You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

264 lines
6.1 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import SentSeg\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[['Hallo', 'was', 'gehe', 'denn', 'hier', 'so.']], [['Ich', 'habe', 'echt', 'keine', 'Ahnung', 'verdammt.']], [['I.', 'd.', 'R.', 'gibt', 'es', 'keine', 'Abschiebungen.']], [['Ende', 'd.', 'J.', 'wird', 'alles', 'problematisch.']], [['Sie', 'gingen', 'nach', 'Hause,', 'weil', 'es', 'in', 'Strömen', 'regnete.']], [['Heute', 'war', 'die', 'Straße', 'blau', 'angemalt,', 'damit', 'der', 'Marathon', 'funktionierte.']], [['Er', 'habe', 'es', 'sehr', 'schwer.']], [['Es', 'war', 'die', 'Hose', 'des', 'Gauners.']], [['Bliblablub.']], [['Sie', 'ist', 'nicht', 'schön', 'heute.']], [['Oleoleole.']], [['Mannoman.']], [['Er', 'ginge', 'nicht', 'schnell.']], [['Die', 'Hühner', 'lieben', 'sich', 'nicht.']]]\n"
]
}
],
"source": [
"sent_seg = SentSeg.SentSeg('de')\n",
"\n",
" \n",
"sentences = sent_seg.ReadDoc2Sent('atest1')\n",
"print(sentences)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"initializing the gs utils..\n",
"loading spacy..\n",
"done\n",
"done\n",
"loading the Stochastic Gradient models..\n",
"done\n",
"initializing the SGM..\n",
"loading vectorizer..\n",
"done\n",
"loading the SGD model..\n",
"done\n",
"loading spacy..\n",
"done\n",
"done\n",
"importing spacy..\n",
"done\n",
"importing german model..\n",
"done\n"
]
},
{
"data": {
"text/plain": [
"'done'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sent_seg.LoadSentGlueSGDandGSUtils()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"creating array of comma or not..\n",
"done\n"
]
}
],
"source": [
"sentences = sent_seg.CommaSentenceOrNot(sentences)\n",
"print(sentences)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"sentences = sent_seg.GetUtteranceNumber(sentences)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"sentences = sent_seg.GetQuestionOrNot(sentences)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"importing spacy..\n",
"done\n"
]
}
],
"source": [
"sentences1 = sent_seg.SplitSentencesIntoHauptNebenTuple(sentences)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['es', 'regnete', 'in Strömen']\n",
"['deswegen', 'Sie', 'gingen', 'nach Hause']\n",
"['Heute', 'war', 'blau', 'angemalt', 'die Straße']\n",
"100\n",
"['dann', 'funktionierte', 'der Marathon']\n"
]
}
],
"source": [
"outsentences = sent_seg.SplitCommatas(sentences1)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['Hallo', 'was', 'gehe', 'denn', 'hier', 'so'], ['Ich', 'habe', 'echt', 'keine', 'Ahnung', 'verdammt'], ['I.', 'd.', 'R.', 'gibt', 'es', 'keine', 'Abschiebungen'], ['Ende', 'd.', 'J.', 'wird', 'alles', 'problematisch'], ['in', 'Strömen', 'regnete', 'e'], ['deswegen', 'gingen', 'Sie', 'nach', 'Haus'], ['angemalt', 'war', 'die', 'Straße', 'blau', 'Heut'], ['dann', 'der', 'Marathon', 'funktioniert'], ['Er', 'habe', 'es', 'sehr', 'schwer'], ['Es', 'war', 'die', 'Hose', 'des', 'Gauners'], ['Bliblablub'], ['Oleoleole'], ['Mannoman'], ['Er', 'ginge', 'nicht', 'schnell'], ['Der', 'Satz', 'davor', 'funktioniert', 'nicht', 'im', 'Modul', 'Konjunktsolve'], ['Weil', 'er', 'zu', 'viele', 'verben', 'hat']]\n"
]
}
],
"source": [
"print(outsentences)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"punctuations = []\n",
"for n in range(len(outsentences)):\n",
" punctuations.append('.')\n",
" if outsentences[n][-1][-1] == '.':\n",
" outsentences[n][-1] = outsentences[n][-1][:-1]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"from oi import *\n",
"oi = oi()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n",
".\n"
]
},
{
"data": {
"text/plain": [
"'OK'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oi.PrintSplitSentencesToTextFile(punctuations, outsentences, 'test1out')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}