First commit of FASTsearch

This commit is contained in:
alpcentaur 2020-08-27 21:05:52 +02:00
commit da193f8889

97
FASTsearch.py Normal file
View file

@ -0,0 +1,97 @@
# The new class FASTsearch. Every DB can be represented in Lists. The Brain actually is constituted from lists. Access to all Documents the same moment.
# TODO GPU Multithreading has to be implemented.
# USAGE: Learn scikit-learn count vectorizer on a database of lines or docs.
from sklearn.externals import joblib
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import scipy as sc
import tensorflow as tf
import _pickle as cPickle
import hickle as hkl
import os
# Define function to convert scipy csr matrix to tf tensor for working on gpu
def convert_sparse_matrix_to_sparse_tensor(X):
coo = sc.sparse.coo_matrix(X)
indices = np.mat([coo.row, coo.col]).transpose()
return tf.SparseTensorValue(indices, coo.data, coo.shape)
class FASTsearch(object):
def __init__(self, DatabaseDir, BoWModelDir):
# input has to be hkl format
self.database = hkl.load(DatabaseDir).astype('float32')
# input has to be pkl format
self.vectorizer = joblib.load(BoWModelDir)
def search(self, string , numberofmatches):
numberofmatches = numberofmatches
# Convert user input to Zeros and Ones
user_array = []
user_array.append(string)
user_input_OnesZeros = self.vectorizer.transform(user_array)
uOZ = user_input_OnesZeros.toarray()[0].astype(np.float32, copy=False)
uiOZ = uOZ[np.newaxis, :]
uiOZ = uiOZ.transpose()
sess = tf.Session()
with sess.as_default():
uiOZ_tensor = tf.constant(uiOZ)
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(dbOZ)
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
wCD = np.array(wordCountDoku.eval())
indexedwCD = []
for n in range(len(wCD)):
indexedwCD.append([n,wCD[n][0]])
indexedwCD = sorted(indexedwCD[::-1], key=lambda tup: tup[1], reverse=True)
best_n_documents = []
for n in range(numberofmatches):
best_n_documents.append(indexedwCD[n][0])
return best_n_documents