basabuuka_prototyp/venv/lib/python3.5/site-packages/spacy/pipeline.pyx
2020-08-16 19:36:44 +02:00

972 lines
35 KiB
Cython

# cython: infer_types=True
# cython: profile=True
# coding: utf8
from __future__ import unicode_literals
import numpy
cimport numpy as np
import cytoolz
from collections import OrderedDict
import ujson
from .util import msgpack
from .util import msgpack_numpy
from thinc.api import chain
from thinc.v2v import Affine, SELU, Softmax
from thinc.t2v import Pooling, max_pool, mean_pool
from thinc.neural.util import to_categorical, copy_array
from thinc.neural._classes.difference import Siamese, CauchySimilarity
from .tokens.doc cimport Doc
from .syntax.nn_parser cimport Parser
from .syntax import nonproj
from .syntax.ner cimport BiluoPushDown
from .syntax.arc_eager cimport ArcEager
from .morphology cimport Morphology
from .vocab cimport Vocab
from .syntax import nonproj
from .compat import json_dumps
from .attrs import POS
from .parts_of_speech import X
from ._ml import Tok2Vec, build_text_classifier, build_tagger_model
from ._ml import link_vectors_to_models, zero_init, flatten
from ._ml import create_default_optimizer
from .errors import Errors, TempErrors
from . import util
class SentenceSegmenter(object):
"""A simple spaCy hook, to allow custom sentence boundary detection logic
(that doesn't require the dependency parse). To change the sentence
boundary detection strategy, pass a generator function `strategy` on
initialization, or assign a new strategy to the .strategy attribute.
Sentence detection strategies should be generators that take `Doc` objects
and yield `Span` objects for each sentence.
"""
name = 'sbd'
def __init__(self, vocab, strategy=None):
self.vocab = vocab
if strategy is None or strategy == 'on_punct':
strategy = self.split_on_punct
self.strategy = strategy
def __call__(self, doc):
doc.user_hooks['sents'] = self.strategy
return doc
@staticmethod
def split_on_punct(doc):
start = 0
seen_period = False
for i, word in enumerate(doc):
if seen_period and not word.is_punct:
yield doc[start:word.i]
start = word.i
seen_period = False
elif word.text in ['.', '!', '?']:
seen_period = True
if start < len(doc):
yield doc[start:len(doc)]
def merge_noun_chunks(doc):
"""Merge noun chunks into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks.
"""
if not doc.is_parsed:
return doc
spans = [(np.start_char, np.end_char, np.root.tag, np.root.dep)
for np in doc.noun_chunks]
for start, end, tag, dep in spans:
doc.merge(start, end, tag=tag, dep=dep)
return doc
def merge_entities(doc):
"""Merge entities into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun entities.
"""
spans = [(e.start_char, e.end_char, e.root.tag, e.root.dep, e.label)
for e in doc.ents]
for start, end, tag, dep, ent_type in spans:
doc.merge(start, end, tag=tag, dep=dep, ent_type=ent_type)
return doc
class Pipe(object):
"""This class is not instantiated directly. Components inherit from it, and
it defines the interface that components should follow to function as
components in a spaCy analysis pipeline.
"""
name = None
@classmethod
def Model(cls, *shape, **kwargs):
"""Initialize a model for the pipe."""
raise NotImplementedError
def __init__(self, vocab, model=True, **cfg):
"""Create a new pipe instance."""
raise NotImplementedError
def __call__(self, doc):
"""Apply the pipe to one document. The document is
modified in-place, and returned.
Both __call__ and pipe should delegate to the `predict()`
and `set_annotations()` methods.
"""
scores, tensors = self.predict([doc])
self.set_annotations([doc], scores, tensors=tensors)
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
"""Apply the pipe to a stream of documents.
Both __call__ and pipe should delegate to the `predict()`
and `set_annotations()` methods.
"""
for docs in cytoolz.partition_all(batch_size, stream):
docs = list(docs)
scores, tensors = self.predict(docs)
self.set_annotations(docs, scores, tensor=tensors)
yield from docs
def predict(self, docs):
"""Apply the pipeline's model to a batch of docs, without
modifying them.
