|
#! /usr/bin/env python
|
|
|
|
"""
|
|
Implementation of Elliptic-Curve Digital Signatures.
|
|
|
|
Classes and methods for elliptic-curve signatures:
|
|
private keys, public keys, signatures,
|
|
NIST prime-modulus curves with modulus lengths of
|
|
192, 224, 256, 384, and 521 bits.
|
|
|
|
Example:
|
|
|
|
# (In real-life applications, you would probably want to
|
|
# protect against defects in SystemRandom.)
|
|
from random import SystemRandom
|
|
randrange = SystemRandom().randrange
|
|
|
|
# Generate a public/private key pair using the NIST Curve P-192:
|
|
|
|
g = generator_192
|
|
n = g.order()
|
|
secret = randrange( 1, n )
|
|
pubkey = Public_key( g, g * secret )
|
|
privkey = Private_key( pubkey, secret )
|
|
|
|
# Signing a hash value:
|
|
|
|
hash = randrange( 1, n )
|
|
signature = privkey.sign( hash, randrange( 1, n ) )
|
|
|
|
# Verifying a signature for a hash value:
|
|
|
|
if pubkey.verifies( hash, signature ):
|
|
print_("Demo verification succeeded.")
|
|
else:
|
|
print_("*** Demo verification failed.")
|
|
|
|
# Verification fails if the hash value is modified:
|
|
|
|
if pubkey.verifies( hash-1, signature ):
|
|
print_("**** Demo verification failed to reject tampered hash.")
|
|
else:
|
|
print_("Demo verification correctly rejected tampered hash.")
|
|
|
|
Version of 2009.05.16.
|
|
|
|
Revision history:
|
|
2005.12.31 - Initial version.
|
|
2008.11.25 - Substantial revisions introducing new classes.
|
|
2009.05.16 - Warn against using random.randrange in real applications.
|
|
2009.05.17 - Use random.SystemRandom by default.
|
|
|
|
Written in 2005 by Peter Pearson and placed in the public domain.
|
|
"""
|
|
|
|
from .six import int2byte, b, print_
|
|
from . import ellipticcurve
|
|
from . import numbertheory
|
|
import random
|
|
|
|
|
|
|
|
class Signature( object ):
|
|
"""ECDSA signature.
|
|
"""
|
|
def __init__( self, r, s ):
|
|
self.r = r
|
|
self.s = s
|
|
|
|
|
|
|
|
class Public_key( object ):
|
|
"""Public key for ECDSA.
|
|
"""
|
|
|
|
def __init__( self, generator, point ):
|
|
"""generator is the Point that generates the group,
|
|
point is the Point that defines the public key.
|
|
"""
|
|
|
|
self.curve = generator.curve()
|
|
self.generator = generator
|
|
self.point = point
|
|
n = generator.order()
|
|
if not n:
|
|
raise RuntimeError("Generator point must have order.")
|
|
if not n * point == ellipticcurve.INFINITY:
|
|
raise RuntimeError("Generator point order is bad.")
|
|
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
|
|
raise RuntimeError("Generator point has x or y out of range.")
|
|
|
|
|
|
def verifies( self, hash, signature ):
|
|
"""Verify that signature is a valid signature of hash.
|
|
Return True if the signature is valid.
|
|
"""
|
|
|
|
# From X9.62 J.3.1.
|
|
|
|
G = self.generator
|
|
n = G.order()
|
|
r = signature.r
|
|
s = signature.s
|
|
if r < 1 or r > n-1: return False
|
|
if s < 1 or s > n-1: return False
|
|
c = numbertheory.inverse_mod( s, n )
|
|
u1 = ( hash * c ) % n
|
|
u2 = ( r * c ) % n
|
|
xy = u1 * G + u2 * self.point
|
|
v = xy.x() % n
|
|
return v == r
|
|
|
|
|
|
|
|
class Private_key( object ):
|
|
"""Private key for ECDSA.
|
|
"""
|
|
|
|
def __init__( self, public_key, secret_multiplier ):
|
|
"""public_key is of class Public_key;
|
|
secret_multiplier is a large integer.
|
|
"""
|
|
|
|
self.public_key = public_key
|
|
self.secret_multiplier = secret_multiplier
|
|
|
|
def sign( self, hash, random_k ):
|
|
"""Return a signature for the provided hash, using the provided
|
|
random nonce. It is absolutely vital that random_k be an unpredictable
|
|
number in the range [1, self.public_key.point.order()-1]. If
|
|
an attacker can guess random_k, he can compute our private key from a
|
|
single signature. Also, if an attacker knows a few high-order
|
|
bits (or a few low-order bits) of random_k, he can compute our private
|
|
key from many signatures. The generation of nonces with adequate
|
|
cryptographic strength is very difficult and far beyond the scope
|
|
of this comment.
