# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Common functionality shared by several modules."""
|
|
|
|
import typing
|
|
|
|
|
|
class NotRelativePrimeError(ValueError):
|
|
def __init__(self, a: int, b: int, d: int, msg: str = '') -> None:
|
|
super().__init__(msg or "%d and %d are not relatively prime, divider=%i" % (a, b, d))
|
|
self.a = a
|
|
self.b = b
|
|
self.d = d
|
|
|
|
|
|
def bit_size(num: int) -> int:
|
|
"""
|
|
Number of bits needed to represent a integer excluding any prefix
|
|
0 bits.
|
|
|
|
Usage::
|
|
|
|
>>> bit_size(1023)
|
|
10
|
|
>>> bit_size(1024)
|
|
11
|
|
>>> bit_size(1025)
|
|
11
|
|
|
|
:param num:
|
|
Integer value. If num is 0, returns 0. Only the absolute value of the
|
|
number is considered. Therefore, signed integers will be abs(num)
|
|
before the number's bit length is determined.
|
|
:returns:
|
|
Returns the number of bits in the integer.
|
|
"""
|
|
|
|
try:
|
|
return num.bit_length()
|
|
except AttributeError:
|
|
raise TypeError('bit_size(num) only supports integers, not %r' % type(num))
|
|
|
|
|
|
def byte_size(number: int) -> int:
|
|
"""
|
|
Returns the number of bytes required to hold a specific long number.
|
|
|
|
The number of bytes is rounded up.
|
|
|
|
Usage::
|
|
|
|
>>> byte_size(1 << 1023)
|
|
128
|
|
>>> byte_size((1 << 1024) - 1)
|
|
128
|
|
>>> byte_size(1 << 1024)
|
|
129
|
|
|
|
:param number:
|
|
An unsigned integer
|
|
:returns:
|
|
The number of bytes required to hold a specific long number.
|
|
"""
|
|
if number == 0:
|
|
return 1
|
|
return ceil_div(bit_size(number), 8)
|
|
|
|
|
|
def ceil_div(num: int, div: int) -> int:
|
|
"""
|
|
Returns the ceiling function of a division between `num` and `div`.
|
|
|
|
Usage::
|
|
|
|
>>> ceil_div(100, 7)
|
|
15
|
|
>>> ceil_div(100, 10)
|
|
10
|
|
>>> ceil_div(1, 4)
|
|
1
|
|
|
|
:param num: Division's numerator, a number
|
|
:param div: Division's divisor, a number
|
|
|
|
:return: Rounded up result of the division between the parameters.
|
|
"""
|
|
quanta, mod = divmod(num, div)
|
|
if mod:
|
|
quanta += 1
|
|
return quanta
|
|
|
|
|
|
def extended_gcd(a: int, b: int) -> typing.Tuple[int, int, int]:
|
|
"""Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb
|
|
"""
|
|
# r = gcd(a,b) i = multiplicitive inverse of a mod b
|
|
# or j = multiplicitive inverse of b mod a
|
|
# Neg return values for i or j are made positive mod b or a respectively
|
|
# Iterateive Version is faster and uses much less stack space
|
|
x = 0
|
|
y = 1
|
|
lx = 1
|
|
ly = 0
|
|
oa = a # Remember original a/b to remove
|
|
ob = b # negative values from return results
|
|
while b != 0:
|
|
q = a // b
|
|
(a, b) = (b, a % b)
|
|
(x, lx) = ((lx - (q * x)), x)
|
|
(y, ly) = ((ly - (q * y)), y)
|
|
if lx < 0:
|
|
lx += ob # If neg wrap modulo orignal b
|
|
if ly < 0:
|
|
ly += oa # If neg wrap modulo orignal a
|
|
return a, lx, ly # Return only positive values
|
|
|
|
|
|
def inverse(x: int, n: int) -> int:
|
|
"""Returns the inverse of x % n under multiplication, a.k.a x^-1 (mod n)
|
|
|
|
>>> inverse(7, 4)
|
|
3
|
|
>>> (inverse(143, 4) * 143) % 4
|
|
1
|
|
"""
|
|
|
|
(divider, inv, _) = extended_gcd(x, n)
|
|
|
|
if divider != 1:
|
|
raise NotRelativePrimeError(x, n, divider)
|
|
|
|
return inv
|
|
|
|
|
|
def crt(a_values: typing.Iterable[int], modulo_values: typing.Iterable[int]) -> int:
|
|
"""Chinese Remainder Theorem.
|
|
|
|
Calculates x such that x = a[i] (mod m[i]) for each i.
|
|
|
|
:param a_values: the a-values of the above equation
|
|
:param modulo_values: the m-values of the above equation
|
|
:returns: x such that x = a[i] (mod m[i]) for each i
|
|
|
|
|
|
>>> crt([2, 3], [3, 5])
|
|
8
|
|
|
|
>>> crt([2, 3, 2], [3, 5, 7])
|
|
23
|
|
|
|
>>> crt([2, 3, 0], [7, 11, 15])
|
|
135
|
|
"""
|
|
|
|
m = 1
|
|
x = 0
|
|
|
|
for modulo in modulo_values:
|
|
m *= modulo
|
|
|
|
for (m_i, a_i) in zip(modulo_values, a_values):
|
|
M_i = m // m_i
|
|
inv = inverse(M_i, m_i)
|
|
|
|
x = (x + a_i * M_i * inv) % m
|
|
|
|
return x
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import doctest
|
|
|
|
doctest.testmod()
|