"""
raise NotImplementedError
def set_annotations(self, docs, scores, tensors=None):
"""Modify a batch of documents, using pre-computed scores."""
raise NotImplementedError
def update(self, docs, golds, drop=0., sgd=None, losses=None):
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model.
Delegates to predict() and get_loss().
"""
raise NotImplementedError
def get_loss(self, docs, golds, scores):
"""Find the loss and gradient of loss for the batch of
documents and their predicted scores."""
raise NotImplementedError
def add_label(self, label):
"""Add an output label, to be predicted by the model.
It's possible to extend pre-trained models with new labels,
but care should be taken to avoid the "catastrophic forgetting"
problem.
"""
raise NotImplementedError
def create_optimizer(self):
return create_default_optimizer(self.model.ops,
**self.cfg.get('optimizer', {}))
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None,
**kwargs):
"""Initialize the pipe for training, using data exampes if available.
If no model has been initialized yet, the model is added."""
if self.model is True:
self.model = self.Model(**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def use_params(self, params):
"""Modify the pipe's model, to use the given parameter values."""
with self.model.use_params(params):
yield
def to_bytes(self, **exclude):
"""Serialize the pipe to a bytestring."""
serialize = OrderedDict()
serialize['cfg'] = lambda: json_dumps(self.cfg)
if self.model in (True, False, None):
serialize['model'] = lambda: self.model
else:
serialize['model'] = self.model.to_bytes
serialize['vocab'] = self.vocab.to_bytes
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, **exclude):
"""Load the pipe from a bytestring."""
def load_model(b):
# TODO: Remove this once we don't have to handle previous models
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
if self.model is True:
self.model = self.Model(**self.cfg)
self.model.from_bytes(b)
deserialize = OrderedDict((
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
('vocab', lambda b: self.vocab.from_bytes(b)),
('model', load_model),
))
util.from_bytes(bytes_data, deserialize, exclude)
return self
def to_disk(self, path, **exclude):
"""Serialize the pipe to disk."""
serialize = OrderedDict()
serialize['cfg'] = lambda p: p.open('w').write(json_dumps(self.cfg))
serialize['vocab'] = lambda p: self.vocab.to_disk(p)
if self.model not in (None, True, False):
serialize['model'] = lambda p: p.open('wb').write(self.model.to_bytes())
util.to_disk(path, serialize, exclude)
def from_disk(self, path, **exclude):
"""Load the pipe from disk."""
def load_model(p):
# TODO: Remove this once we don't have to handle previous models
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
if self.model is True:
self.model = self.Model(**self.cfg)
self.model.from_bytes(p.open('rb').read())
deserialize = OrderedDict((
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
('vocab', lambda p: self.vocab.from_disk(p)),
('model', load_model),
))
util.from_disk(path, deserialize, exclude)
return self
def _load_cfg(path):
if path.exists():
with path.open() as file_:
return ujson.load(file_)
else:
return {}
class Tensorizer(Pipe):
"""Assign position-sensitive vectors to tokens, using a CNN or RNN."""
name = 'tensorizer'
@classmethod
def Model(cls, output_size=300, input_size=384, **cfg):
"""Create a new statistical model for the class.
width (int): Output size of the model.
embed_size (int): Number of vectors in the embedding table.
**cfg: Config parameters.
RETURNS (Model): A `thinc.neural.Model` or similar instance.
"""
model = chain(
SELU(output_size, input_size),
SELU(output_size, output_size),
zero_init(Affine(output_size, output_size)))
return model
def __init__(self, vocab, model=True, **cfg):
"""Construct a new statistical model. Weights are not allocated on
initialisation.
vocab (Vocab): A `Vocab` instance. The model must share the same
`Vocab` instance with the `Doc` objects it will process.
model (Model): A `Model` instance or `True` allocate one later.
**cfg: Config parameters.
EXAMPLE:
>>> from spacy.pipeline import TokenVectorEncoder
>>> tok2vec = TokenVectorEncoder(nlp.vocab)
>>> tok2vec.model = tok2vec.Model(128, 5000)
"""
self.vocab = vocab
self.model = model
self.input_models = []
self.cfg = dict(cfg)
self.cfg.setdefault('cnn_maxout_pieces', 3)
def __call__(self, doc):
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
model. Vectors are set to the `Doc.tensor` attribute.
docs (Doc or iterable): One or more documents to add vectors to.
