You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

224 lines
7.4 KiB

# Copyright 2015 Bloomberg Finance L.P.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
============
Traits Types
============
.. currentmodule:: bqplot.traits
.. autosummary::
:toctree: _generate/
Date
"""
from traitlets import Instance, TraitError, TraitType, Undefined
import traittypes as tt
import numpy as np
import pandas as pd
import warnings
import datetime as dt
import six
import warnings
# Date
def date_to_json(value, obj):
if value is None:
return value
else:
return value.strftime('%Y-%m-%dT%H:%M:%S.%f')
def date_from_json(value, obj):
if value:
return dt.datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%f')
else:
return value
date_serialization = dict(to_json=date_to_json, from_json=date_from_json)
class Date(TraitType):
"""
A datetime trait type.
Converts the passed date into a string format that can be used to
construct a JavaScript datetime.
"""
def validate(self, obj, value):
try:
if isinstance(value, dt.datetime):
return value
if isinstance(value, dt.date):
return dt.datetime(value.year, value.month, value.day)
if np.issubdtype(np.dtype(value), np.datetime64):
# TODO: Fix this. Right now, we have to limit the precision
# of time to microseconds because np.datetime64.astype(datetime)
# returns date values only for precision <= 'us'
value_truncated = np.datetime64(value, 'us')
return value_truncated.astype(dt.datetime)
except Exception:
self.error(obj, value)
self.error(obj, value)
def __init__(self, default_value=dt.datetime.today(), **kwargs):
args = (default_value,)
self.default_value = default_value
super(Date, self).__init__(args=args, **kwargs)
self.tag(**date_serialization)
def array_from_json(value, obj=None):
if value is not None:
# this will accept regular json data, like an array of values, which can be useful it you want
# to link bqplot to other libraries that use that
if isinstance(value, list):
if len(value) > 0 and isinstance(value[0], dict) and 'value' in value[0]:
return np.array([array_from_json(k) for k in value])
else:
return np.array(value)
elif 'value' in value:
try:
ar = np.frombuffer(value['value'], dtype=value['dtype']).reshape(value['shape'])
except AttributeError:
# in some python27/numpy versions it does not like the memoryview
# we go the .tobytes() route, but since i'm not 100% sure memory copying
# is happening or not, we one take this path if the above fails.
ar = np.frombuffer(value['value'].tobytes(), dtype=value['dtype']).reshape(value['shape'])
if value.get('type') == 'date':
assert value['dtype'] == 'float64'
ar = ar.astype('datetime64[ms]')
return ar
def array_to_json(ar, obj=None, force_contiguous=True):
if ar is None:
return None
if ar.dtype.kind in ['O']:
has_strings = False
all_strings = True # empty array we can interpret as an empty list
for el in ar:
if isinstance(el, six.string_types):
has_strings = True
else:
all_strings = False
if all_strings:
ar = ar.astype('U')
else:
if has_strings:
warnings.warn('Your array contains mixed strings and other types')
if ar.dtype.kind in ['S', 'U']: # strings to as plain json
return ar.tolist()
type = None
if ar.dtype.kind == 'O':
# If it's a Timestamp object
istimestamp = np.vectorize(lambda x: isinstance(x, pd.Timestamp))
if np.all(istimestamp(ar)):
ar = ar.astype('datetime64[ms]').astype(np.float64)
type = 'date'
else:
raise ValueError("Unsupported dtype object")
if ar.dtype.kind == 'M':
# since there is no support for int64, we'll use float64 but as ms
# resolution, since that is the resolution the js Date object understands
ar = ar.astype('datetime64[ms]').astype(np.float64)
type = 'date'
if ar.dtype.kind not in ['u', 'i', 'f']: # ints and floats, and datetime
raise ValueError("Unsupported dtype: %s" % (ar.dtype))
if ar.dtype == np.int64: # JS does not support int64
ar = ar.astype(np.int32)
if force_contiguous and not ar.flags["C_CONTIGUOUS"]: # make sure it's contiguous
ar = np.ascontiguousarray(ar)
if not ar.dtype.isnative:
dtype = ar.dtype.newbyteorder()
ar = ar.astype(dtype)
return {'value': memoryview(ar), 'dtype': str(ar.dtype), 'shape': ar.shape, 'type': type}
array_serialization = dict(to_json=array_to_json, from_json=array_from_json)
def array_squeeze(trait, value):
if len(value.shape) > 1:
return np.squeeze(value)
else:
return value
def array_dimension_bounds(mindim=0, maxdim=np.inf):
def validator(trait, value):
dim = len(value.shape)
if dim < mindim or dim > maxdim:
raise TraitError('Dimension mismatch for trait %s of class %s: expected an \
array of dimension comprised in interval [%s, %s] and got an array of shape %s'\
% (trait.name, trait.this_class, mindim, maxdim, value.shape))
return value
return validator
def array_supported_kinds(kinds='biufMSUO'):
def validator(trait, value):
if value.dtype.kind not in kinds:
raise TraitError('Array type not supported for trait %s of class %s: expected a \
array of kind in list %r and got an array of type %s (kind %s)'\
% (trait.name, trait.this_class, list(kinds), value.dtype, value.dtype.kind))
return value
return validator
# DataFrame
def dataframe_from_json(value, obj):
if value is None:
return None
else:
return pd.DataFrame(value)
def dataframe_to_json(df, obj):
if df is None:
return None
else:
return df.to_dict(orient='records')
dataframe_serialization = dict(to_json=dataframe_to_json, from_json=dataframe_from_json)
# dataframe validators
def dataframe_warn_indexname(trait, value):
if value.index.name is not None:
warnings.warn("The '%s' dataframe trait of the %s instance disregards the index name" % (trait.name, trait.this_class))
value = value.reset_index()
return value
# Series
def series_from_json(value, obj):
return pd.Series(value)
def series_to_json(value, obj):
return value.to_dict()
series_serialization = dict(to_json=series_to_json, from_json=series_from_json)
def _array_equal(a, b):
"""Really tests if arrays are equal, where nan == nan == True"""
try:
return np.allclose(a, b, 0, 0, equal_nan=True)
except (TypeError, ValueError):
return False