"""Base classes for all estimators."""
|
|
|
|
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
|
|
# License: BSD 3 clause
|
|
|
|
import copy
|
|
import warnings
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from scipy import sparse
|
|
from .externals import six
|
|
from .utils.fixes import signature
|
|
from . import __version__
|
|
|
|
|
|
##############################################################################
|
|
def _first_and_last_element(arr):
|
|
"""Returns first and last element of numpy array or sparse matrix."""
|
|
if isinstance(arr, np.ndarray) or hasattr(arr, 'data'):
|
|
# numpy array or sparse matrix with .data attribute
|
|
data = arr.data if sparse.issparse(arr) else arr
|
|
return data.flat[0], data.flat[-1]
|
|
else:
|
|
# Sparse matrices without .data attribute. Only dok_matrix at
|
|
# the time of writing, in this case indexing is fast
|
|
return arr[0, 0], arr[-1, -1]
|
|
|
|
|
|
def clone(estimator, safe=True):
|
|
"""Constructs a new estimator with the same parameters.
|
|
|
|
Clone does a deep copy of the model in an estimator
|
|
without actually copying attached data. It yields a new estimator
|
|
with the same parameters that has not been fit on any data.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator object, or list, tuple or set of objects
|
|
The estimator or group of estimators to be cloned
|
|
|
|
safe : boolean, optional
|
|
If safe is false, clone will fall back to a deep copy on objects
|
|
that are not estimators.
|
|
|
|
"""
|
|
estimator_type = type(estimator)
|
|
# XXX: not handling dictionaries
|
|
if estimator_type in (list, tuple, set, frozenset):
|
|
return estimator_type([clone(e, safe=safe) for e in estimator])
|
|
elif not hasattr(estimator, 'get_params'):
|
|
if not safe:
|
|
return copy.deepcopy(estimator)
|
|
else:
|
|
raise TypeError("Cannot clone object '%s' (type %s): "
|
|
"it does not seem to be a scikit-learn estimator "
|
|
"as it does not implement a 'get_params' methods."
|
|
% (repr(estimator), type(estimator)))
|
|
klass = estimator.__class__
|
|
new_object_params = estimator.get_params(deep=False)
|
|
for name, param in six.iteritems(new_object_params):
|
|
new_object_params[name] = clone(param, safe=False)
|
|
new_object = klass(**new_object_params)
|
|
params_set = new_object.get_params(deep=False)
|
|
|
|
# quick sanity check of the parameters of the clone
|
|
for name in new_object_params:
|
|
param1 = new_object_params[name]
|
|
param2 = params_set[name]
|
|
if param1 is not param2:
|
|
raise RuntimeError('Cannot clone object %s, as the constructor '
|
|
'either does not set or modifies parameter %s' %
|
|
(estimator, name))
|
|
return new_object
|
|
|
|
|
|
###############################################################################
|
|
def _pprint(params, offset=0, printer=repr):
|
|
"""Pretty print the dictionary 'params'
|
|
|
|
Parameters
|
|
----------
|
|
params : dict
|
|
The dictionary to pretty print
|
|
|
|
offset : int
|
|
The offset in characters to add at the begin of each line.
|
|
|
|
printer : callable
|
|
The function to convert entries to strings, typically
|
|
the builtin str or repr
|
|
|
|
"""
|
|
# Do a multi-line justified repr:
|
|
options = np.get_printoptions()
|
|
np.set_printoptions(precision=5, threshold=64, edgeitems=2)
|
|
params_list = list()
|
|
this_line_length = offset
|
|
line_sep = ',\n' + (1 + offset // 2) * ' '
|
|
for i, (k, v) in enumerate(sorted(six.iteritems(params))):
|
|
if type(v) is float:
|
|
# use str for representing floating point numbers
|
|
# this way we get consistent representation across
|
|
# architectures and versions.
|
|
this_repr = '%s=%s' % (k, str(v))
|
|
else:
|
|
# use repr of the rest
|
|
this_repr = '%s=%s' % (k, printer(v))
|
|
if len(this_repr) > 500:
|
|
this_repr = this_repr[:300] + '...' + this_repr[-100:]
|
|
if i > 0:
|
|
if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr):
|
|
params_list.append(line_sep)
|
|
this_line_length = len(line_sep)
|
|
else:
|
|
params_list.append(', ')
|
|
this_line_length += 2
|
|
params_list.append(this_repr)
|
|
this_line_length += len(this_repr)
|
|
|
|
np.set_printoptions(**options)
|
|
lines = ''.join(params_list)
|
|
# Strip trailing space to avoid nightmare in doctests
|
|
lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n'))
|
|
return lines
|
|
|
|
|
|
###############################################################################
|
|
class BaseEstimator(object):
|
|
"""Base class for all estimators in scikit-learn
|
|
|
|
Notes
|
|
-----
|
|
All estimators should specify all the parameters that can be set
|
|
at the class level in their ``__init__`` as explicit keyword
|
|
arguments (no ``*args`` or ``**kwargs``).
