laywerrobot/LegalApp.py

93 lines
2 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# prototype User Interface
from sklearn.externals import joblib
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import scipy
import tensorflow as tf
import _pickle as cPickle
import hickle as hkl
#Load the zeros and ones from the database
dbOZ = hkl.load('databaseOneZero/OnesZerosDB_gzip.hkl')
dbOZ = np.transpose(np.array(dbOZ)).astype(np.float32, copy=False)
# Get the user input
user_input_words = input("Please describe your problem: ")
user_input_n = int(input("How many dokuments would you like to display?: "))
# Convert user input to Zeros and Ones
user_array = []
user_array.append(user_input_words)
vectorizer = joblib.load('models/bagofwords.pkl')
user_input_OnesZeros = vectorizer.transform(user_array)
uOZ = user_input_OnesZeros.toarray()[0].astype(np.float32, copy=False)
uiOZ = uOZ
#uiOZ = np.transpose(uOZ[np.newaxis, :])
uiOZ = uOZ[np.newaxis, :]
print(uiOZ)
sess = tf.Session()
with sess.as_default():
uiOZ_tensor = tf.constant(uiOZ)
dbOZ_tensor = tf.constant(dbOZ)
uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
wordCountDoku = tf.sparse_matmul(uiOZ_tensor, dbOZ_tensor)
wCD = np.array(wordCountDoku.eval()[0])
print(type(wCD))
print('end',wordCountDoku.eval())
indexedwCD = []
for n in range(len(wCD)):
indexedwCD.append([wCD[n],n])
print(indexedwCD)
indexedwCD = np.transpose(np.array(indexedwCD))
print(indexedwCD)
indexedwCD = sorted(indexedwCD, key=lambda tup: tup[1], reverse=False)
print(indexedwCD)
for n in range(user_input_n):
print(indexedwCD[n][1])
# Calculate the best matching parallelized with tf
# Get the id of documents which fit the best
# Display the n best matching dokuments