892 lines
35 KiB
Python
892 lines
35 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
|
||
|
|
||
|
"""Automatically detect common phrases -- multi-word expressions / word n-grams -- from a stream of sentences.
|
||
|
|
||
|
Inspired by:
|
||
|
|
||
|
* `Mikolov, et. al: "Distributed Representations of Words and Phrases and their Compositionality"
|
||
|
<https://arxiv.org/abs/1310.4546>`_
|
||
|
* `"Normalized (Pointwise) Mutual Information in Colocation Extraction" by Gerlof Bouma
|
||
|
<https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf>`_
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases, Phraser
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=1) # train model
|
||
|
>>> phrases[[u'trees', u'graph', u'minors']] # apply model to sentence
|
||
|
[u'trees_graph', u'minors']
|
||
|
>>>
|
||
|
>>> phrases.add_vocab([["hello", "world"], ["meow"]]) # update model with new sentences
|
||
|
>>>
|
||
|
>>> bigram = Phraser(phrases) # construct faster model (this is only an wrapper)
|
||
|
>>> bigram[[u'trees', u'graph', u'minors']] # apply model to sentence
|
||
|
[u'trees_graph', u'minors']
|
||
|
>>>
|
||
|
>>> for sent in bigram[sentences]: # apply model to text corpus
|
||
|
... pass
|
||
|
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
import os
|
||
|
import logging
|
||
|
import warnings
|
||
|
from collections import defaultdict
|
||
|
import functools as ft
|
||
|
import itertools as it
|
||
|
from math import log
|
||
|
import pickle
|
||
|
import six
|
||
|
|
||
|
from six import iteritems, string_types, PY2, next
|
||
|
|
||
|
from gensim import utils, interfaces
|
||
|
|
||
|
if PY2:
|
||
|
from inspect import getargspec
|
||
|
else:
|
||
|
from inspect import getfullargspec as getargspec
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _is_single(obj):
|
||
|
"""Check whether `obj` is a single document or an entire corpus.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : object
|
||
|
|
||
|
Return
|
||
|
------
|
||
|
(bool, object)
|
||
|
(is_single, new) tuple, where `new` yields the same sequence as `obj`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
`obj` is a single document if it is an iterable of strings. It is a corpus if it is an iterable of documents.
|
||
|
|
||
|
"""
|
||
|
obj_iter = iter(obj)
|
||
|
temp_iter = obj_iter
|
||
|
try:
|
||
|
peek = next(obj_iter)
|
||
|
obj_iter = it.chain([peek], obj_iter)
|
||
|
except StopIteration:
|
||
|
# An empty object is a single document
|
||
|
return True, obj
|
||
|
if isinstance(peek, string_types):
|
||
|
# It's a document, return the iterator
|
||
|
return True, obj_iter
|
||
|
if temp_iter is obj:
|
||
|
# Checking for iterator to the object
|
||
|
return False, obj_iter
|
||
|
else:
|
||
|
# If the first item isn't a string, assume obj is a corpus
|
||
|
return False, obj
|
||
|
|
||
|
|
||
|
class SentenceAnalyzer(object):
|
||
|
"""Base util class for :class:`~gensim.models.phrases.Phrases` and :class:`~gensim.models.phrases.Phraser`."""
|
||
|
def score_item(self, worda, wordb, components, scorer):
|
||
|
"""Get bi-gram score statistics.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
worda : str
|
||
|
First word of bi-gram.
|
||
|
wordb : str
|
||
|
Second word of bi-gram.
|
||
|
components : generator
|
||
|
Contain all phrases.
|
||
|
scorer : function
|
||
|
Scorer function, as given to :class:`~gensim.models.phrases.Phrases`.
|
||
|
See :func:`~gensim.models.phrases.npmi_scorer` and :func:`~gensim.models.phrases.original_scorer`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
Score for given bi-gram, if bi-gram not presented in dictionary - return -1.
|
||
|
|
||
|
"""
|
||
|
vocab = self.vocab
|
||
|
if worda in vocab and wordb in vocab:
|
||
|
bigram = self.delimiter.join(components)
|
||
|
if bigram in vocab:
|
||
|
return scorer(
|
||
|
worda_count=float(vocab[worda]),
|
||
|
wordb_count=float(vocab[wordb]),
|
||
|
bigram_count=float(vocab[bigram]))
|
||
|
return -1
|
||
|
|
||
|
def analyze_sentence(self, sentence, threshold, common_terms, scorer):
|
||
|
"""Analyze a sentence, detecting any bigrams that should be concatenated.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentence : iterable of str
|
||
|
Token sequence representing the sentence to be analyzed.
|
||
|
threshold : float
|
||
|
The minimum score for a bigram to be taken into account.
