You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

583 lines
20 KiB

"""Calibration of predicted probabilities."""
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Balazs Kegl <balazs.kegl@gmail.com>
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD 3 clause
from __future__ import division
import warnings
from math import log
import numpy as np
from scipy.optimize import fmin_bfgs
from sklearn.preprocessing import LabelEncoder
from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone
from .preprocessing import label_binarize, LabelBinarizer
from .utils import check_X_y, check_array, indexable, column_or_1d
from .utils.validation import check_is_fitted, check_consistent_length
from .utils.fixes import signature
from .isotonic import IsotonicRegression
from .svm import LinearSVC
from .model_selection import check_cv
from .metrics.classification import _check_binary_probabilistic_predictions
class CalibratedClassifierCV(BaseEstimator, ClassifierMixin):
"""Probability calibration with isotonic regression or sigmoid.
With this class, the base_estimator is fit on the train set of the
cross-validation generator and the test set is used for calibration.
The probabilities for each of the folds are then averaged
for prediction. In case that cv="prefit" is passed to __init__,
it is assumed that base_estimator has been fitted already and all
data is used for calibration. Note that data for fitting the
classifier and for calibrating it must be disjoint.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
base_estimator : instance BaseEstimator
The classifier whose output decision function needs to be calibrated
to offer more accurate predict_proba outputs. If cv=prefit, the
classifier must have been fit already on data.
method : 'sigmoid' or 'isotonic'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method or 'isotonic' which is a
non-parametric approach. It is not advised to use isotonic calibration
with too few calibration samples ``(<<1000)`` since it tends to
overfit.
Use sigmoids (Platt's calibration) in this case.
cv : integer, cross-validation generator, iterable or "prefit", optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used. If ``y`` is
neither binary nor multiclass, :class:`sklearn.model_selection.KFold`
is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
If "prefit" is passed, it is assumed that base_estimator has been
fitted already and all data is used for calibration.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
Attributes
----------
classes_ : array, shape (n_classes)
The class labels.
calibrated_classifiers_ : list (len() equal to cv or 1 if cv == "prefit")
The list of calibrated classifiers, one for each crossvalidation fold,
which has been fitted on all but the validation fold and calibrated
on the validation fold.
References
----------
.. [1] Obtaining calibrated probability estimates from decision trees
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
.. [2] Transforming Classifier Scores into Accurate Multiclass
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, J. Platt, (1999)
.. [4] Predicting Good Probabilities with Supervised Learning,
A. Niculescu-Mizil & R. Caruana, ICML 2005
"""
def __init__(self, base_estimator=None, method='sigmoid', cv='warn'):
self.base_estimator = base_estimator
self.method = method
self.cv = cv
def fit(self, X, y, sample_weight=None):
"""Fit the calibrated model
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Returns an instance of self.
"""
X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'],
force_all_finite=False)
X, y = indexable(X, y)
le = LabelBinarizer().fit(y)
self.classes_ = le.classes_
# Check that each cross-validation fold can have at least one
# example per class
n_folds = self.cv if isinstance(self.cv, int) \
else self.cv.n_folds if hasattr(self.cv, "n_folds") else None
if n_folds and \
np.any([np.sum(y == class_) < n_folds for class_ in
self.classes_]):
raise ValueError("Requesting %d-fold cross-validation but provided"
" less than %d examples for at least one class."
% (n_folds, n_folds))
self.calibrated_classifiers_ = []
if self.base_estimator is None:
# we want all classifiers that don't expose a random_state
# to be deterministic (and we don't want to expose this one).
base_estimator = LinearSVC(random_state=0)
else:
base_estimator = self.base_estimator
if self.cv == "prefit":
calibrated_classifier = _CalibratedClassifier(
base_estimator, method=self.method)
if sample_weight is not None:
calibrated_classifier.fit(X, y, sample_weight)
else:
calibrated_classifier.fit(X, y)
self.calibrated_classifiers_.append(calibrated_classifier)
else:
cv = check_cv(self.cv, y, classifier=True)
fit_parameters = signature(base_estimator.fit).parameters
estimator_name = type(base_estimator).__name__
if (sample_weight is not None
and "sample_weight" not in fit_parameters):
warnings.warn("%s does not support sample_weight. Samples"
" weights are only used for the calibration"
" itself." % estimator_name)
base_estimator_sample_weight = None
else:
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False)
check_consistent_length(y, sample_weight)
base_estimator_sample_weight = sample_weight
for train, test in cv.split(X, y):
this_estimator = clone(base_estimator)
if base_estimator_sample_weight is not None:
this_estimator.fit(
X[train], y[train],
sample_weight=base_estimator_sample_weight[train])
else:
this_estimator.fit(X[train], y[train])
calibrated_classifier = _CalibratedClassifier(
this_estimator, method=self.method,
classes=self.classes_)
if sample_weight is not None:
calibrated_classifier.fit(X[test], y[test],
sample_weight[test])
else:
calibrated_classifier.fit(X[test], y[test])
self.calibrated_classifiers_.append(calibrated_classifier)
return self
def predict_proba(self, X):
"""Posterior probabilities of classification
This function returns posterior probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The samples.