RETURNS (dict or None): Intermediate computations.
"""
tokvecses = self.predict([doc])
self.set_annotations([doc], tokvecses)
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
"""Process `Doc` objects as a stream.
stream (iterator): A sequence of `Doc` objects to process.
batch_size (int): Number of `Doc` objects to group.
n_threads (int): Number of threads.
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
"""
for docs in cytoolz.partition_all(batch_size, stream):
docs = list(docs)
tensors = self.predict(docs)
self.set_annotations(docs, tensors)
yield from docs
def predict(self, docs):
"""Return a single tensor for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
RETURNS (object): Vector representations for each token in the docs.
"""
inputs = self.model.ops.flatten([doc.tensor for doc in docs])
outputs = self.model(inputs)
return self.model.ops.unflatten(outputs, [len(d) for d in docs])
def set_annotations(self, docs, tensors):
"""Set the tensor attribute for a batch of documents.
docs (iterable): A sequence of `Doc` objects.
tensors (object): Vector representation for each token in the docs.
"""
for doc, tensor in zip(docs, tensors):
if tensor.shape[0] != len(doc):
raise ValueError(Errors.E076.format(rows=tensor.shape[0], words=len(doc)))
doc.tensor = tensor
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
"""Update the model.
docs (iterable): A batch of `Doc` objects.
golds (iterable): A batch of `GoldParse` objects.
drop (float): The droput rate.
sgd (callable): An optimizer.
RETURNS (dict): Results from the update.
"""
if isinstance(docs, Doc):
docs = [docs]
inputs = []
bp_inputs = []
for tok2vec in self.input_models:
tensor, bp_tensor = tok2vec.begin_update(docs, drop=drop)
inputs.append(tensor)
bp_inputs.append(bp_tensor)
inputs = self.model.ops.xp.hstack(inputs)
scores, bp_scores = self.model.begin_update(inputs, drop=drop)
loss, d_scores = self.get_loss(docs, golds, scores)
d_inputs = bp_scores(d_scores, sgd=sgd)
d_inputs = self.model.ops.xp.split(d_inputs, len(self.input_models), axis=1)
for d_input, bp_input in zip(d_inputs, bp_inputs):
bp_input(d_input, sgd=sgd)
if losses is not None:
losses.setdefault(self.name, 0.)
losses[self.name] += loss
return loss
def get_loss(self, docs, golds, prediction):
target = []
i = 0
for doc in docs:
vectors = self.model.ops.xp.vstack([w.vector for w in doc])
target.append(vectors)
target = self.model.ops.xp.vstack(target)
d_scores = (prediction - target) / prediction.shape[0]
loss = (d_scores**2).sum()
return loss, d_scores
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None,
**kwargs):
"""Allocate models, pre-process training data and acquire an
optimizer.
gold_tuples (iterable): Gold-standard training data.
pipeline (list): The pipeline the model is part of.