|
||
|
common_terms : list of object
|
||
|
List of common terms, they have special treatment.
|
||
|
scorer : function
|
||
|
Scorer function, as given to :class:`~gensim.models.phrases.Phrases`.
|
||
|
See :func:`~gensim.models.phrases.npmi_scorer` and :func:`~gensim.models.phrases.original_scorer`.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
(str, score)
|
||
|
If bi-gram detected, a tuple where the first element is a detect bigram, second its score.
|
||
|
Otherwise, the first tuple element is a single word and second is None.
|
||
|
|
||
|
"""
|
||
|
s = [utils.any2utf8(w) for w in sentence]
|
||
|
# adding None is a trick that helps getting an automatic happy ending
|
||
|
# as it won't be a common_word, nor score
|
||
|
s.append(None)
|
||
|
last_uncommon = None
|
||
|
in_between = []
|
||
|
for word in s:
|
||
|
is_common = word in common_terms
|
||
|
if not is_common and last_uncommon:
|
||
|
chain = [last_uncommon] + in_between + [word]
|
||
|
# test between last_uncommon
|
||
|
score = self.score_item(
|
||
|
worda=last_uncommon,
|
||
|
wordb=word,
|
||
|
components=chain,
|
||
|
scorer=scorer,
|
||
|
)
|
||
|
if score > threshold:
|
||
|
yield (chain, score)
|
||
|
last_uncommon = None
|
||
|
in_between = []
|
||
|
else:
|
||
|
# release words individually
|
||
|
for w in it.chain([last_uncommon], in_between):
|
||
|
yield (w, None)
|
||
|
in_between = []
|
||
|
last_uncommon = word
|
||
|
elif not is_common:
|
||
|
last_uncommon = word
|
||
|
else: # common term
|
||
|
if last_uncommon:
|
||
|
# wait for uncommon resolution
|
||
|
in_between.append(word)
|
||
|
else:
|
||
|
yield (word, None)
|
||
|
|
||
|
|
||
|
class PhrasesTransformation(interfaces.TransformationABC):
|
||
|
"""Base util class for :class:`~gensim.models.phrases.Phrases` and :class:`~gensim.models.phrases.Phraser`."""
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, *args, **kwargs):
|
||
|
"""Load a previously saved :class:`~gensim.models.phrases.Phrases` /
|
||
|
:class:`~gensim.models.phrases.Phraser` class. Handles backwards compatibility from older
|
||
|
:class:`~gensim.models.phrases.Phrases` / :class:`~gensim.models.phrases.Phraser`
|
||
|
versions which did not support pluggable scoring functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
args : object
|
||
|
Sequence of arguments, see :class:`~gensim.utils.SaveLoad.load` for more information.
|
||
|
kwargs : object
|
||
|
Sequence of arguments, see :class:`~gensim.utils.SaveLoad.load` for more information.
|
||
|
|
||
|
"""
|
||
|
model = super(PhrasesTransformation, cls).load(*args, **kwargs)
|
||
|
# update older models
|
||
|
# if no scoring parameter, use default scoring
|
||
|
if not hasattr(model, 'scoring'):
|
||
|
logger.info('older version of %s loaded without scoring function', cls.__name__)
|
||
|
logger.info('setting pluggable scoring method to original_scorer for compatibility')
|
||
|
model.scoring = original_scorer
|
||
|
# if there is a scoring parameter, and it's a text value, load the proper scoring function
|
||
|
if hasattr(model, 'scoring'):
|
||
|
if isinstance(model.scoring, six.string_types):
|
||
|
if model.scoring == 'default':
|
||
|
logger.info('older version of %s loaded with "default" scoring parameter', cls.__name__)
|
||
|
logger.info('setting scoring method to original_scorer pluggable scoring method for compatibility')
|
||
|
model.scoring = original_scorer
|
||
|
elif model.scoring == 'npmi':
|
||
|
logger.info('older version of %s loaded with "npmi" scoring parameter', cls.__name__)
|
||
|
logger.info('setting scoring method to npmi_scorer pluggable scoring method for compatibility')
|
||
|
model.scoring = npmi_scorer
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
'failed to load %s model with unknown scoring setting %s' % (cls.__name__, model.scoring))
|
||
|
# if there is non common_terms attribute, initialize
|
||
|
if not hasattr(model, "common_terms"):
|
||
|
logger.info('older version of %s loaded without common_terms attribute', cls.__name__)
|
||
|
logger.info('setting common_terms to empty set')
|
||
|
model.common_terms = frozenset()
|
||
|
return model
|
||
|
|
||
|
|
||
|
class Phrases(SentenceAnalyzer, PhrasesTransformation):
|
||
|
"""Detect phrases based on collocation counts."""
