laywerrobot/lib/python3.6/site-packages/gensim/summarization/keywords.py

557 lines
16 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""This module contains functions to find keywords of the text and building graph on tokens from text.
Examples
--------
Extract keywords from text
>>> from gensim.summarization import keywords
>>> text='''Challenges in natural language processing frequently involve
... speech recognition, natural language understanding, natural language
... generation (frequently from formal, machine-readable logical forms),
... connecting language and machine perception, dialog systems, or some
... combination thereof.'''
>>> keywords(text).split('\\n')
[u'natural language', u'machine', u'frequently']
Notes
-----
Check tags in http://www.clips.ua.ac.be/pages/mbsp-tags and use only first two letters
for `INCLUDING_FILTER` and `EXCLUDING_FILTER`
Data:
-----
.. data:: WINDOW_SIZE - Size of window, number of consecutive tokens in processing.
.. data:: INCLUDING_FILTER - Including part of speech filters.
.. data:: EXCLUDING_FILTER - Excluding part of speech filters.
"""
from gensim.summarization.pagerank_weighted import pagerank_weighted as _pagerank
from gensim.summarization.textcleaner import clean_text_by_word as _clean_text_by_word
from gensim.summarization.textcleaner import tokenize_by_word as _tokenize_by_word
from gensim.summarization.commons import build_graph as _build_graph
from gensim.summarization.commons import remove_unreachable_nodes as _remove_unreachable_nodes
from gensim.utils import to_unicode
from itertools import combinations as _combinations
from six.moves.queue import Queue as _Queue
from six.moves import xrange
from six import iteritems
WINDOW_SIZE = 2
INCLUDING_FILTER = ['NN', 'JJ']
EXCLUDING_FILTER = []
def _get_pos_filters():
"""Get default including and excluding filters as frozen sets.
Returns
-------
(frozenset of str, frozenset of str)
Including and excluding filters.
"""
return frozenset(INCLUDING_FILTER), frozenset(EXCLUDING_FILTER)
def _get_words_for_graph(tokens, pos_filter=None):
"""Filters given dictionary of tokens using provided part of speech filters.
Parameters
----------
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
pos_filter : iterable
Part of speech filters, optional. If `None` - using :func:`_get_pos_filters`.
Returns
-------
list of str
Filtered tokens.
Raises
------
ValueError
If include and exclude filters ar not empty at the same time.
"""
if pos_filter is None:
include_filters, exclude_filters = _get_pos_filters()
else:
include_filters = set(pos_filter)
exclude_filters = frozenset([])
if include_filters and exclude_filters:
raise ValueError("Can't use both include and exclude filters, should use only one")
result = []
for word, unit in iteritems(tokens):
if exclude_filters and unit.tag in exclude_filters:
continue
if (include_filters and unit.tag in include_filters) or not include_filters or not unit.tag:
result.append(unit.token)
return result
def _get_first_window(split_text):
"""Get first :const:`~gensim.parsing.keywords.WINDOW_SIZE` tokens from given `split_text`.
Parameters
----------
split_text : list of str
Splitted text.
Returns
-------
list of str
First :const:`~gensim.parsing.keywords.WINDOW_SIZE` tokens.
"""
return split_text[:WINDOW_SIZE]
def _set_graph_edge(graph, tokens, word_a, word_b):
"""Sets an edge between nodes named word_a and word_b if they exists in `tokens` and `graph`, inplace.
Parameters
----------
graph : :class:~gensim.summarization.graph.Graph
Given graph.
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
word_a : str
First word, name of first node.
word_b : str
Second word, name of second node.
"""
if word_a in tokens and word_b in tokens:
lemma_a = tokens[word_a].token
lemma_b = tokens[word_b].token
edge = (lemma_a, lemma_b)
if graph.has_node(lemma_a) and graph.has_node(lemma_b) and not graph.has_edge(edge):
graph.add_edge(edge)
def _process_first_window(graph, tokens, split_text):
"""Sets an edges between nodes taken from first :const:`~gensim.parsing.keywords.WINDOW_SIZE`
words of `split_text` if they exist in `tokens` and `graph`, inplace.
Parameters
----------
graph : :class:~gensim.summarization.graph.Graph
Given graph.
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
split_text : list of str
Splitted text.
"""
first_window = _get_first_window(split_text)
for word_a, word_b in _combinations(first_window, 2):
_set_graph_edge(graph, tokens, word_a, word_b)
def _init_queue(split_text):
"""Initialize queue by first words from `split_text`.
Parameters
----------
split_text : list of str
Splitted text.