"""
for name, model in pipeline:
if getattr(model, 'tok2vec', None):
self.input_models.append(model.tok2vec)
if self.model is True:
self.cfg['input_size'] = 384
self.cfg['output_size'] = 300
self.model = self.Model(**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
class Tagger(Pipe):
name = 'tagger'
def __init__(self, vocab, model=True, **cfg):
self.vocab = vocab
self.model = model
self.cfg = OrderedDict(sorted(cfg.items()))
self.cfg.setdefault('cnn_maxout_pieces', 2)
@property
def labels(self):
return self.vocab.morphology.tag_names
@property
def tok2vec(self):
if self.model in (None, True, False):
return None
else:
return chain(self.model.tok2vec, flatten)
def __call__(self, doc):
tags, tokvecs = self.predict([doc])
self.set_annotations([doc], tags, tensors=tokvecs)
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
for docs in cytoolz.partition_all(batch_size, stream):
docs = list(docs)
tag_ids, tokvecs = self.predict(docs)
self.set_annotations(docs, tag_ids, tensors=tokvecs)
yield from docs
def predict(self, docs):
tokvecs = self.model.tok2vec(docs)
scores = self.model.softmax(tokvecs)
guesses = []
for doc_scores in scores:
doc_guesses = doc_scores.argmax(axis=1)
if not isinstance(doc_guesses, numpy.ndarray):
doc_guesses = doc_guesses.get()
guesses.append(doc_guesses)
return guesses, tokvecs
def set_annotations(self, docs, batch_tag_ids, tensors=None):
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
cdef int idx = 0
cdef Vocab vocab = self.vocab
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, 'get'):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
# Don't clobber preset POS tags
if doc.c[j].tag == 0 and doc.c[j].pos == 0:
# Don't clobber preset lemmas
lemma = doc.c[j].lemma
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
if lemma != 0 and lemma != doc.c[j].lex.orth:
doc.c[j].lemma = lemma
idx += 1
if tensors is not None:
if isinstance(doc.tensor, numpy.ndarray) \
and not isinstance(tensors[i], numpy.ndarray):
doc.extend_tensor(tensors[i].get())
else:
doc.extend_tensor(tensors[i])
doc.is_tagged = True
def update(self, docs, golds, drop=0., sgd=None, losses=None):
if losses is not None and self.name not in losses:
losses[self.name] = 0.
tag_scores, bp_tag_scores = self.model.begin_update(docs, drop=drop)
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
bp_tag_scores(d_tag_scores, sgd=sgd)
if losses is not None:
losses[self.name] += loss
def get_loss(self, docs, golds, scores):
scores = self.model.ops.flatten(scores)
tag_index = {tag: i for i, tag in enumerate(self.labels)}
cdef int idx = 0
correct = numpy.zeros((scores.shape[0],), dtype='i')
guesses = scores.argmax(axis=1)
for gold in golds:
for tag in gold.tags:
if tag is None:
correct[idx] = guesses[idx]
else:
correct[idx] = tag_index[tag]
idx += 1
correct = self.model.ops.xp.array(correct, dtype='i')
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
d_scores /= d_scores.shape[0]
loss = (d_scores**2).sum()
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
return float(loss), d_scores
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None,
**kwargs):
orig_tag_map = dict(self.vocab.morphology.tag_map)
new_tag_map = OrderedDict()
for raw_text, annots_brackets in gold_tuples:
for annots, brackets in annots_brackets:
ids, words, tags, heads, deps, ents = annots
for tag in tags:
if tag in orig_tag_map:
new_tag_map[tag] = orig_tag_map[tag]
else:
new_tag_map[tag] = {POS: X}
cdef Vocab vocab = self.vocab
if new_tag_map:
vocab.morphology = Morphology(vocab.strings, new_tag_map,
vocab.morphology.lemmatizer,
exc=vocab.morphology.exc)
self.cfg['pretrained_vectors'] = kwargs.get('pretrained_vectors')
if self.model is True:
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
@classmethod
def Model(cls, n_tags, **cfg):
if cfg.get('pretrained_dims') and not cfg.get('pretrained_vectors'):
raise ValueError(TempErrors.T008)
return build_tagger_model(n_tags, **cfg)
def add_label(self, label, values=None):
if label in self.labels:
return 0
if self.model not in (True, False, None):