|
||
|
|
||
|
def __init__(self, sentences=None, min_count=5, threshold=10.0,
|
||
|
max_vocab_size=40000000, delimiter=b'_', progress_per=10000,
|
||
|
scoring='default', common_terms=frozenset()):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentences : iterable of list of str, optional
|
||
|
The `sentences` iterable can be simply a list, but for larger corpora, consider a generator that streams
|
||
|
the sentences directly from disk/network, See :class:`~gensim.models.word2vec.BrownCorpus`,
|
||
|
:class:`~gensim.models.word2vec.Text8Corpus` or :class:`~gensim.models.word2vec.LineSentence`
|
||
|
for such examples.
|
||
|
min_count : float, optional
|
||
|
Ignore all words and bigrams with total collected count lower than this value.
|
||
|
threshold : float, optional
|
||
|
Represent a score threshold for forming the phrases (higher means fewer phrases).
|
||
|
A phrase of words `a` followed by `b` is accepted if the score of the phrase is greater than threshold.
|
||
|
Hardly depends on concrete socring-function, see the `scoring` parameter.
|
||
|
max_vocab_size : int, optional
|
||
|
Maximum size (number of tokens) of the vocabulary. Used to control pruning of less common words,
|
||
|
to keep memory under control. The default of 40M needs about 3.6GB of RAM. Increase/decrease
|
||
|
`max_vocab_size` depending on how much available memory you have.
|
||
|
delimiter : str, optional
|
||
|
Glue character used to join collocation tokens, should be a byte string (e.g. b'_').
|
||
|
scoring : {'default', 'npmi', function}, optional
|
||
|
Specify how potential phrases are scored. `scoring` can be set with either a string that refers to a
|
||
|
built-in scoring function, or with a function with the expected parameter names.
|
||
|
Two built-in scoring functions are available by setting `scoring` to a string:
|
||
|
|
||
|
#. "default" - :func:`~gensim.models.phrases.original_scorer`.
|
||
|
#. "npmi" - :func:`~gensim.models.phrases.npmi_scorer`.
|
||
|
common_terms : set of str, optional
|
||
|
List of "stop words" that won't affect frequency count of expressions containing them.
|
||
|
Allow to detect expressions like "bank_of_america" or "eye_of_the_beholder".
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
'npmi' is more robust when dealing with common words that form part of common bigrams, and
|
||
|
ranges from -1 to 1, but is slower to calculate than the default. The default is the PMI-like scoring
|
||
|
as described by `Mikolov, et. al: "Distributed Representations of Words and Phrases and their Compositionality"
|
||
|
<https://arxiv.org/abs/1310.4546>`_.
|
||
|
|
||
|
To use a custom scoring function, pass in a function with the following signature:
|
||
|
|
||
|
* worda_count - number of corpus occurrences in `sentences` of the first token in the bigram being scored
|
||
|
* wordb_count - number of corpus occurrences in `sentences` of the second token in the bigram being scored
|
||
|
* bigram_count - number of occurrences in `sentences` of the whole bigram
|
||
|
* len_vocab - the number of unique tokens in `sentences`
|
||
|
* min_count - the `min_count` setting of the Phrases class
|
||
|
* corpus_word_count - the total number of tokens (non-unique) in `sentences`
|
||
|
|
||
|
The scoring function **must accept all these parameters**, even if it doesn't use them in its scoring.
|
||
|
The scoring function **must be pickleable**.
