.Dictionary`
Gensim dictionary mapping of the tokens and ids.
window_size : int
Size of the sliding window, 110 found out to be the ideal size for large corpora.
processes : int, optional
Number of process that will be used for
:class:`~gensim.topic_coherence.text_analysis.ParallelWordOccurrenceAccumulator`
Notes
-----
Boolean sliding window determines word counts using a sliding window. The window
moves over the documents one word token per step. Each step defines a new virtual
document by copying the window content. Boolean document is applied to these virtual
documents to compute word probabilities.
Returns
-------
:class:`~gensim.topic_coherence.text_analysis.WordOccurrenceAccumulator`
if `processes` = 1 OR
:class:`~gensim.topic_coherence.text_analysis.ParallelWordOccurrenceAccumulator`
otherwise. This is word occurrence accumulator instance that can be used to lookup
token frequencies and co-occurrence frequencies.
Examples
---------
>>> from gensim.topic_coherence import probability_estimation
>>> from gensim.corpora.hashdictionary import HashDictionary
>>>
>>>
>>> texts = [
... ['human', 'interface', 'computer'],
... ['eps', 'user', 'interface', 'system'],
... ['system', 'human', 'system', 'eps'],
... ['user', 'response', 'time'],
... ['trees'],
... ['graph', 'trees']
... ]
>>> dictionary = HashDictionary(texts)
>>> w2id = dictionary.token2id
>>>
>>> # create segmented_topics
>>> segmented_topics = [
... [(w2id['system'], w2id['graph']),(w2id['computer'], w2id['graph']),(w2id['computer'], w2id['system'])],
... [(w2id['computer'], w2id['graph']),(w2id['user'], w2id['graph']),(w2id['user'], w2id['computer'])]
... ]
>>>
>>> # create corpus
>>> corpus = [dictionary.doc2bow(text) for text in texts]
>>> accumulator = probability_estimation.p_boolean_sliding_window(texts, segmented_topics, dictionary, 2)
>>>
>>> (accumulator[w2id['computer']], accumulator[w2id['user']], accumulator[w2id['system']])
(1, 3, 4)
"""
top_ids = unique_ids_from_segments(segmented_topics)
if processes <= 1:
accumulator = WordOccurrenceAccumulator(top_ids, dictionary)
else:
accumulator = ParallelWordOccurrenceAccumulator(processes, top_ids, dictionary)
logger.info("using %s to estimate probabilities from sliding windows", accumulator)
return accumulator.accumulate(texts, window_size)
def p_word2vec(texts, segmented_topics, dictionary, window_size=None, processes=1, model=None):
"""Train word2vec model on `texts` if `model` is not None.
Parameters
----------
texts : iterable of iterable of str
Input text
segmented_topics : iterable of iterable of str
Output from the segmentation of topics. Could be simply topics too.
dictionary : :class:`~gensim.corpora.dictionary`
Gensim dictionary mapping of the tokens and ids.
window_size : int, optional
Size of the sliding window.
processes : int, optional
Number of processes to use.
model : :class:`~gensim.models.word2vec.Word2Vec` or :class:`~gensim.models.keyedvectors.KeyedVectors`, optional
If None, a new Word2Vec model is trained on the given text corpus. Otherwise,
it should be a pre-trained Word2Vec context vectors.
Returns
-------
:class:`~gensim.topic_coherence.text_analysis.WordVectorsAccumulator`
Text accumulator with trained context vectors.
Examples
--------
>>> from gensim.topic_coherence import probability_estimation
>>> from gensim.corpora.hashdictionary import HashDictionary
>>> from gensim.models import word2vec
>>>
>>> texts = [
... ['human', 'interface', 'computer'],
... ['eps', 'user', 'interface', 'system'],
... ['system', 'human', 'system', 'eps'],
... ['user', 'response', 'time'],
... ['trees'],
... ['graph', 'trees']
... ]
>>> dictionary = HashDictionary(texts)
>>> w2id = dictionary.token2id
>>>
>>> # create segmented_topics
>>> segmented_topics = [
... [(w2id['system'], w2id['graph']),(w2id['computer'], w2id['graph']),(w2id['computer'], w2id['system'])],
... [(w2id['computer'], w2id['graph']),(w2id['user'], w2id['graph']),(w2id['user'], w2id['computer'])]
... ]
>>>
>>> # create corpus
>>> corpus = [dictionary.doc2bow(text) for text in texts]
>>> sentences = [['human', 'interface', 'computer'],['survey', 'user', 'computer', 'system', 'response', 'time']]
>>> model = word2vec.Word2Vec(sentences, size=100,min_count=1)
>>> accumulator = probability_estimation.p_word2vec(texts, segmented_topics, dictionary, 2, 1, model)
"""
top_ids = unique_ids_from_segments(segmented_topics)
accumulator = WordVectorsAccumulator(
top_ids, dictionary, model, window=window_size, workers=processes)
return accumulator.accumulate(texts, window_size)
def unique_ids_from_segments(segmented_topics):
"""Return the set of all unique ids in a list of segmented topics.
Parameters
----------
segmented_topics: list of (int, int).
Each tuple (word_id_set1, word_id_set2) is either a single integer, or a `numpy.ndarray` of integers.
Returns
-------
set
Set of unique ids across all topic segments.
Example
-------
>>> from gensim.topic_coherence import probability_estimation
>>>
>>> segmentation = [[(1, 2)]]
>>> probability_estimation.unique_ids_from_segments(segmentation)
set([1, 2])
"""
unique_ids = set() # is a set of all the unique ids contained in topics.
for s_i in segmented_topics:
for word_id in itertools.chain.from_iterable(s_i):
if hasattr(word_id, '__iter__'):
unique_ids.update(word_id)
else:
unique_ids.add(word_id)
return unique_ids