Returns
-------
Queue
Initialized queue.
"""
queue = _Queue()
first_window = _get_first_window(split_text)
for word in first_window[1:]:
queue.put(word)
return queue
def _process_word(graph, tokens, queue, word):
"""Sets edge between `word` and each element in queue in `graph` if such nodes
exist in `tokens` and `graph`.
Parameters
----------
graph : :class:`~gensim.summarization.graph.Graph`
Given graph.
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
queue : Queue
Given queue.
word : str
Word, possible `node` in graph and item in `tokens`.
"""
for word_to_compare in _queue_iterator(queue):
_set_graph_edge(graph, tokens, word, word_to_compare)
def _update_queue(queue, word):
"""Updates given `queue` (removes last item and puts `word`).
Parameters
----------
queue : Queue
Given queue.
word : str
Word to be added to queue.
"""
queue.get()
queue.put(word)
assert queue.qsize() == (WINDOW_SIZE - 1)
def _process_text(graph, tokens, split_text):
"""Process `split_text` by updating given `graph` with new eges between nodes
if they exists in `tokens` and `graph`.
Words are taken from `split_text` with window size :const:`~gensim.parsing.keywords.WINDOW_SIZE`.
Parameters
----------
graph : :class:`~gensim.summarization.graph.Graph`
Given graph.
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
split_text : list of str
Splitted text.
"""
queue = _init_queue(split_text)
for i in xrange(WINDOW_SIZE, len(split_text)):
word = split_text[i]
_process_word(graph, tokens, queue, word)
_update_queue(queue, word)
def _queue_iterator(queue):
"""Represents iterator of the given queue.
Parameters
----------
queue : Queue
Given queue.
Yields
------
str
Current item of queue.
"""
iterations = queue.qsize()
for _ in xrange(iterations):
var = queue.get()
yield var
queue.put(var)
def _set_graph_edges(graph, tokens, split_text):
"""Updates given `graph` by setting eges between nodes if they exists in `tokens` and `graph`.
Words are taken from `split_text` with window size :const:`~gensim.parsing.keywords.WINDOW_SIZE`.
Parameters
----------
graph : :class:~gensim.summarization.graph.Graph
Given graph.
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
split_text : list of str
Splitted text.
"""
_process_first_window(graph, tokens, split_text)
_process_text(graph, tokens, split_text)
def _extract_tokens(lemmas, scores, ratio, words):
"""Extracts tokens from provided lemmas. Most scored lemmas are used if `words` not provided.
Parameters
----------
lemmas : list of str
Given lemmas.
scores : dict
Dictionary with lemmas and its scores.
ratio : float
Proportion of lemmas used for final result.
words : int
Number of used words. If no "words" option is selected, the number of
sentences is reduced by the provided ratio, else, the ratio is ignored.
Returns
-------
list of (float, str)
Scores and corresponded lemmas.
"""
lemmas.sort(key=lambda s: scores[s], reverse=True)
length = len(lemmas) * ratio if words is None else words
return [(scores[lemmas[i]], lemmas[i],) for i in range(int(length))]
def _lemmas_to_words(tokens):
"""Get words and lemmas from given tokens. Produces "reversed" `tokens`.
Parameters
----------
tokens : dict
Original units (words) as keys and processed units (tokens) as values.
Returns
-------
dict
Lemmas as keys and lists corresponding words as values.
"""
lemma_to_word = {}
for word, unit in iteritems(tokens):
lemma = unit.token
if lemma in lemma_to_word:
lemma_to_word[lemma].append(word)
else:
lemma_to_word[lemma] = [word]
return lemma_to_word
def _get_keywords_with_score(extracted_lemmas, lemma_to_word):
"""Get words of `extracted_lemmas` and its scores, words contains in `lemma_to_word`.
Parameters
----------
extracted_lemmas : list of (float, str)
Given lemmas with scores
lemma_to_word : dict
Lemmas and corresponding words.
Returns
-------
dict
Keywords as keys and its scores as values.
"""
keywords = {}
for score, lemma in extracted_lemmas:
keyword_list = lemma_to_word[lemma]
for keyword in keyword_list:
keywords[keyword] = score
return keywords
def _strip_word(word):
"""Get cleaned `word`.
Parameters
----------
word : str
Given word.
Returns
-------
str
Cleaned word.
"""
stripped_word_list = list(_tokenize_by_word(word))
return stripped_word_list[0] if stripped_word_list else ""
def _get_combined_keywords(_keywords, split_text):
"""Get most scored words (`_keywords`) contained in `split_text` and it's combinations.