|
||
|
|
||
|
"""
|
||
|
if min_count <= 0:
|
||
|
raise ValueError("min_count should be at least 1")
|
||
|
|
||
|
if threshold <= 0 and scoring == 'default':
|
||
|
raise ValueError("threshold should be positive for default scoring")
|
||
|
if scoring == 'npmi' and (threshold < -1 or threshold > 1):
|
||
|
raise ValueError("threshold should be between -1 and 1 for npmi scoring")
|
||
|
|
||
|
# set scoring based on string
|
||
|
# intentially override the value of the scoring parameter rather than set self.scoring here,
|
||
|
# to still run the check of scoring function parameters in the next code block
|
||
|
|
||
|
if isinstance(scoring, six.string_types):
|
||
|
if scoring == 'default':
|
||
|
scoring = original_scorer
|
||
|
elif scoring == 'npmi':
|
||
|
scoring = npmi_scorer
|
||
|
else:
|
||
|
raise ValueError('unknown scoring method string %s specified' % (scoring))
|
||
|
|
||
|
scoring_parameters = [
|
||
|
'worda_count', 'wordb_count', 'bigram_count', 'len_vocab', 'min_count', 'corpus_word_count'
|
||
|
]
|
||
|
if callable(scoring):
|
||
|
if all(parameter in getargspec(scoring)[0] for parameter in scoring_parameters):
|
||
|
self.scoring = scoring
|
||
|
else:
|
||
|
raise ValueError('scoring function missing expected parameters')
|
||
|
|
||
|
self.min_count = min_count
|
||
|
self.threshold = threshold
|
||
|
self.max_vocab_size = max_vocab_size
|
||
|
self.vocab = defaultdict(int) # mapping between utf8 token => its count
|
||
|
self.min_reduce = 1 # ignore any tokens with count smaller than this
|
||
|
self.delimiter = delimiter
|
||
|
self.progress_per = progress_per
|
||
|
self.corpus_word_count = 0
|
||
|
self.common_terms = frozenset(utils.any2utf8(w) for w in common_terms)
|
||
|
|
||
|
# ensure picklability of custom scorer
|
||
|
try:
|
||
|
test_pickle = pickle.dumps(self.scoring)
|
||
|
load_pickle = pickle.loads(test_pickle)
|
||
|
except pickle.PickleError:
|
||
|
raise pickle.PickleError('unable to pickle custom Phrases scoring function')
|
||
|
finally:
|
||
|
del(test_pickle)
|
||
|
del(load_pickle)
|
||
|
|
||
|
if sentences is not None:
|
||
|
self.add_vocab(sentences)
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, *args, **kwargs):
|
||
|
"""Load a previously saved Phrases class.
|
||
|
Handles backwards compatibility from older Phrases versions which did not support pluggable scoring functions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
args : object
|
||
|
Sequence of arguments, see :class:`~gensim.utils.SaveLoad.load` for more information.
|
||
|
kwargs : object
|
||
|
Sequence of arguments, see :class:`~gensim.utils.SaveLoad.load` for more information.
|
||
|
|
||
|
"""
|
||
|
model = super(Phrases, cls).load(*args, **kwargs)
|
||
|
if not hasattr(model, 'corpus_word_count'):
|
||
|
logger.info('older version of %s loaded without corpus_word_count', cls.__name__)
|
||
|
logger.info('Setting it to 0, do not use it in your scoring function.')
|
||
|
model.corpus_word_count = 0
|
||
|
return model
|
||
|
|
||
|
def __str__(self):
|
||
|
"""Get short string representation of this phrase detector."""
|
||
|
return "%s<%i vocab, min_count=%s, threshold=%s, max_vocab_size=%s>" % (
|
||
|
self.__class__.__name__, len(self.vocab), self.min_count,
|
||
|
self.threshold, self.max_vocab_size
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def learn_vocab(sentences, max_vocab_size, delimiter=b'_', progress_per=10000,
|
||
|
common_terms=frozenset()):
|
||
|
"""Collect unigram/bigram counts from the `sentences` iterable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentences : iterable of list of str
|
||
|
The `sentences` iterable can be simply a list, but for larger corpora, consider a generator that streams
|
||
|
the sentences directly from disk/network, See :class:`~gensim.models.word2vec.BrownCorpus`,
|
||
|
:class:`~gensim.models.word2vec.Text8Corpus` or :class:`~gensim.models.word2vec.LineSentence`
|
||
|
for such examples.
|
||
|
max_vocab_size : int
|
||
|
Maximum size (number of tokens) of the vocabulary. Used to control pruning of less common words,
|
||
|
to keep memory under control. The default of 40M needs about 3.6GB of RAM. Increase/decrease
|
||
|
`max_vocab_size` depending on how much available memory you have.
|
||
|
delimiter : str, optional
|
||
|
Glue character used to join collocation tokens, should be a byte string (e.g. b'_').
|
||
|
progress_per : int
|
||
|
Write logs every `progress_per` sentence.
|
||
|
common_terms : set of str, optional
|
||
|
List of "stop words" that won't affect frequency count of expressions containing them.
|
||
|
Allow to detect expressions like "bank_of_america" or "eye_of_the_beholder".
|
||
|
|
||
|
Return
|
||
|
------
|
||
|
(int, dict of (str, int), int)
|
||
|
Number of pruned words, counters for each word/bi-gram and total number of words.