|
|
"""
|
|
|
|
@classmethod
|
|
def _get_param_names(cls):
|
|
"""Get parameter names for the estimator"""
|
|
# fetch the constructor or the original constructor before
|
|
# deprecation wrapping if any
|
|
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
|
|
if init is object.__init__:
|
|
# No explicit constructor to introspect
|
|
return []
|
|
|
|
# introspect the constructor arguments to find the model parameters
|
|
# to represent
|
|
init_signature = signature(init)
|
|
# Consider the constructor parameters excluding 'self'
|
|
parameters = [p for p in init_signature.parameters.values()
|
|
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
|
|
for p in parameters:
|
|
if p.kind == p.VAR_POSITIONAL:
|
|
raise RuntimeError("scikit-learn estimators should always "
|
|
"specify their parameters in the signature"
|
|
" of their __init__ (no varargs)."
|
|
" %s with constructor %s doesn't "
|
|
" follow this convention."
|
|
% (cls, init_signature))
|
|
# Extract and sort argument names excluding 'self'
|
|
return sorted([p.name for p in parameters])
|
|
|
|
def get_params(self, deep=True):
|
|
"""Get parameters for this estimator.
|
|
|
|
Parameters
|
|
----------
|
|
deep : boolean, optional
|
|
If True, will return the parameters for this estimator and
|
|
contained subobjects that are estimators.
|
|
|
|
Returns
|
|
-------
|
|
params : mapping of string to any
|
|
Parameter names mapped to their values.
|
|
"""
|
|
out = dict()
|
|
for key in self._get_param_names():
|
|
value = getattr(self, key, None)
|
|
if deep and hasattr(value, 'get_params'):
|
|
deep_items = value.get_params().items()
|
|
out.update((key + '__' + k, val) for k, val in deep_items)
|
|
out[key] = value
|
|
return out
|
|
|
|
def set_params(self, **params):
|
|
"""Set the parameters of this estimator.
|
|
|
|
The method works on simple estimators as well as on nested objects
|
|
(such as pipelines). The latter have parameters of the form
|
|
``<component>__<parameter>`` so that it's possible to update each
|
|
component of a nested object.
|
|
|
|
Returns
|
|
-------
|
|
self
|
|
"""
|
|
if not params:
|
|
# Simple optimization to gain speed (inspect is slow)
|
|
return self
|
|
valid_params = self.get_params(deep=True)
|
|
|
|
nested_params = defaultdict(dict) # grouped by prefix
|
|
for key, value in params.items():
|
|
key, delim, sub_key = key.partition('__')
|
|
if key not in valid_params:
|
|
raise ValueError('Invalid parameter %s for estimator %s. '
|
|
'Check the list of available parameters '
|
|
'with `estimator.get_params().keys()`.' %
|
|
(key, self))
|
|
|
|
if delim:
|
|
nested_params[key][sub_key] = value
|
|
else:
|
|
setattr(self, key, value)
|
|
valid_params[key] = value
|
|
|
|
for key, sub_params in nested_params.items():
|
|
valid_params[key].set_params(**sub_params)
|
|
|
|
return self
|
|
|
|
def __repr__(self):
|
|
class_name = self.__class__.__name__
|
|
return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
|
|
offset=len(class_name),),)
|
|
|
|
def __getstate__(self):
|
|
try:
|
|
state = super(BaseEstimator, self).__getstate__()
|
|
except AttributeError:
|
|
state = self.__dict__.copy()
|
|
|
|
if type(self).__module__.startswith('sklearn.'):
|
|
return dict(state.items(), _sklearn_version=__version__)
|
|
else:
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
if type(self).__module__.startswith('sklearn.'):
|
|
pickle_version = state.pop("_sklearn_version", "pre-0.18")
|
|
if pickle_version != __version__:
|
|
warnings.warn(
|
|
"Trying to unpickle estimator {0} from version {1} when "
|
|
"using version {2}. This might lead to breaking code or "
|
|
"invalid results. Use at your own risk.".format(
|
|
self.__class__.__name__, pickle_version, __version__),
|
|
UserWarning)
|
|
try:
|
|
super(BaseEstimator, self).__setstate__(state)
|
|
except AttributeError:
|
|
self.__dict__.update(state)
|
|
|
|
|
|
###############################################################################
|
|
class ClassifierMixin(object):
|
|
"""Mixin class for all classifiers in scikit-learn."""