# Here's how the model resizing will work, once the
# neuron-to-tag mapping is no longer controlled by
# the Morphology class, which sorts the tag names.
# The sorting makes adding labels difficult.
# smaller = self.model._layers[-1]
# larger = Softmax(len(self.labels)+1, smaller.nI)
# copy_array(larger.W[:smaller.nO], smaller.W)
# copy_array(larger.b[:smaller.nO], smaller.b)
# self.model._layers[-1] = larger
raise ValueError(TempErrors.T003)
tag_map = dict(self.vocab.morphology.tag_map)
if values is None:
values = {POS: "X"}
tag_map[label] = values
self.vocab.morphology = Morphology(
self.vocab.strings, tag_map=tag_map,
lemmatizer=self.vocab.morphology.lemmatizer,
exc=self.vocab.morphology.exc)
return 1
def use_params(self, params):
with self.model.use_params(params):
yield
def to_bytes(self, **exclude):
serialize = OrderedDict()
if self.model in (None, True, False):
serialize['model'] = lambda: self.model
else:
serialize['model'] = self.model.to_bytes
serialize['vocab'] = self.vocab.to_bytes
serialize['cfg'] = lambda: ujson.dumps(self.cfg)
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
serialize['tag_map'] = lambda: msgpack.dumps(
tag_map, use_bin_type=True, encoding='utf8')
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data, **exclude):
def load_model(b):
# TODO: Remove this once we don't have to handle previous models
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
if self.model is True:
token_vector_width = util.env_opt(
'token_vector_width',
self.cfg.get('token_vector_width', 128))
self.model = self.Model(self.vocab.morphology.n_tags,
**self.cfg)
self.model.from_bytes(b)
def load_tag_map(b):
tag_map = msgpack.loads(b, encoding='utf8')
self.vocab.morphology = Morphology(
self.vocab.strings, tag_map=tag_map,
lemmatizer=self.vocab.morphology.lemmatizer,
exc=self.vocab.morphology.exc)
deserialize = OrderedDict((
('vocab', lambda b: self.vocab.from_bytes(b)),
('tag_map', load_tag_map),
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
('model', lambda b: load_model(b)),
))
util.from_bytes(bytes_data, deserialize, exclude)
return self
def to_disk(self, path, **exclude):
tag_map = OrderedDict(sorted(self.vocab.morphology.tag_map.items()))
serialize = OrderedDict((
('vocab', lambda p: self.vocab.to_disk(p)),
('tag_map', lambda p: p.open('wb').write(msgpack.dumps(
tag_map, use_bin_type=True, encoding='utf8'))),
('model', lambda p: p.open('wb').write(self.model.to_bytes())),
('cfg', lambda p: p.open('w').write(json_dumps(self.cfg)))
))
util.to_disk(path, serialize, exclude)
def from_disk(self, path, **exclude):
def load_model(p):
# TODO: Remove this once we don't have to handle previous models
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
if self.model is True:
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
with p.open('rb') as file_:
self.model.from_bytes(file_.read())
def load_tag_map(p):
with p.open('rb') as file_:
tag_map = msgpack.loads(file_.read(), encoding='utf8')
self.vocab.morphology = Morphology(
self.vocab.strings, tag_map=tag_map,
lemmatizer=self.vocab.morphology.lemmatizer,
exc=self.vocab.morphology.exc)
deserialize = OrderedDict((
('cfg', lambda p: self.cfg.update(_load_cfg(p))),
('vocab', lambda p: self.vocab.from_disk(p)),
('tag_map', load_tag_map),
('model', load_model),
))
util.from_disk(path, deserialize, exclude)
return self
class MultitaskObjective(Tagger):
"""Experimental: Assist training of a parser or tagger, by training a
side-objective.
"""
name = 'nn_labeller'
def __init__(self, vocab, model=True, target='dep_tag_offset', **cfg):
self.vocab = vocab
self.model = model
if target == 'dep':
self.make_label = self.make_dep
elif target == 'tag':
self.make_label = self.make_tag
elif target == 'ent':
self.make_label = self.make_ent
elif target == 'dep_tag_offset':
self.make_label = self.make_dep_tag_offset
elif target == 'ent_tag':
self.make_label = self.make_ent_tag
elif hasattr(target, '__call__'):
self.make_label = target
else:
raise ValueError(Errors.E016)
self.cfg = dict(cfg)
self.cfg.setdefault('cnn_maxout_pieces', 2)
@property
def labels(self):