|
|
|
|
May raise RuntimeError, in which case retrying with a new
|
|
random value k is in order.
|
|
"""
|
|
|
|
G = self.public_key.generator
|
|
n = G.order()
|
|
k = random_k % n
|
|
p1 = k * G
|
|
r = p1.x()
|
|
if r == 0: raise RuntimeError("amazingly unlucky random number r")
|
|
s = ( numbertheory.inverse_mod( k, n ) * \
|
|
( hash + ( self.secret_multiplier * r ) % n ) ) % n
|
|
if s == 0: raise RuntimeError("amazingly unlucky random number s")
|
|
return Signature( r, s )
|
|
|
|
|
|
|
|
def int_to_string( x ):
|
|
"""Convert integer x into a string of bytes, as per X9.62."""
|
|
assert x >= 0
|
|
if x == 0: return b('\0')
|
|
result = []
|
|
while x:
|
|
ordinal = x & 0xFF
|
|
result.append(int2byte(ordinal))
|
|
x >>= 8
|
|
|
|
result.reverse()
|
|
return b('').join(result)
|
|
|
|
|
|
def string_to_int( s ):
|
|
"""Convert a string of bytes into an integer, as per X9.62."""
|
|
result = 0
|
|
for c in s:
|
|
if not isinstance(c, int): c = ord( c )
|
|
result = 256 * result + c
|
|
return result
|
|
|
|
|
|
def digest_integer( m ):
|
|
"""Convert an integer into a string of bytes, compute
|
|
its SHA-1 hash, and convert the result to an integer."""
|
|
#
|
|
# I don't expect this function to be used much. I wrote
|
|
# it in order to be able to duplicate the examples
|
|
# in ECDSAVS.
|
|
#
|
|
from hashlib import sha1
|
|
return string_to_int( sha1( int_to_string( m ) ).digest() )
|
|
|
|
|
|
def point_is_valid( generator, x, y ):
|
|
"""Is (x,y) a valid public key based on the specified generator?"""
|
|
|
|
# These are the tests specified in X9.62.
|
|
|
|
n = generator.order()
|
|
curve = generator.curve()
|
|
if x < 0 or n <= x or y < 0 or n <= y:
|
|
return False
|
|
if not curve.contains_point( x, y ):
|
|
return False
|
|
if not n*ellipticcurve.Point( curve, x, y ) == \
|
|
ellipticcurve.INFINITY:
|
|
return False
|
|
return True
|
|
|
|
|
|
|
|
# NIST Curve P-192:
|
|
_p = 6277101735386680763835789423207666416083908700390324961279
|
|
_r = 6277101735386680763835789423176059013767194773182842284081
|
|
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
|
|
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
|
|
_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
|
|
_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
|
|
_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
|
|
|
|
curve_192 = ellipticcurve.CurveFp( _p, -3, _b )
|
|
generator_192 = ellipticcurve.Point( curve_192, _Gx, _Gy, _r )
|
|
|
|
|
|
# NIST Curve P-224:
|
|
_p = 26959946667150639794667015087019630673557916260026308143510066298881
|
|
_r = 26959946667150639794667015087019625940457807714424391721682722368061
|
|
# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
|
|
# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
|
|
_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
|
|
_Gx =0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
|
|
_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34
|
|
|
|
curve_224 = ellipticcurve.CurveFp( _p, -3, _b )
|
|
generator_224 = ellipticcurve.Point( curve_224, _Gx, _Gy, _r )
|
|
|
|
# NIST Curve P-256:
|
|
_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
|
|
_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369
|
|
# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
|
|
# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
|
|
_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
|
|
_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
|
|
_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
|
|
|
|
curve_256 = ellipticcurve.CurveFp( _p, -3, _b )
|
|
generator_256 = ellipticcurve.Point( curve_256, _Gx, _Gy, _r )
|
|
|
|
# NIST Curve P-384:
|
|
_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
|
|
_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
|
|
# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
|
|
# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
|
|
_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
|
|
_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
|
|
_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f
|
|
|
|
curve_384 = ellipticcurve.CurveFp( _p, -3, _b )
|
|
generator_384 = ellipticcurve.Point( curve_384, _Gx, _Gy, _r )
|
|
|
|
# NIST Curve P-521:
|
|
_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151
|
|
_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
|
|
# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
|
|
# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
|
|
_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
|
|
_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
|
|
_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650
|
|
|
|
curve_521 = ellipticcurve.CurveFp( _p, -3, _b )
|
|
generator_521 = ellipticcurve.Point( curve_521, _Gx, _Gy, _r )
|
|
|
|
# Certicom secp256-k1
|
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000
|
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007
|
|
_p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
|
|
_Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
|
|
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
|
|
_r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
|
|
|
|
curve_secp256k1 = ellipticcurve.CurveFp( _p, _a, _b)
|
|
generator_secp256k1 = ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r)
|
|
|
|
|
|
|
|
def __main__():
|
|
class TestFailure(Exception): pass
|
|
|
|
def test_point_validity( generator, x, y, expected ):
|
|
"""generator defines the curve; is (x,y) a point on
|
|
this curve? "expected" is True if the right answer is Yes."""
