( function () {
|
|
|
|
/**
|
|
* Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs.
|
|
*
|
|
* Supports both binary and ASCII encoded files, with automatic detection of type.
|
|
*
|
|
* The loader returns a non-indexed buffer geometry.
|
|
*
|
|
* Limitations:
|
|
* Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL).
|
|
* There is perhaps some question as to how valid it is to always assume little-endian-ness.
|
|
* ASCII decoding assumes file is UTF-8.
|
|
*
|
|
* Usage:
|
|
* const loader = new STLLoader();
|
|
* loader.load( './models/stl/slotted_disk.stl', function ( geometry ) {
|
|
* scene.add( new THREE.Mesh( geometry ) );
|
|
* });
|
|
*
|
|
* For binary STLs geometry might contain colors for vertices. To use it:
|
|
* // use the same code to load STL as above
|
|
* if (geometry.hasColors) {
|
|
* material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true });
|
|
* } else { .... }
|
|
* const mesh = new THREE.Mesh( geometry, material );
|
|
*
|
|
* For ASCII STLs containing multiple solids, each solid is assigned to a different group.
|
|
* Groups can be used to assign a different color by defining an array of materials with the same length of
|
|
* geometry.groups and passing it to the Mesh constructor:
|
|
*
|
|
* const mesh = new THREE.Mesh( geometry, material );
|
|
*
|
|
* For example:
|
|
*
|
|
* const materials = [];
|
|
* const nGeometryGroups = geometry.groups.length;
|
|
*
|
|
* const colorMap = ...; // Some logic to index colors.
|
|
*
|
|
* for (let i = 0; i < nGeometryGroups; i++) {
|
|
*
|
|
* const material = new THREE.MeshPhongMaterial({
|
|
* color: colorMap[i],
|
|
* wireframe: false
|
|
* });
|
|
*
|
|
* }
|
|
*
|
|
* materials.push(material);
|
|
* const mesh = new THREE.Mesh(geometry, materials);
|
|
*/
|
|
|
|
class STLLoader extends THREE.Loader {
|
|
|
|
constructor( manager ) {
|
|
|
|
super( manager );
|
|
|
|
}
|
|
|
|
load( url, onLoad, onProgress, onError ) {
|
|
|
|
const scope = this;
|
|
const loader = new THREE.FileLoader( this.manager );
|
|
loader.setPath( this.path );
|
|
loader.setResponseType( 'arraybuffer' );
|
|
loader.setRequestHeader( this.requestHeader );
|
|
loader.setWithCredentials( this.withCredentials );
|
|
loader.load( url, function ( text ) {
|
|
|
|
try {
|
|
|
|
onLoad( scope.parse( text ) );
|
|
|
|
} catch ( e ) {
|
|
|
|
if ( onError ) {
|
|
|
|
onError( e );
|
|
|
|
} else {
|
|
|
|
console.error( e );
|
|
|
|
}
|
|
|
|
scope.manager.itemError( url );
|
|
|
|
}
|
|
|
|
}, onProgress, onError );
|
|
|
|
}
|
|
|
|
parse( data ) {
|
|
|
|
function isBinary( data ) {
|
|
|
|
const reader = new DataView( data );
|
|
const face_size = 32 / 8 * 3 + 32 / 8 * 3 * 3 + 16 / 8;
|
|
const n_faces = reader.getUint32( 80, true );
|
|
const expect = 80 + 32 / 8 + n_faces * face_size;
|
|
|
|
if ( expect === reader.byteLength ) {
|
|
|
|
return true;
|
|
|
|
} // An ASCII STL data must begin with 'solid ' as the first six bytes.
|
|
// However, ASCII STLs lacking the SPACE after the 'd' are known to be
|
|
// plentiful. So, check the first 5 bytes for 'solid'.
|
|
// Several encodings, such as UTF-8, precede the text with up to 5 bytes:
|
|
// https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding
|
|
// Search for "solid" to start anywhere after those prefixes.
|
|
// US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd'
|
|
|
|
|
|
const solid = [ 115, 111, 108, 105, 100 ];
|
|
|
|
for ( let off = 0; off < 5; off ++ ) {
|
|
|
|
// If "solid" text is matched to the current offset, declare it to be an ASCII STL.
|
|
if ( matchDataViewAt( solid, reader, off ) ) return false;
|
|
|
|
} // Couldn't find "solid" text at the beginning; it is binary STL.