Returns
-------
C : array, shape (n_samples, n_classes)
The predicted probas.
"""
check_is_fitted(self, ["classes_", "calibrated_classifiers_"])
X = check_array(X, accept_sparse=['csc', 'csr', 'coo'],
force_all_finite=False)
# Compute the arithmetic mean of the predictions of the calibrated
# classifiers
mean_proba = np.zeros((X.shape[0], len(self.classes_)))
for calibrated_classifier in self.calibrated_classifiers_:
proba = calibrated_classifier.predict_proba(X)
mean_proba += proba
mean_proba /= len(self.calibrated_classifiers_)
return mean_proba
def predict(self, X):
"""Predict the target of new samples. Can be different from the
prediction of the uncalibrated classifier.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The samples.
Returns
-------
C : array, shape (n_samples,)
The predicted class.
"""
check_is_fitted(self, ["classes_", "calibrated_classifiers_"])
return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
class _CalibratedClassifier(object):
"""Probability calibration with isotonic regression or sigmoid.
It assumes that base_estimator has already been fit, and trains the
calibration on the input set of the fit function. Note that this class
should not be used as an estimator directly. Use CalibratedClassifierCV
with cv="prefit" instead.
Parameters
----------
base_estimator : instance BaseEstimator
The classifier whose output decision function needs to be calibrated
to offer more accurate predict_proba outputs. No default value since
it has to be an already fitted estimator.
method : 'sigmoid' | 'isotonic'
The method to use for calibration. Can be 'sigmoid' which
corresponds to Platt's method or 'isotonic' which is a
non-parametric approach based on isotonic regression.
classes : array-like, shape (n_classes,), optional
Contains unique classes used to fit the base estimator.
if None, then classes is extracted from the given target values
in fit().
See also
--------
CalibratedClassifierCV
References
----------
.. [1] Obtaining calibrated probability estimates from decision trees
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
.. [2] Transforming Classifier Scores into Accurate Multiclass
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods, J. Platt, (1999)
.. [4] Predicting Good Probabilities with Supervised Learning,
A. Niculescu-Mizil & R. Caruana, ICML 2005
"""
def __init__(self, base_estimator, method='sigmoid', classes=None):
self.base_estimator = base_estimator
self.method = method
self.classes = classes
def _preproc(self, X):
n_classes = len(self.classes_)
if hasattr(self.base_estimator, "decision_function"):
df = self.base_estimator.decision_function(X)
if df.ndim == 1:
df = df[:, np.newaxis]
elif hasattr(self.base_estimator, "predict_proba"):
df = self.base_estimator.predict_proba(X)
if n_classes == 2:
df = df[:, 1:]
else:
raise RuntimeError('classifier has no decision_function or '
'predict_proba method.')
idx_pos_class = self.label_encoder_.\
transform(self.base_estimator.classes_)
return df, idx_pos_class
def fit(self, X, y, sample_weight=None):
"""Calibrate the fitted model
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Returns an instance of self.
"""
self.label_encoder_ = LabelEncoder()
if self.classes is None:
self.label_encoder_.fit(y)
else:
self.label_encoder_.fit(self.classes)
self.classes_ = self.label_encoder_.classes_
Y = label_binarize(y, self.classes_)
df, idx_pos_class = self._preproc(X)
self.calibrators_ = []
for k, this_df in zip(idx_pos_class, df.T):
if self.method == 'isotonic':
calibrator = IsotonicRegression(out_of_bounds='clip')
elif self.method == 'sigmoid':
calibrator = _SigmoidCalibration()
else:
raise ValueError('method should be "sigmoid" or '
'"isotonic". Got %s.' % self.method)
calibrator.fit(this_df, Y[:, k], sample_weight)
self.calibrators_.append(calibrator)
return self
def predict_proba(self, X):
"""Posterior probabilities of classification
This function returns posterior probabilities of classification
according to each class on an array of test vectors X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The samples.
Returns
-------
C : array, shape (n_samples, n_classes)
The predicted probas. Can be exact zeros.