Parameters
----------
_keywords : dict
Keywords as keys and its scores as values.
split_text : list of str
Splitted text.
Returns
-------
list of str
Keywords and/or its combinations.
"""
result = []
_keywords = _keywords.copy()
len_text = len(split_text)
for i in xrange(len_text):
word = _strip_word(split_text[i])
if word in _keywords:
combined_word = [word]
if i + 1 == len_text:
result.append(word) # appends last word if keyword and doesn't iterate
for j in xrange(i + 1, len_text):
other_word = _strip_word(split_text[j])
if other_word in _keywords and other_word == split_text[j] and other_word not in combined_word:
combined_word.append(other_word)
else:
for keyword in combined_word:
_keywords.pop(keyword)
result.append(" ".join(combined_word))
break
return result
def _get_average_score(concept, _keywords):
"""Get average score of words in `concept`.
Parameters
----------
concept : str
Input text.
_keywords : dict
Keywords as keys and its scores as values.
Returns
-------
float
Average score.
"""
word_list = concept.split()
word_counter = 0
total = 0
for word in word_list:
total += _keywords[word]
word_counter += 1
return total / word_counter
def _format_results(_keywords, combined_keywords, split, scores):
"""Formats, sorts and returns `combined_keywords` in desired format.
Parameters
----------
_keywords : dict
Keywords as keys and its scores as values.
combined_keywords : list of str
Most ranked words and/or its combinations.
split : bool
Split result if True or return string otherwise, optional.
scores : bool
Whether return `combined_keywords` with scores, optional. If True
`split` is ignored.
Returns
-------
result: list of (str, float)
If `scores`, keywords with scores **OR**
result: list of str
If `split`, keywords only **OR**
result: str
Keywords, joined by endl.
"""
combined_keywords.sort(key=lambda w: _get_average_score(w, _keywords), reverse=True)
if scores:
return [(word, _get_average_score(word, _keywords)) for word in combined_keywords]
if split:
return combined_keywords
return "\n".join(combined_keywords)
def keywords(text, ratio=0.2, words=None, split=False, scores=False, pos_filter=('NN', 'JJ'),
lemmatize=False, deacc=True):
"""Get most ranked words of provided text and/or its combinations.
Parameters
----------
text : str
Input text.
ratio : float, optional
If no "words" option is selected, the number of sentences is reduced by the provided ratio,
else, the ratio is ignored.
words : int, optional
Number of returned words.
split : bool, optional
Whether split keywords if True.
scores : bool, optional
Whether score of keyword.
pos_filter : tuple, optional
Part of speech filters.
lemmatize : bool, optional
If True - lemmatize words.
deacc : bool, optional
If True - remove accentuation.
Returns
-------
result: list of (str, float)
If `scores`, keywords with scores **OR**
result: list of str
If `split`, keywords only **OR**
result: str
Keywords, joined by endl.
"""
# Gets a dict of word -> lemma
text = to_unicode(text)
tokens = _clean_text_by_word(text, deacc=deacc)
split_text = list(_tokenize_by_word(text))
# Creates the graph and adds the edges
graph = _build_graph(_get_words_for_graph(tokens, pos_filter))
_set_graph_edges(graph, tokens, split_text)
del split_text # It's no longer used
_remove_unreachable_nodes(graph)
# Ranks the tokens using the PageRank algorithm. Returns dict of lemma -> score
pagerank_scores = _pagerank(graph)
extracted_lemmas = _extract_tokens(graph.nodes(), pagerank_scores, ratio, words)
# The results can be polluted by many variations of the same word
if lemmatize:
lemmas_to_word = {}
for word, unit in iteritems(tokens):
lemmas_to_word[unit.token] = [word]
else:
lemmas_to_word = _lemmas_to_words(tokens)
keywords = _get_keywords_with_score(extracted_lemmas, lemmas_to_word)
# text.split() to keep numbers and punctuation marks, so separeted concepts are not combined
combined_keywords = _get_combined_keywords(keywords, text.split())
return _format_results(keywords, combined_keywords, split, scores)
def get_graph(text):
"""Creates and returns graph from given text, cleans and tokenize text before building graph.
Parameters
----------
text : str
Sequence of values.
Returns
-------
:class:`~gensim.summarization.graph.Graph`
Created graph.
"""
tokens = _clean_text_by_word(text)
split_text = list(_tokenize_by_word(text))
graph = _build_graph(_get_words_for_graph(tokens))
_set_graph_edges(graph, tokens, split_text)
return graph