|
||
|
|
||
|
Example
|
||
|
----------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> pruned_words, counters, total_words = Phrases.learn_vocab(sentences, 100)
|
||
|
>>> (pruned_words, total_words)
|
||
|
(1, 29)
|
||
|
>>> counters['computer']
|
||
|
2
|
||
|
>>> counters['response_time']
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
sentence_no = -1
|
||
|
total_words = 0
|
||
|
logger.info("collecting all words and their counts")
|
||
|
vocab = defaultdict(int)
|
||
|
min_reduce = 1
|
||
|
for sentence_no, sentence in enumerate(sentences):
|
||
|
if sentence_no % progress_per == 0:
|
||
|
logger.info(
|
||
|
"PROGRESS: at sentence #%i, processed %i words and %i word types",
|
||
|
sentence_no, total_words, len(vocab),
|
||
|
)
|
||
|
s = [utils.any2utf8(w) for w in sentence]
|
||
|
last_uncommon = None
|
||
|
in_between = []
|
||
|
for word in s:
|
||
|
if word not in common_terms:
|
||
|
vocab[word] += 1
|
||
|
if last_uncommon is not None:
|
||
|
components = it.chain([last_uncommon], in_between, [word])
|
||
|
vocab[delimiter.join(components)] += 1
|
||
|
last_uncommon = word
|
||
|
in_between = []
|
||
|
elif last_uncommon is not None:
|
||
|
in_between.append(word)
|
||
|
total_words += 1
|
||
|
|
||
|
if len(vocab) > max_vocab_size:
|
||
|
utils.prune_vocab(vocab, min_reduce)
|
||
|
min_reduce += 1
|
||
|
|
||
|
logger.info(
|
||
|
"collected %i word types from a corpus of %i words (unigram + bigrams) and %i sentences",
|
||
|
len(vocab), total_words, sentence_no + 1
|
||
|
)
|
||
|
return min_reduce, vocab, total_words
|
||
|
|
||
|
def add_vocab(self, sentences):
|
||
|
"""Update model with new `sentences`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentences : iterable of list of str
|
||
|
Text corpus.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases
|
||
|
>>> #Create corpus and use it for phrase detector
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> phrases = Phrases(sentences) # train model
|
||
|
>>> assert len(phrases.vocab) == 37
|
||
|
>>>
|
||
|
>>> more_sentences = [
|
||
|
... [u'the', u'mayor', u'of', u'new', u'york', u'was', u'there'],
|
||
|
... [u'machine', u'learning', u'can', u'be', u'new', u'york' , u'sometimes']
|
||
|
... ]
|
||
|
>>>
|
||
|
>>> phrases.add_vocab(more_sentences) # add new sentences to model
|
||
|
>>> assert len(phrases.vocab) == 60
|
||
|
|
||
|
"""
|
||
|
# uses a separate vocab to collect the token counts from `sentences`.
|
||
|
# this consumes more RAM than merging new sentences into `self.vocab`
|
||
|
# directly, but gives the new sentences a fighting chance to collect
|
||
|
# sufficient counts, before being pruned out by the (large) accummulated
|
||
|
# counts collected in previous learn_vocab runs.
|
||
|
min_reduce, vocab, total_words = self.learn_vocab(
|
||
|
sentences, self.max_vocab_size, self.delimiter, self.progress_per, self.common_terms)
|
||
|
|
||
|
self.corpus_word_count += total_words
|
||
|
if len(self.vocab) > 0:
|
||
|
logger.info("merging %i counts into %s", len(vocab), self)
|
||
|
self.min_reduce = max(self.min_reduce, min_reduce)
|
||
|
for word, count in iteritems(vocab):
|
||
|
self.vocab[word] += count
|
||
|
if len(self.vocab) > self.max_vocab_size:
|
||
|
utils.prune_vocab(self.vocab, self.min_reduce)
|
||
|
self.min_reduce += 1
|
||
|
logger.info("merged %s", self)
|
||
|
else:
|
||
|
# in common case, avoid doubling gigantic dict
|
||
|
logger.info("using %i counts as vocab in %s", len(vocab), self)
|
||
|
self.vocab = vocab
|
||
|
|
||
|
def export_phrases(self, sentences, out_delimiter=b' ', as_tuples=False):
|
||
|
"""Get all phrases that appear in 'sentences' that pass the bigram threshold.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentences : iterable of list of str
|
||
|
Text corpus.
|
||
|
out_delimiter : str, optional
|
||
|
Delimiter used to "glue" together words that form a bigram phrase.
|
||
|
as_tuples : bool, optional
|
||
|
Yield `(tuple(words), score)` instead of `(out_delimiter.join(words), score)`?