"""
n_classes = len(self.classes_)
proba = np.zeros((X.shape[0], n_classes))
df, idx_pos_class = self._preproc(X)
for k, this_df, calibrator in \
zip(idx_pos_class, df.T, self.calibrators_):
if n_classes == 2:
k += 1
proba[:, k] = calibrator.predict(this_df)
# Normalize the probabilities
if n_classes == 2:
proba[:, 0] = 1. - proba[:, 1]
else:
proba /= np.sum(proba, axis=1)[:, np.newaxis]
# XXX : for some reason all probas can be 0
proba[np.isnan(proba)] = 1. / n_classes
# Deal with cases where the predicted probability minimally exceeds 1.0
proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0
return proba
def _sigmoid_calibration(df, y, sample_weight=None):
"""Probability Calibration with sigmoid method (Platt 2000)
Parameters
----------
df : ndarray, shape (n_samples,)
The decision function or predict proba for the samples.
y : ndarray, shape (n_samples,)
The targets.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Returns
-------
a : float
The slope.
b : float
The intercept.
References
----------
Platt, "Probabilistic Outputs for Support Vector Machines"
"""
df = column_or_1d(df)
y = column_or_1d(y)
F = df # F follows Platt's notations
tiny = np.finfo(np.float).tiny # to avoid division by 0 warning
# Bayesian priors (see Platt end of section 2.2)
prior0 = float(np.sum(y <= 0))
prior1 = y.shape[0] - prior0
T = np.zeros(y.shape)
T[y > 0] = (prior1 + 1.) / (prior1 + 2.)
T[y <= 0] = 1. / (prior0 + 2.)
T1 = 1. - T
def objective(AB):
# From Platt (beginning of Section 2.2)
E = np.exp(AB[0] * F + AB[1])
P = 1. / (1. + E)
l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny))
if sample_weight is not None:
return (sample_weight * l).sum()
else:
return l.sum()
def grad(AB):
# gradient of the objective function
E = np.exp(AB[0] * F + AB[1])
P = 1. / (1. + E)
TEP_minus_T1P = P * (T * E - T1)
if sample_weight is not None:
TEP_minus_T1P *= sample_weight
dA = np.dot(TEP_minus_T1P, F)
dB = np.sum(TEP_minus_T1P)
return np.array([dA, dB])
AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))])
AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False)
return AB_[0], AB_[1]
class _SigmoidCalibration(BaseEstimator, RegressorMixin):
"""Sigmoid regression model.
Attributes
----------
a_ : float
The slope.
b_ : float
The intercept.
"""
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape (n_samples,)
Training data.
y : array-like, shape (n_samples,)
Training target.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Returns an instance of self.
"""
X = column_or_1d(X)
y = column_or_1d(y)
X, y = indexable(X, y)
self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
return self
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like, shape (n_samples,)
Data to predict from.
Returns
-------
T_ : array, shape (n_samples,)
The predicted data.
"""
T = column_or_1d(T)
return 1. / (1. + np.exp(self.a_ * T + self.b_))
def calibration_curve(y_true, y_prob, normalize=False, n_bins=5):
"""Compute true and predicted probabilities for a calibration curve.
The method assumes the inputs come from a binary classifier.
Calibration curves may also be referred to as reliability diagrams.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
y_true : array, shape (n_samples,)
True targets.
y_prob : array, shape (n_samples,)
Probabilities of the positive class.
normalize : bool, optional, default=False
Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not
a proper probability. If True, the smallest value in y_prob is mapped
onto 0 and the largest one onto 1.
n_bins : int
Number of bins. A bigger number requires more data.
Returns
-------
prob_true : array, shape (n_bins,)
The true probability in each bin (fraction of positives).
prob_pred : array, shape (n_bins,)
The mean predicted probability in each bin.
References
----------
Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
Probabilities With Supervised Learning, in Proceedings of the 22nd
International Conference on Machine Learning (ICML).
See section 4 (Qualitative Analysis of Predictions).
"""
y_true = column_or_1d(y_true)
y_prob = column_or_1d(y_prob)
if normalize: # Normalize predicted values into interval [0, 1]
y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min())
elif y_prob.min() < 0 or y_prob.max() > 1:
raise ValueError("y_prob has values outside [0, 1] and normalize is "
"set to False.")
y_true = _check_binary_probabilistic_predictions(y_true, y_prob)
bins = np.linspace(0., 1. + 1e-8, n_bins + 1)
binids = np.digitize(y_prob, bins) - 1
bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
bin_total = np.bincount(binids, minlength=len(bins))
nonzero = bin_total != 0
prob_true = (bin_true[nonzero] / bin_total[nonzero])
prob_pred = (bin_sums[nonzero] / bin_total[nonzero])
return prob_true, prob_pred