|
|
_estimator_type = "classifier"
|
|
|
|
def score(self, X, y, sample_weight=None):
|
|
"""Returns the mean accuracy on the given test data and labels.
|
|
|
|
In multi-label classification, this is the subset accuracy
|
|
which is a harsh metric since you require for each sample that
|
|
each label set be correctly predicted.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape = (n_samples, n_features)
|
|
Test samples.
|
|
|
|
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
|
|
True labels for X.
|
|
|
|
sample_weight : array-like, shape = [n_samples], optional
|
|
Sample weights.
|
|
|
|
Returns
|
|
-------
|
|
score : float
|
|
Mean accuracy of self.predict(X) wrt. y.
|
|
|
|
"""
|
|
from .metrics import accuracy_score
|
|
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
|
|
|
|
|
|
###############################################################################
|
|
class RegressorMixin(object):
|
|
"""Mixin class for all regression estimators in scikit-learn."""
|
|
_estimator_type = "regressor"
|
|
|
|
def score(self, X, y, sample_weight=None):
|
|
"""Returns the coefficient of determination R^2 of the prediction.
|
|
|
|
The coefficient R^2 is defined as (1 - u/v), where u is the residual
|
|
sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
|
|
sum of squares ((y_true - y_true.mean()) ** 2).sum().
|
|
The best possible score is 1.0 and it can be negative (because the
|
|
model can be arbitrarily worse). A constant model that always
|
|
predicts the expected value of y, disregarding the input features,
|
|
would get a R^2 score of 0.0.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape = (n_samples, n_features)
|
|
Test samples. For some estimators this may be a
|
|
precomputed kernel matrix instead, shape = (n_samples,
|
|
n_samples_fitted], where n_samples_fitted is the number of
|
|
samples used in the fitting for the estimator.
|
|
|
|
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
|
|
True values for X.
|
|
|
|
sample_weight : array-like, shape = [n_samples], optional
|
|
Sample weights.
|
|
|
|
Returns
|
|
-------
|
|
score : float
|
|
R^2 of self.predict(X) wrt. y.
|
|
"""
|
|
|
|
from .metrics import r2_score
|
|
return r2_score(y, self.predict(X), sample_weight=sample_weight,
|
|
multioutput='variance_weighted')
|
|
|
|
|
|
###############################################################################
|
|
class ClusterMixin(object):
|
|
"""Mixin class for all cluster estimators in scikit-learn."""
|
|
_estimator_type = "clusterer"
|
|
|
|
def fit_predict(self, X, y=None):
|
|
"""Performs clustering on X and returns cluster labels.
|
|
|
|
Parameters
|
|
----------
|
|
X : ndarray, shape (n_samples, n_features)
|
|
Input data.
|
|
|
|
y : Ignored
|
|
not used, present for API consistency by convention.
|
|
|
|
Returns
|
|
-------
|
|
labels : ndarray, shape (n_samples,)
|
|
cluster labels
|
|
"""
|
|
# non-optimized default implementation; override when a better
|
|
# method is possible for a given clustering algorithm
|
|
self.fit(X)
|
|
return self.labels_
|
|
|
|
|
|
class BiclusterMixin(object):
|
|
"""Mixin class for all bicluster estimators in scikit-learn"""
|
|
|
|
@property
|
|
def biclusters_(self):
|
|
"""Convenient way to get row and column indicators together.
|
|
|
|
Returns the ``rows_`` and ``columns_`` members.
|
|
"""
|
|
return self.rows_, self.columns_
|
|
|
|
def get_indices(self, i):
|
|
"""Row and column indices of the i'th bicluster.
|
|
|
|
Only works if ``rows_`` and ``columns_`` attributes exist.
|
|
|
|
Parameters
|
|
----------
|
|
i : int
|
|
The index of the cluster.
|
|
|
|
Returns
|
|
-------
|
|
row_ind : np.array, dtype=np.intp
|
|
Indices of rows in the dataset that belong to the bicluster.
|
|
col_ind : np.array, dtype=np.intp
|
|
Indices of columns in the dataset that belong to the bicluster.
|
|
|
|
"""
|
|
rows = self.rows_[i]
|
|
columns = self.columns_[i]
|
|
return np.nonzero(rows)[0], np.nonzero(columns)[0]
|
|
|
|
def get_shape(self, i):
|
|
"""Shape of the i'th bicluster.
|
|
|
|
Parameters
|
|
----------
|
|
i : int
|
|
The index of the cluster.
|
|
|
|
Returns
|
|
-------
|
|
shape : (int, int)
|
|
Number of rows and columns (resp.) in the bicluster.