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
function matchDataViewAt( query, reader, offset ) {
|
|
|
|
// Check if each byte in query matches the corresponding byte from the current offset
|
|
for ( let i = 0, il = query.length; i < il; i ++ ) {
|
|
|
|
if ( query[ i ] !== reader.getUint8( offset + i, false ) ) return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
function parseBinary( data ) {
|
|
|
|
const reader = new DataView( data );
|
|
const faces = reader.getUint32( 80, true );
|
|
let r,
|
|
g,
|
|
b,
|
|
hasColors = false,
|
|
colors;
|
|
let defaultR, defaultG, defaultB, alpha; // process STL header
|
|
// check for default color in header ("COLOR=rgba" sequence).
|
|
|
|
for ( let index = 0; index < 80 - 10; index ++ ) {
|
|
|
|
if ( reader.getUint32( index, false ) == 0x434F4C4F
|
|
/*COLO*/
|
|
&& reader.getUint8( index + 4 ) == 0x52
|
|
/*'R'*/
|
|
&& reader.getUint8( index + 5 ) == 0x3D
|
|
/*'='*/
|
|
) {
|
|
|
|
hasColors = true;
|
|
colors = new Float32Array( faces * 3 * 3 );
|
|
defaultR = reader.getUint8( index + 6 ) / 255;
|
|
defaultG = reader.getUint8( index + 7 ) / 255;
|
|
defaultB = reader.getUint8( index + 8 ) / 255;
|
|
alpha = reader.getUint8( index + 9 ) / 255;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const dataOffset = 84;
|
|
const faceLength = 12 * 4 + 2;
|
|
const geometry = new THREE.BufferGeometry();
|
|
const vertices = new Float32Array( faces * 3 * 3 );
|
|
const normals = new Float32Array( faces * 3 * 3 );
|
|
|
|
for ( let face = 0; face < faces; face ++ ) {
|
|
|
|
const start = dataOffset + face * faceLength;
|
|
const normalX = reader.getFloat32( start, true );
|
|
const normalY = reader.getFloat32( start + 4, true );
|
|
const normalZ = reader.getFloat32( start + 8, true );
|
|
|
|
if ( hasColors ) {
|
|
|
|
const packedColor = reader.getUint16( start + 48, true );
|
|
|
|
if ( ( packedColor & 0x8000 ) === 0 ) {
|
|
|
|
// facet has its own unique color
|
|
r = ( packedColor & 0x1F ) / 31;
|
|
g = ( packedColor >> 5 & 0x1F ) / 31;
|
|
b = ( packedColor >> 10 & 0x1F ) / 31;
|
|
|
|
} else {
|
|
|
|
r = defaultR;
|
|
g = defaultG;
|
|
b = defaultB;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for ( let i = 1; i <= 3; i ++ ) {
|
|
|
|
const vertexstart = start + i * 12;
|
|
const componentIdx = face * 3 * 3 + ( i - 1 ) * 3;
|
|
vertices[ componentIdx ] = reader.getFloat32( vertexstart, true );
|
|
vertices[ componentIdx + 1 ] = reader.getFloat32( vertexstart + 4, true );
|
|
vertices[ componentIdx + 2 ] = reader.getFloat32( vertexstart + 8, true );
|
|
normals[ componentIdx ] = normalX;
|
|
normals[ componentIdx + 1 ] = normalY;
|
|
normals[ componentIdx + 2 ] = normalZ;
|
|
|
|
if ( hasColors ) {
|
|
|
|
colors[ componentIdx ] = r;
|
|
colors[ componentIdx + 1 ] = g;
|
|
colors[ componentIdx + 2 ] = b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
geometry.setAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
|
|
geometry.setAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) );
|
|
|
|
if ( hasColors ) {
|
|
|
|
geometry.setAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) );
|
|
geometry.hasColors = true;