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
((str, str), float) **or** (str, float)
|
||
|
Phrases detected in `sentences`. Return type depends on the `as_tuples` parameter.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=0.1)
|
||
|
>>>
|
||
|
>>> for phrase, score in phrases.export_phrases(sentences):
|
||
|
... pass
|
||
|
|
||
|
"""
|
||
|
analyze_sentence = ft.partial(
|
||
|
self.analyze_sentence,
|
||
|
threshold=self.threshold,
|
||
|
common_terms=self.common_terms,
|
||
|
scorer=ft.partial(
|
||
|
self.scoring,
|
||
|
len_vocab=float(len(self.vocab)),
|
||
|
min_count=float(self.min_count),
|
||
|
corpus_word_count=float(self.corpus_word_count),
|
||
|
),
|
||
|
)
|
||
|
for sentence in sentences:
|
||
|
bigrams = analyze_sentence(sentence)
|
||
|
# keeps only not None scores
|
||
|
filtered = ((words, score) for words, score in bigrams if score is not None)
|
||
|
for words, score in filtered:
|
||
|
if as_tuples:
|
||
|
yield (tuple(words), score)
|
||
|
else:
|
||
|
yield (out_delimiter.join(words), score)
|
||
|
|
||
|
def __getitem__(self, sentence):
|
||
|
"""Convert the input tokens `sentence` into tokens where detected bigrams are joined by a selected delimiter.
|
||
|
|
||
|
If `sentence` is an entire corpus (iterable of sentences rather than a single
|
||
|
sentence), return an iterable that converts each of the corpus' sentences
|
||
|
into phrases on the fly, one after another.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentence : {list of str, iterable of list of str}
|
||
|
Sentence or text corpus.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
{list of str, :class:`gensim.interfaces.TransformedCorpus`}
|
||
|
`sentence` with detected phrase bigrams merged together, or a streamed corpus of such sentences
|
||
|
if the input was a corpus.
|
||
|
|
||
|
Examples
|
||
|
----------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases, Phraser
|
||
|
>>>
|
||
|
>>> #Create corpus
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>>
|
||
|
>>> #Train the detector with:
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=1)
|
||
|
>>> #Input is a list of unicode strings:
|
||
|
>>> sent = [u'trees', u'graph', u'minors']
|
||
|
>>> #Both of these tokens appear in corpus at least twice, and phrase score is higher, than treshold = 1:
|
||
|
>>> print(phrases[sent])
|
||
|
[u'trees_graph', u'minors']
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=1)
|
||
|
>>> phraser = Phraser(phrases) # for speedup
|
||
|
>>>
|
||
|
>>> sent = [[u'trees', u'graph', u'minors'],[u'graph', u'minors']]
|
||
|
>>> for phrase in phraser[sent]:
|
||
|
... pass
|
||
|
|
||
|
"""
|
||
|
warnings.warn("For a faster implementation, use the gensim.models.phrases.Phraser class")
|
||
|
|
||
|
delimiter = self.delimiter # delimiter used for lookup
|
||
|
|
||
|
is_single, sentence = _is_single(sentence)
|
||
|
if not is_single:
|
||
|
# if the input is an entire corpus (rather than a single sentence),
|
||
|
# return an iterable stream.
|
||
|
return self._apply(sentence)
|
||
|
|
||
|
delimiter = self.delimiter
|
||
|
bigrams = self.analyze_sentence(
|
||
|
sentence,
|
||
|
threshold=self.threshold,
|
||
|
common_terms=self.common_terms,
|
||
|
scorer=ft.partial(
|
||
|
self.scoring,
|
||
|
len_vocab=float(len(self.vocab)),
|
||
|
min_count=float(self.min_count),
|
||
|
corpus_word_count=float(self.corpus_word_count),
|
||
|
),
|
||
|
)
|
||
|
new_s = []
|
||
|
for words, score in bigrams:
|
||
|
if score is not None:
|
||
|
words = delimiter.join(words)
|
||
|
new_s.append(words)
|
||
|
|
||
|
return [utils.to_unicode(w) for w in new_s]
|
||
|
|
||
|
|
||
|
def original_scorer(worda_count, wordb_count, bigram_count, len_vocab, min_count, corpus_word_count):
|
||
|
"""Bigram scoring function, based on the original `Mikolov, et. al: "Distributed Representations
|
||
|
of Words and Phrases and their Compositionality" <https://arxiv.org/abs/1310.4546>`_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
worda_count : int
|
||
|
Number of occurrences for first word.
|
||
|
wordb_count : int
|
||
|
Number of occurrences for second word.
|
||
|
bigram_count : int
|
||
|
Number of co-occurrences for phrase "worda_wordb".
|
||
|
len_vocab : int
|
||
|
Size of vocabulary.
|
||
|
min_count: int
|
||
|
Minimum score threshold.
|
||
|
corpus_word_count : int
|
||
|
Not used in this particular scoring technique.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Formula: :math:`\\frac{(bigram\_count - min\_count) * len\_vocab }{ (worda\_count * wordb\_count)}`.