|
|
"""
|
|
indices = self.get_indices(i)
|
|
return tuple(len(i) for i in indices)
|
|
|
|
def get_submatrix(self, i, data):
|
|
"""Returns the submatrix corresponding to bicluster `i`.
|
|
|
|
Parameters
|
|
----------
|
|
i : int
|
|
The index of the cluster.
|
|
data : array
|
|
The data.
|
|
|
|
Returns
|
|
-------
|
|
submatrix : array
|
|
The submatrix corresponding to bicluster i.
|
|
|
|
Notes
|
|
-----
|
|
Works with sparse matrices. Only works if ``rows_`` and
|
|
``columns_`` attributes exist.
|
|
"""
|
|
from .utils.validation import check_array
|
|
data = check_array(data, accept_sparse='csr')
|
|
row_ind, col_ind = self.get_indices(i)
|
|
return data[row_ind[:, np.newaxis], col_ind]
|
|
|
|
|
|
###############################################################################
|
|
class TransformerMixin(object):
|
|
"""Mixin class for all transformers in scikit-learn."""
|
|
|
|
def fit_transform(self, X, y=None, **fit_params):
|
|
"""Fit to data, then transform it.
|
|
|
|
Fits transformer to X and y with optional parameters fit_params
|
|
and returns a transformed version of X.
|
|
|
|
Parameters
|
|
----------
|
|
X : numpy array of shape [n_samples, n_features]
|
|
Training set.
|
|
|
|
y : numpy array of shape [n_samples]
|
|
Target values.
|
|
|
|
Returns
|
|
-------
|
|
X_new : numpy array of shape [n_samples, n_features_new]
|
|
Transformed array.
|
|
|
|
"""
|
|
# non-optimized default implementation; override when a better
|
|
# method is possible for a given clustering algorithm
|
|
if y is None:
|
|
# fit method of arity 1 (unsupervised transformation)
|
|
return self.fit(X, **fit_params).transform(X)
|
|
else:
|
|
# fit method of arity 2 (supervised transformation)
|
|
return self.fit(X, y, **fit_params).transform(X)
|
|
|
|
|
|
class DensityMixin(object):
|
|
"""Mixin class for all density estimators in scikit-learn."""
|
|
_estimator_type = "DensityEstimator"
|
|
|
|
def score(self, X, y=None):
|
|
"""Returns the score of the model on the data X
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape = (n_samples, n_features)
|
|
|
|
Returns
|
|
-------
|
|
score : float
|
|
"""
|
|
pass
|
|
|
|
|
|
class OutlierMixin(object):
|
|
"""Mixin class for all outlier detection estimators in scikit-learn."""
|
|
_estimator_type = "outlier_detector"
|
|
|
|
def fit_predict(self, X, y=None):
|
|
"""Performs outlier detection on X.
|
|
|
|
Returns -1 for outliers and 1 for inliers.
|
|
|
|
Parameters
|
|
----------
|
|
X : ndarray, shape (n_samples, n_features)
|
|
Input data.
|
|
|
|
y : Ignored
|
|
not used, present for API consistency by convention.
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray, shape (n_samples,)
|
|
1 for inliers, -1 for outliers.
|
|
"""
|
|
# override for transductive outlier detectors like LocalOulierFactor
|
|
return self.fit(X).predict(X)
|
|
|
|
|
|
###############################################################################
|
|
class MetaEstimatorMixin(object):
|
|
"""Mixin class for all meta estimators in scikit-learn."""
|
|
# this is just a tag for the moment
|
|
|
|
|
|
###############################################################################
|
|
|
|
def is_classifier(estimator):
|
|
"""Returns True if the given estimator is (probably) a classifier.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : object
|
|
Estimator object to test.
|
|
|
|
Returns
|
|
-------
|
|
out : bool
|
|
True if estimator is a classifier and False otherwise.
|
|
"""
|
|
return getattr(estimator, "_estimator_type", None) == "classifier"
|
|
|
|
|
|
def is_regressor(estimator):
|
|
"""Returns True if the given estimator is (probably) a regressor.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : object
|
|
Estimator object to test.
|
|
|
|
Returns
|
|
-------
|
|
out : bool
|
|
True if estimator is a regressor and False otherwise.
|
|
"""
|
|
return getattr(estimator, "_estimator_type", None) == "regressor"
|
|
|
|
|
|
def is_outlier_detector(estimator):
|
|
"""Returns True if the given estimator is (probably) an outlier detector.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : object
|
|
Estimator object to test.
|
|
|
|
Returns
|
|
-------
|
|
out : bool
|
|
True if estimator is an outlier detector and False otherwise.
|
|
"""
|
|
return getattr(estimator, "_estimator_type", None) == "outlier_detector"
|