return self.cfg.setdefault('labels', {})
@labels.setter
def labels(self, value):
self.cfg['labels'] = value
def set_annotations(self, docs, dep_ids, tensors=None):
pass
def begin_training(self, gold_tuples=tuple(), pipeline=None, tok2vec=None,
sgd=None, **kwargs):
gold_tuples = nonproj.preprocess_training_data(gold_tuples)
for raw_text, annots_brackets in gold_tuples:
for annots, brackets in annots_brackets:
ids, words, tags, heads, deps, ents = annots
for i in range(len(ids)):
label = self.make_label(i, words, tags, heads, deps, ents)
if label is not None and label not in self.labels:
self.labels[label] = len(self.labels)
if self.model is True:
token_vector_width = util.env_opt('token_vector_width')
self.model = self.Model(len(self.labels), tok2vec=tok2vec)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
@classmethod
def Model(cls, n_tags, tok2vec=None, **cfg):
token_vector_width = util.env_opt('token_vector_width', 128)
softmax = Softmax(n_tags, token_vector_width)
model = chain(
tok2vec,
softmax
)
model.tok2vec = tok2vec
model.softmax = softmax
return model
def predict(self, docs):
tokvecs = self.model.tok2vec(docs)
scores = self.model.softmax(tokvecs)
return tokvecs, scores
def get_loss(self, docs, golds, scores):
if len(docs) != len(golds):
raise ValueError(Errors.E077.format(value='loss', n_docs=len(docs),
n_golds=len(golds)))
cdef int idx = 0
correct = numpy.zeros((scores.shape[0],), dtype='i')
guesses = scores.argmax(axis=1)
for i, gold in enumerate(golds):
for j in range(len(docs[i])):
# Handes alignment for tokenization differences
gold_idx = gold.cand_to_gold[j]
if gold_idx is None:
idx += 1
continue
label = self.make_label(gold_idx, gold.words, gold.tags,
gold.heads, gold.labels, gold.ents)
if label is None or label not in self.labels:
correct[idx] = guesses[idx]
else:
correct[idx] = self.labels[label]
idx += 1
correct = self.model.ops.xp.array(correct, dtype='i')
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
d_scores /= d_scores.shape[0]
loss = (d_scores**2).sum()
return float(loss), d_scores
@staticmethod
def make_dep(i, words, tags, heads, deps, ents):
if deps[i] is None or heads[i] is None:
return None
return deps[i]
@staticmethod
def make_tag(i, words, tags, heads, deps, ents):
return tags[i]
@staticmethod
def make_ent(i, words, tags, heads, deps, ents):
if ents is None:
return None
return ents[i]
@staticmethod
def make_dep_tag_offset(i, words, tags, heads, deps, ents):
if deps[i] is None or heads[i] is None:
return None
offset = heads[i] - i
offset = min(offset, 2)
offset = max(offset, -2)
return '%s-%s:%d' % (deps[i], tags[i], offset)
@staticmethod
def make_ent_tag(i, words, tags, heads, deps, ents):
if ents is None or ents[i] is None:
return None
else:
return '%s-%s' % (tags[i], ents[i])
class SimilarityHook(Pipe):
"""
Experimental: A pipeline component to install a hook for supervised
similarity into `Doc` objects. Requires a `Tensorizer` to pre-process
documents. The similarity model can be any object obeying the Thinc `Model`
interface. By default, the model concatenates the elementwise mean and
elementwise max of the two tensors, and compares them using the
Cauchy-like similarity function from Chen (2013):
>>> similarity = 1. / (1. + (W * (vec1-vec2)**2).sum())
Where W is a vector of dimension weights, initialized to 1.
"""
name = 'similarity'
def __init__(self, vocab, model=True, **cfg):
self.vocab = vocab
self.model = model
self.cfg = dict(cfg)
@classmethod
def Model(cls, length):
return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
def __call__(self, doc):
"""Install similarity hook"""
doc.user_hooks['similarity'] = self.predict
return doc
def pipe(self, docs, **kwargs):
for doc in docs:
yield self(doc)
def predict(self, doc1, doc2):
return self.model.predict([(doc1, doc2)])
def update(self, doc1_doc2, golds, sgd=None, drop=0.):
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
"""Allocate model, using width from tensorizer in pipeline.
gold_tuples (iterable): Gold-standard training data.
pipeline (list): The pipeline the model is part of.