|
||
|
|
||
|
"""
|
||
|
return (bigram_count - min_count) / worda_count / wordb_count * len_vocab
|
||
|
|
||
|
|
||
|
def npmi_scorer(worda_count, wordb_count, bigram_count, len_vocab, min_count, corpus_word_count):
|
||
|
"""Calculation NPMI score based on `"Normalized (Pointwise) Mutual Information in Colocation Extraction"
|
||
|
by Gerlof Bouma <https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf>`_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
worda_count : int
|
||
|
Number of occurrences for first word.
|
||
|
wordb_count : int
|
||
|
Number of occurrences for second word.
|
||
|
bigram_count : int
|
||
|
Number of co-occurrences for phrase "worda_wordb".
|
||
|
len_vocab : int
|
||
|
Not used.
|
||
|
min_count: int
|
||
|
Not used.
|
||
|
corpus_word_count : int
|
||
|
Total number of words in the corpus.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Formula: :math:`\\frac{ln(prop(word_a, word_b) / (prop(word_a)*prop(word_b)))}{ -ln(prop(word_a, word_b)}`,
|
||
|
where :math:`prob(word) = \\frac{word\_count}{corpus\_word\_count}`
|
||
|
|
||
|
"""
|
||
|
pa = worda_count / corpus_word_count
|
||
|
pb = wordb_count / corpus_word_count
|
||
|
pab = bigram_count / corpus_word_count
|
||
|
return log(pab / (pa * pb)) / -log(pab)
|
||
|
|
||
|
|
||
|
def pseudocorpus(source_vocab, sep, common_terms=frozenset()):
|
||
|
"""Feeds `source_vocab`'s compound keys back to it, to discover phrases.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
source_vocab : iterable of list of str
|
||
|
Tokens vocabulary.
|
||
|
sep : str
|
||
|
Separator element.
|
||
|
common_terms : set, optional
|
||
|
Immutable set of stopwords.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
list of str
|
||
|
Phrase.
|
||
|
|
||
|
"""
|
||
|
for k in source_vocab:
|
||
|
if sep not in k:
|
||
|
continue
|
||
|
unigrams = k.split(sep)
|
||
|
for i in range(1, len(unigrams)):
|
||
|
if unigrams[i - 1] not in common_terms:
|
||
|
# do not join common terms
|
||
|
cterms = list(it.takewhile(lambda w: w in common_terms, unigrams[i:]))
|
||
|
tail = unigrams[i + len(cterms):]
|
||
|
components = [sep.join(unigrams[:i])] + cterms
|
||
|
if tail:
|
||
|
components.append(sep.join(tail))
|
||
|
yield components
|
||
|
|
||
|
|
||
|
class Phraser(SentenceAnalyzer, PhrasesTransformation):
|
||
|
"""Minimal state & functionality exported from :class:`~gensim.models.phrases.Phrases`.
|
||
|
|
||
|
The goal of this class is to cut down memory consumption of `Phrases`, by discarding model state
|
||
|
not strictly needed for the bigram detection task.
|
||
|
|
||
|
Use this instead of `Phrases` if you do not need to update the bigram statistics with new documents any more.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, phrases_model):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phrases_model : :class:`~gensim.models.phrases.Phrases`
|
||
|
Trained phrases instance.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
After the one-time initialization, a :class:`~gensim.models.phrases.Phraser` will be much smaller and somewhat
|
||
|
faster than using the full :class:`~gensim.models.phrases.Phrases` model.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases, Phraser
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt'))
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=1)
|
||
|
>>>
|
||
|
>>> bigram = Phraser(phrases)
|
||
|
>>> sent = [u'trees', u'graph', u'minors']
|
||
|
>>> print(bigram[sent])
|
||
|
[u'trees_graph', u'minors']
|
||
|
|
||
|
"""
|
||
|
self.threshold = phrases_model.threshold
|
||
|
self.min_count = phrases_model.min_count
|
||
|
self.delimiter = phrases_model.delimiter
|
||
|
self.scoring = phrases_model.scoring
|
||
|
self.common_terms = phrases_model.common_terms
|
||
|
corpus = self.pseudocorpus(phrases_model)
|
||
|
self.phrasegrams = {}
|
||
|
logger.info('source_vocab length %i', len(phrases_model.vocab))
|
||
|
count = 0
|
||
|
for bigram, score in phrases_model.export_phrases(corpus, self.delimiter, as_tuples=True):
|
||
|
if bigram in self.phrasegrams:
|
||
|
logger.info('Phraser repeat %s', bigram)
|
||
|
self.phrasegrams[bigram] = (phrases_model.vocab[self.delimiter.join(bigram)], score)
|
||
|
count += 1
|
||
|
if not count % 50000:
|
||
|
logger.info('Phraser added %i phrasegrams', count)
|
||
|
logger.info('Phraser built with %i %i phrasegrams', count, len(self.phrasegrams))
|
||
|
|
||
|
def pseudocorpus(self, phrases_model):
|
||
|
"""Alias for :func:`gensim.models.phrases.pseudocorpus`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
phrases_model : :class:`~gensim.models.phrases.Phrases`
|
||
|
Phrases instance.