|
|
if point_is_valid( generator, x, y ) == expected:
|
|
print_("Point validity tested as expected.")
|
|
else:
|
|
raise TestFailure("*** Point validity test gave wrong result.")
|
|
|
|
def test_signature_validity( Msg, Qx, Qy, R, S, expected ):
|
|
"""Msg = message, Qx and Qy represent the base point on
|
|
elliptic curve c192, R and S are the signature, and
|
|
"expected" is True iff the signature is expected to be valid."""
|
|
pubk = Public_key( generator_192,
|
|
ellipticcurve.Point( curve_192, Qx, Qy ) )
|
|
got = pubk.verifies( digest_integer( Msg ), Signature( R, S ) )
|
|
if got == expected:
|
|
print_("Signature tested as expected: got %s, expected %s." % \
|
|
( got, expected ))
|
|
else:
|
|
raise TestFailure("*** Signature test failed: got %s, expected %s." % \
|
|
( got, expected ))
|
|
|
|
print_("NIST Curve P-192:")
|
|
|
|
p192 = generator_192
|
|
|
|
# From X9.62:
|
|
|
|
d = 651056770906015076056810763456358567190100156695615665659
|
|
Q = d * p192
|
|
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
|
|
raise TestFailure("*** p192 * d came out wrong.")
|
|
else:
|
|
print_("p192 * d came out right.")
|
|
|
|
k = 6140507067065001063065065565667405560006161556565665656654
|
|
R = k * p192
|
|
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
|
|
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
|
|
raise TestFailure("*** k * p192 came out wrong.")
|
|
else:
|
|
print_("k * p192 came out right.")
|
|
|
|
u1 = 2563697409189434185194736134579731015366492496392189760599
|
|
u2 = 6266643813348617967186477710235785849136406323338782220568
|
|
temp = u1 * p192 + u2 * Q
|
|
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
|
|
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
|
|
raise TestFailure("*** u1 * p192 + u2 * Q came out wrong.")
|
|
else:
|
|
print_("u1 * p192 + u2 * Q came out right.")
|
|
|
|
e = 968236873715988614170569073515315707566766479517
|
|
pubk = Public_key( generator_192, generator_192 * d )
|
|
privk = Private_key( pubk, d )
|
|
sig = privk.sign( e, k )
|
|
r, s = sig.r, sig.s
|
|
if r != 3342403536405981729393488334694600415596881826869351677613 \
|
|
or s != 5735822328888155254683894997897571951568553642892029982342:
|
|
raise TestFailure("*** r or s came out wrong.")
|
|
else:
|
|
print_("r and s came out right.")
|
|
|
|
valid = pubk.verifies( e, sig )
|
|
if valid: print_("Signature verified OK.")
|
|
else: raise TestFailure("*** Signature failed verification.")
|
|
|
|
valid = pubk.verifies( e-1, sig )
|
|
if not valid: print_("Forgery was correctly rejected.")
|
|
else: raise TestFailure("*** Forgery was erroneously accepted.")