|
|
geometry.alpha = alpha;
|
|
|
|
}
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function parseASCII( data ) {
|
|
|
|
const geometry = new THREE.BufferGeometry();
|
|
const patternSolid = /solid([\s\S]*?)endsolid/g;
|
|
const patternFace = /facet([\s\S]*?)endfacet/g;
|
|
let faceCounter = 0;
|
|
const patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source;
|
|
const patternVertex = new RegExp( 'vertex' + patternFloat + patternFloat + patternFloat, 'g' );
|
|
const patternNormal = new RegExp( 'normal' + patternFloat + patternFloat + patternFloat, 'g' );
|
|
const vertices = [];
|
|
const normals = [];
|
|
const normal = new THREE.Vector3();
|
|
let result;
|
|
let groupCount = 0;
|
|
let startVertex = 0;
|
|
let endVertex = 0;
|
|
|
|
while ( ( result = patternSolid.exec( data ) ) !== null ) {
|
|
|
|
startVertex = endVertex;
|
|
const solid = result[ 0 ];
|
|
|
|
while ( ( result = patternFace.exec( solid ) ) !== null ) {
|
|
|
|
let vertexCountPerFace = 0;
|
|
let normalCountPerFace = 0;
|
|
const text = result[ 0 ];
|
|
|
|
while ( ( result = patternNormal.exec( text ) ) !== null ) {
|
|
|
|
normal.x = parseFloat( result[ 1 ] );
|
|
normal.y = parseFloat( result[ 2 ] );
|
|
normal.z = parseFloat( result[ 3 ] );
|
|
normalCountPerFace ++;
|
|
|
|
}
|
|
|
|
while ( ( result = patternVertex.exec( text ) ) !== null ) {
|
|
|
|
vertices.push( parseFloat( result[ 1 ] ), parseFloat( result[ 2 ] ), parseFloat( result[ 3 ] ) );
|
|
normals.push( normal.x, normal.y, normal.z );
|
|
vertexCountPerFace ++;
|
|
endVertex ++;
|
|
|
|
} // every face have to own ONE valid normal
|
|
|
|
|
|
if ( normalCountPerFace !== 1 ) {
|
|
|
|
console.error( 'THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter );
|
|
|
|
} // each face have to own THREE valid vertices
|
|
|
|
|
|
if ( vertexCountPerFace !== 3 ) {
|
|
|
|
console.error( 'THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter );
|
|
|
|
}
|
|
|
|
faceCounter ++;
|
|
|
|
}
|
|
|
|
const start = startVertex;
|
|
const count = endVertex - startVertex;
|
|
geometry.addGroup( start, count, groupCount );
|
|
groupCount ++;
|
|
|
|
}
|
|
|
|
geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );
|
|
geometry.setAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function ensureString( buffer ) {
|
|
|
|
if ( typeof buffer !== 'string' ) {
|
|
|
|
return THREE.LoaderUtils.decodeText( new Uint8Array( buffer ) );
|
|
|
|
}
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
function ensureBinary( buffer ) {
|
|
|
|
if ( typeof buffer === 'string' ) {
|
|
|
|
const array_buffer = new Uint8Array( buffer.length );
|
|
|
|
for ( let i = 0; i < buffer.length; i ++ ) {
|
|
|
|
array_buffer[ i ] = buffer.charCodeAt( i ) & 0xff; // implicitly assumes little-endian
|
|
|
|
}
|
|
|
|
return array_buffer.buffer || array_buffer;
|
|
|
|
} else {
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
} // start
|
|
|
|
|
|
const binData = ensureBinary( data );
|
|
return isBinary( binData ) ? parseBinary( binData ) : parseASCII( ensureString( data ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
THREE.STLLoader = STLLoader;
|
|
|
|
} )();
|