103 lines
2.7 KiB
Python
103 lines
2.7 KiB
Python
'''
|
|
RFC 6979:
|
|
Deterministic Usage of the Digital Signature Algorithm (DSA) and
|
|
Elliptic Curve Digital Signature Algorithm (ECDSA)
|
|
|
|
http://tools.ietf.org/html/rfc6979
|
|
|
|
Many thanks to Coda Hale for his implementation in Go language:
|
|
https://github.com/codahale/rfc6979
|
|
'''
|
|
|
|
import hmac
|
|
from binascii import hexlify
|
|
from .util import number_to_string, number_to_string_crop
|
|
from .six import b
|
|
|
|
try:
|
|
bin(0)
|
|
except NameError:
|
|
binmap = {"0": "0000", "1": "0001", "2": "0010", "3": "0011",
|
|
"4": "0100", "5": "0101", "6": "0110", "7": "0111",
|
|
"8": "1000", "9": "1001", "a": "1010", "b": "1011",
|
|
"c": "1100", "d": "1101", "e": "1110", "f": "1111"}
|
|
def bin(value): # for python2.5
|
|
v = "".join(binmap[x] for x in "%x"%abs(value)).lstrip("0")
|
|
if value < 0:
|
|
return "-0b" + v
|
|
return "0b" + v
|
|
|
|
def bit_length(num):
|
|
# http://docs.python.org/dev/library/stdtypes.html#int.bit_length
|
|
s = bin(num) # binary representation: bin(-37) --> '-0b100101'
|
|
s = s.lstrip('-0b') # remove leading zeros and minus sign
|
|
return len(s) # len('100101') --> 6
|
|
|
|
def bits2int(data, qlen):
|
|
x = int(hexlify(data), 16)
|
|
l = len(data) * 8
|
|
|
|
if l > qlen:
|
|
return x >> (l-qlen)
|
|
return x
|
|
|
|
def bits2octets(data, order):
|
|
z1 = bits2int(data, bit_length(order))
|
|
z2 = z1 - order
|
|
|
|
if z2 < 0:
|
|
z2 = z1
|
|
|
|
return number_to_string_crop(z2, order)
|
|
|
|
# https://tools.ietf.org/html/rfc6979#section-3.2
|
|
def generate_k(order, secexp, hash_func, data):
|
|
'''
|
|
order - order of the DSA generator used in the signature
|
|
secexp - secure exponent (private key) in numeric form
|
|
hash_func - reference to the same hash function used for generating hash
|
|
data - hash in binary form of the signing data
|
|
'''
|
|
|
|
qlen = bit_length(order)
|
|
holen = hash_func().digest_size
|
|
rolen = (qlen + 7) / 8
|
|
bx = number_to_string(secexp, order) + bits2octets(data, order)
|
|
|
|
# Step B
|
|
v = b('\x01') * holen
|
|
|
|
# Step C
|
|
k = b('\x00') * holen
|
|
|
|
# Step D
|
|
|
|
k = hmac.new(k, v+b('\x00')+bx, hash_func).digest()
|
|
|
|
# Step E
|
|
v = hmac.new(k, v, hash_func).digest()
|
|
|
|
# Step F
|
|
k = hmac.new(k, v+b('\x01')+bx, hash_func).digest()
|
|
|
|
# Step G
|
|
v = hmac.new(k, v, hash_func).digest()
|
|
|
|
# Step H
|
|
while True:
|
|
# Step H1
|
|
t = b('')
|
|
|
|
# Step H2
|
|
while len(t) < rolen:
|
|
v = hmac.new(k, v, hash_func).digest()
|
|
t += v
|
|
|
|
# Step H3
|
|
secret = bits2int(t, qlen)
|
|
|
|
if secret >= 1 and secret < order:
|
|
return secret
|
|
|
|
k = hmac.new(k, v+b('\x00'), hash_func).digest()
|
|
v = hmac.new(k, v, hash_func).digest()
|