|
|
|
|
print_("Testing point validity, as per ECDSAVS.pdf B.2.2:")
|
|
|
|
test_point_validity( \
|
|
p192, \
|
|
0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83a, \
|
|
0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfc, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73b, \
|
|
0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adb, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792, \
|
|
0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6, \
|
|
0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f, \
|
|
True )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70, \
|
|
0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4e, \
|
|
True )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedced, \
|
|
0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9, \
|
|
True )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15, \
|
|
0x7b482604199367f1f303f9ef627f922f97023e90eae08abf, \
|
|
True )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798eda, \
|
|
0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12, \
|
|
0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43, \
|
|
0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caa, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbc, \
|
|
0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6, \
|
|
False )
|
|
|
|
test_point_validity(
|
|
p192, \
|
|
0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253, \
|
|
0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923, \
|
|
False )
|
|
|
|
print_("Trying signature-verification tests from ECDSAVS.pdf B.2.4:")
|
|
print_("P-192:")
|
|
Msg = 0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff798cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d158
|
|
Qx = 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7ac
|
|
Qy = 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4
|
|
R = 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916
|
|
S = 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479
|
|
test_signature_validity( Msg, Qx, Qy, R, S, True )
|
|
|
|
Msg = 0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db12e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db326ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63f4
|
|
Qx = 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7
|
|
Qy = 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7
|
|
R = 0x8285261607283ba18f335026130bab31840dcfd9c3e555af
|
|
S = 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06c
|
|
test_signature_validity( Msg, Qx, Qy, R, S, True )
|
|
|
|
Msg = 0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cdd41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d303f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42dd
|
|
Qx = 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7
|
|
Qy = 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336
|
|
R = 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91
|
|
S = 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b563097ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd8a
|
|
Qx = 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0b
|
|
Qy = 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4
|
|
R = 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1
|
|
S = 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d39192e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bceae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072fb
|
|
Qx = 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828
|
|
Qy = 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ff
|
|
R = 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796
|
|
S = 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397ce15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aae98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca6d
|
|
Qx = 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19f
|
|
Qy = 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686
|
|
R = 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325
|
|
S = 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a278461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76e1
|
|
Qx = 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04
|
|
Qy = 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1
|
|
R = 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1c
|
|
S = 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6ba2
|
|
Qx = 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaa
|
|
Qy = 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3e
|
|
R = 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955
|
|
S = 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc910250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb658
|
|
Qx = 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2f
|
|
Qy = 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ec
|
|
R = 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62
|
|
S = 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e10288acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c90a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9ea387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c97a
|
|
Qx = 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4a
|
|
Qy = 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905
|
|
R = 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73b
|
|
S = 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5
|
|
test_signature_validity( Msg, Qx, Qy, R, S, True )
|
|
|
|
Msg = 0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f6450d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d9064e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8ce1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd0456d
|
|
Qx = 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecef
|
|
Qy = 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1
|
|
R = 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06
|
|
S = 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dc
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214eed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c440341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839d7
|
|
Qx = 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753
|
|
Qy = 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520
|
|
R = 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668
|
|
S = 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf9986670a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b41269bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160cef3
|
|
Qx = 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835
|
|
Qy = 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76b
|
|
R = 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ff
|
|
S = 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add5023572720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1
|
|
Qx = 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0
|
|
Qy = 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8da
|
|
R = 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23
|
|
S = 0x738421cf5e049159d69c57a915143e226cac8355e149afe9
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
Msg = 0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5afa261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6db377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb
|
|
Qx = 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77
|
|
Qy = 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22
|
|
R = 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1
|
|
S = 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9
|
|
test_signature_validity( Msg, Qx, Qy, R, S, False )
|
|
|
|
|
|
|
|
print_("Testing the example code:")
|
|
|
|
# Building a public/private key pair from the NIST Curve P-192:
|
|
|
|
g = generator_192
|
|
n = g.order()
|
|
|
|
# (random.SystemRandom is supposed to provide
|
|
# crypto-quality random numbers, but as Debian recently
|
|
# illustrated, a systems programmer can accidentally
|
|
# demolish this security, so in serious applications
|
|
# further precautions are appropriate.)
|
|
|
|
randrange = random.SystemRandom().randrange
|
|
|
|
secret = randrange( 1, n )
|
|
pubkey = Public_key( g, g * secret )
|
|
privkey = Private_key( pubkey, secret )
|
|
|
|
# Signing a hash value:
|
|
|
|
hash = randrange( 1, n )
|
|
signature = privkey.sign( hash, randrange( 1, n ) )
|
|
|
|
# Verifying a signature for a hash value:
|
|
|
|
if pubkey.verifies( hash, signature ):
|
|
print_("Demo verification succeeded.")
|
|
else:
|
|
raise TestFailure("*** Demo verification failed.")
|
|
|
|
if pubkey.verifies( hash-1, signature ):
|
|
raise TestFailure( "**** Demo verification failed to reject tampered hash.")
|
|
else:
|
|
print_("Demo verification correctly rejected tampered hash.")
|
|
|
|
if __name__ == "__main__":
|
|
__main__()
|