"""
if self.model is True:
self.model = self.Model(pipeline[0].model.nO)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
class TextCategorizer(Pipe):
name = 'textcat'
@classmethod
def Model(cls, nr_class=1, width=64, **cfg):
return build_text_classifier(nr_class, width, **cfg)
def __init__(self, vocab, model=True, **cfg):
self.vocab = vocab
self.model = model
self.cfg = dict(cfg)
@property
def labels(self):
return self.cfg.setdefault('labels', [])
@labels.setter
def labels(self, value):
self.cfg['labels'] = value
def __call__(self, doc):
scores, tensors = self.predict([doc])
self.set_annotations([doc], scores, tensors=tensors)
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
for docs in cytoolz.partition_all(batch_size, stream):
docs = list(docs)
scores, tensors = self.predict(docs)
self.set_annotations(docs, scores, tensors=tensors)
yield from docs
def predict(self, docs):
scores = self.model(docs)
scores = self.model.ops.asarray(scores)
tensors = [doc.tensor for doc in docs]
return scores, tensors
def set_annotations(self, docs, scores, tensors=None):
for i, doc in enumerate(docs):
for j, label in enumerate(self.labels):
doc.cats[label] = float(scores[i, j])
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
scores, bp_scores = self.model.begin_update(docs, drop=drop)
loss, d_scores = self.get_loss(docs, golds, scores)
bp_scores(d_scores, sgd=sgd)
if losses is not None:
losses.setdefault(self.name, 0.0)
losses[self.name] += loss
def get_loss(self, docs, golds, scores):
truths = numpy.zeros((len(golds), len(self.labels)), dtype='f')
not_missing = numpy.ones((len(golds), len(self.labels)), dtype='f')
for i, gold in enumerate(golds):
for j, label in enumerate(self.labels):
if label in gold.cats:
truths[i, j] = gold.cats[label]
else:
not_missing[i, j] = 0.
truths = self.model.ops.asarray(truths)
not_missing = self.model.ops.asarray(not_missing)
d_scores = (scores-truths) / scores.shape[0]
d_scores *= not_missing
mean_square_error = ((scores-truths)**2).sum(axis=1).mean()
return mean_square_error, d_scores
def add_label(self, label):
if label in self.labels:
return 0
if self.model not in (None, True, False):
smaller = self.model._layers[-1]
larger = Affine(len(self.labels)+1, smaller.nI)
copy_array(larger.W[:smaller.nO], smaller.W)
copy_array(larger.b[:smaller.nO], smaller.b)
self.model._layers[-1] = larger
self.labels.append(label)
return 1
def begin_training(self, gold_tuples=tuple(), pipeline=None, sgd=None,
**kwargs):
if pipeline and getattr(pipeline[0], 'name', None) == 'tensorizer':
token_vector_width = pipeline[0].model.nO
else:
token_vector_width = 64
if self.model is True:
self.cfg['pretrained_vectors'] = kwargs.get('pretrained_vectors')
self.model = self.Model(len(self.labels), token_vector_width,
**self.cfg)
link_vectors_to_models(self.vocab)
if sgd is None:
sgd = self.create_optimizer()
return sgd
cdef class DependencyParser(Parser):
name = 'parser'
TransitionSystem = ArcEager
@property
def postprocesses(self):
return [nonproj.deprojectivize]
def add_multitask_objective(self, target):
labeller = MultitaskObjective(self.vocab, target=target)
self._multitasks.append(labeller)
def init_multitask_objectives(self, gold_tuples, pipeline, sgd=None, **cfg):
for labeller in self._multitasks:
tok2vec = self.model[0]
labeller.begin_training(gold_tuples, pipeline=pipeline,
tok2vec=tok2vec, sgd=sgd)
def __reduce__(self):
return (DependencyParser, (self.vocab, self.moves, self.model),
None, None)
cdef class EntityRecognizer(Parser):
name = 'ner'
TransitionSystem = BiluoPushDown
nr_feature = 6
def add_multitask_objective(self, target):
labeller = MultitaskObjective(self.vocab, target=target)
self._multitasks.append(labeller)
def init_multitask_objectives(self, gold_tuples, pipeline, sgd=None, **cfg):
for labeller in self._multitasks:
tok2vec = self.model[0]
labeller.begin_training(gold_tuples, pipeline=pipeline,
tok2vec=tok2vec)
def __reduce__(self):
return (EntityRecognizer, (self.vocab, self.moves, self.model),
None, None)
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'Tensorizer']