/* zengine.js - 3D Rendering Software designed to work with the HTML5 Canvas Copyright (c) 2018 Joe Iddon. All right reserved. This library is free software; you are free to redistribute it and/or modify it provided appropriate credit is given to the original author. GitHub Repository (includes README.md w/documentation): https://github.com/joeiddon/zengine Author's website: http://joeiddon.github.io/ */ 'use strict'; let zengine = { render: function(world, cam, canvas, wireframe, horizon, light){ let ctx = canvas.getContext('2d'); ctx.clearRect(0, 0, canvas.width, canvas.height); //create cartesian unit vector representations from polar light and cam vects let cam_vect = this.polar_to_cart(this.to_rad(cam.yaw), this.to_rad(cam.pitch)); let light_vect = light ? this.polar_to_cart(this.to_rad(light.yaw), this.to_rad(light.pitch)) : 0; //temporary inclusion until all current uses are updated to include unit vects let has_vects = world[0].vect != undefined; //add some extra attrs. to each face for (var f = 0; f < world.length; f++){ world[f].centr = this.centroid(world[f].verts); world[f].dist = this.distance(cam, world[f].centr); world[f].c_vect = {x: (world[f].centr.x - cam.x) / world[f].dist, y: (world[f].centr.y - cam.y) / world[f].dist, z: (world[f].centr.z - cam.z) / world[f].dist}; } //only keep faces that are: // - before the horizon // - facing the camera // - have at least one vertex in front of camera. world = world.filter(f => (!horizon || f.dist < horizon) && (wireframe || !has_vects || this.dot_prod(f.c_vect, f.vect) < 0) && f.verts.some(c => this.dot_prod({x: c.x-cam.x, y: c.y-cam.y, z: c.z-cam.z}, cam_vect) > 0)); //order the faces in the world (furthest to closest) if (!wireframe) world.sort((a, b) => b.dist - a.dist); for (let f = 0; f < world.length; f++){ //todo: just have more stacked .map calls rather than chunk it //align 3d coordinates to camera view angle let acs = world[f].verts.map(this.translate(-cam.x, -cam.y, -cam.z)) .map(this.z_axis_rotate(this.to_rad(cam.yaw))) .map(this.y_axis_rotate(this.to_rad(cam.roll))) .map(this.x_axis_rotate(this.to_rad(cam.pitch))) .map(this.translate(cam.x, cam.y, cam.z)); //convert the 3d coordinates to yaw, pitch angles from cam center line let cas = acs.map(c => ({y: this.to_deg(Math.atan2(c.x - cam.x, c.y - cam.y)), p: this.to_deg(Math.atan2(c.z - cam.z, c.y - cam.y))})); //convert angles to 2d canvas coordinates let cos = cas.map(a => ({x: canvas.width/2 + (a.y * (canvas.width/cam.fov)), y: canvas.height/2 - (a.p * (canvas.width/cam.fov))})); //draw the face on the canvas ctx.strokeStyle = wireframe ? 'white' : 'black'; ctx.beginPath(); ctx.moveTo(cos[0].x, cos[0].y); for (let i = 1; i < cos.length; i++){ ctx.lineTo(cos[i].x, cos[i].y); } ctx.closePath(); ctx.stroke(); if (!wireframe){ if (has_vects){ let angle = -this.dot_prod(light_vect || world[f].c_vect /*cam_vect*/, world[f].vect); if (angle < 0) angle = 0; let s = world[f].col.s * (light ? (light.min_saturation+ (1 -light.min_saturation) * angle) : angle); let l = world[f].col.l * (light ? (light.min_lightness + (1 -light.min_lightness ) * angle) : angle); ctx.fillStyle = 'hsl('+world[f].col.h+','+s+'%,'+l+'%)'; } else { ctx.fillStyle = world[f].col; } ctx.fill(); } } }, centroid: function(verts){ let l = verts.length; let c = {x: 0, y: 0, z: 0}; for (let i = 0; i < l; i++) for (let k in c) c[k] += verts[i][k]; return {x: c.x/l, y: c.y/l, z: c.z/l}; }, translate: (x, y, z) => (v => ({x: v.x + x, y: v.y + y, z: v.z + z})), to_deg: (r) => r * (180 / Math.PI), to_rad: (d) => d * (Math.PI / 180), distance: (c1, c2) => ((c2.x - c1.x)**2 + (c2.y - c1.y)**2 + (c2.z - c1.z)**2) ** 0.5, dot_prod: (v1, v2) => v1.x * v2.x + v1.y * v2.y + v1.z * v2.z, polar_to_cart: (y, p) => ({x: Math.sin(y) * Math.cos(p), y: Math.cos(y) * Math.cos(p), z: Math.sin(p)}), cross_prod: (v1, v2) => ({x: v1.y * v2.z - v1.z * v2.y, y: v1.z * v2.x - v1.x * v2.z, z: v1.x * v2.y - v1.y * v2.x}), x_axis_rotate: (r) => (v => ({x: v.x, y: v.y * Math.cos(r) + v.z * Math.sin(r), z: -v.y * Math.sin(r) + v.z * Math.cos(r)})), y_axis_rotate: (r) => (v => ({x: v.x * Math.cos(r) + v.z * Math.sin(r), y: v.y, z: -v.x * Math.sin(r) + v.z * Math.cos(r)})), z_axis_rotate: (r) => (v => ({x: v.x * Math.cos(r) - v.y * Math.sin(r), y: v.x * Math.sin(r) + v.y * Math.cos(r), z: v.z})) };