|
||
|
|
||
|
Return
|
||
|
------
|
||
|
generator
|
||
|
Generator with phrases.
|
||
|
|
||
|
"""
|
||
|
return pseudocorpus(phrases_model.vocab, phrases_model.delimiter, phrases_model.common_terms)
|
||
|
|
||
|
def score_item(self, worda, wordb, components, scorer):
|
||
|
"""Score a bigram.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
worda : str
|
||
|
First word for comparison.
|
||
|
wordb : str
|
||
|
Second word for comparison.
|
||
|
components : generator
|
||
|
Contain phrases.
|
||
|
scorer : {'default', 'npmi'}
|
||
|
NOT USED.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
Score for given bi-gram, if bi-gram not presented in dictionary - return -1.
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
return self.phrasegrams[tuple(components)][1]
|
||
|
except KeyError:
|
||
|
return -1
|
||
|
|
||
|
def __getitem__(self, sentence):
|
||
|
"""Convert the input sequence of tokens `sentence` into a sequence of tokens where adjacent
|
||
|
tokens are replaced by a single token if they form a bigram collocation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sentence : {list of str, iterable of list of str}
|
||
|
Input sentence or a stream of sentences.
|
||
|
|
||
|
Return
|
||
|
------
|
||
|
{list of str, iterable of list of str}
|
||
|
Sentence or sentences with phrase tokens joined by `self.delimiter` character.
|
||
|
|
||
|
Examples
|
||
|
----------
|
||
|
>>> from gensim.test.utils import datapath
|
||
|
>>> from gensim.models.word2vec import Text8Corpus
|
||
|
>>> from gensim.models.phrases import Phrases, Phraser
|
||
|
>>>
|
||
|
>>> sentences = Text8Corpus(datapath('testcorpus.txt')) # Read corpus
|
||
|
>>>
|
||
|
>>> phrases = Phrases(sentences, min_count=1, threshold=1) # Train model
|
||
|
>>> # Create a Phraser object to transform any sentence and turn 2 suitable tokens into 1 phrase
|
||
|
>>> phraser_model = Phraser(phrases)
|
||
|
>>>
|
||
|
>>> sent = [u'trees', u'graph', u'minors']
|
||
|
>>> print(phraser_model[sent])
|
||
|
[u'trees_graph', u'minors']
|
||
|
>>> sent = [[u'trees', u'graph', u'minors'],[u'graph', u'minors']]
|
||
|
>>> for phrase in phraser_model[sent]:
|
||
|
... print(phrase)
|
||
|
[u'trees_graph', u'minors']
|
||
|
[u'graph_minors']
|
||
|
|
||
|
"""
|
||
|
is_single, sentence = _is_single(sentence)
|
||
|
if not is_single:
|
||
|
# if the input is an entire corpus (rather than a single sentence),
|
||
|
# return an iterable stream.
|
||
|
return self._apply(sentence)
|
||
|
|
||
|
delimiter = self.delimiter
|
||
|
bigrams = self.analyze_sentence(
|
||
|
sentence,
|
||
|
threshold=self.threshold,
|
||
|
common_terms=self.common_terms,
|
||
|
scorer=None) # we will use our score_item function redefinition
|
||
|
new_s = []
|
||
|
for words, score in bigrams:
|
||
|
if score is not None:
|
||
|
words = delimiter.join(words)
|
||
|
new_s.append(words)
|
||
|
return [utils.to_unicode(w) for w in new_s]
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
logging.basicConfig(format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s', level=logging.INFO)
|
||
|
logging.info("running %s", " ".join(sys.argv))
|
||
|
|
||
|
# check and process cmdline input
|
||
|
program = os.path.basename(sys.argv[0])
|
||
|
if len(sys.argv) < 2:
|
||
|
print(globals()['__doc__'] % locals())
|
||
|
sys.exit(1)
|
||
|
infile = sys.argv[1]
|
||
|
|
||
|
from gensim.models import Phrases # noqa:F811 for pickle
|
||
|
from gensim.models.word2vec import Text8Corpus
|
||
|
sentences = Text8Corpus(infile)
|
||
|
|
||
|
# test_doc = LineSentence('test/test_data/testcorpus.txt')
|
||
|
bigram = Phrases(sentences, min_count=5, threshold=100)
|
||
|
for s in bigram[sentences]:
|
||
|
print(utils.to_utf8(u' '.join(s)))
|