from cpython.dict cimport PyDict_GetItem, PyDict_SetItem from cpython.exc cimport PyErr_Clear, PyErr_GivenExceptionMatches, PyErr_Occurred from cpython.list cimport PyList_Append, PyList_GET_ITEM, PyList_GET_SIZE from cpython.object cimport PyObject_RichCompareBool, Py_NE from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.sequence cimport PySequence_Check from cpython.set cimport PySet_Add, PySet_Contains from cpython.tuple cimport PyTuple_GET_ITEM, PyTuple_GetSlice, PyTuple_New, PyTuple_SET_ITEM # Locally defined bindings that differ from `cython.cpython` bindings from cytoolz.cpython cimport PtrIter_Next, PtrObject_GetItem from collections import deque from heapq import heapify, heappop, heapreplace from itertools import chain, islice from operator import itemgetter from random import Random from cytoolz.compatibility import map, zip, zip_longest from cytoolz.utils import no_default __all__ = ['remove', 'accumulate', 'groupby', 'merge_sorted', 'interleave', 'unique', 'isiterable', 'isdistinct', 'take', 'drop', 'take_nth', 'first', 'second', 'nth', 'last', 'get', 'concat', 'concatv', 'mapcat', 'cons', 'interpose', 'frequencies', 'reduceby', 'iterate', 'sliding_window', 'partition', 'partition_all', 'count', 'pluck', 'join', 'tail', 'diff', 'topk', 'peek', 'random_sample'] cpdef object identity(object x): return x cdef class remove: """ remove(predicate, seq) Return those items of sequence for which predicate(item) is False >>> def iseven(x): ... return x % 2 == 0 >>> list(remove(iseven, [1, 2, 3, 4])) [1, 3] """ def __cinit__(self, object predicate, object seq): self.predicate = predicate self.iter_seq = iter(seq) def __iter__(self): return self def __next__(self): cdef object val val = next(self.iter_seq) while self.predicate(val): val = next(self.iter_seq) return val cdef class accumulate: """ accumulate(binop, seq, initial='__no__default__') Repeatedly apply binary function to a sequence, accumulating results >>> from operator import add, mul >>> list(accumulate(add, [1, 2, 3, 4, 5])) [1, 3, 6, 10, 15] >>> list(accumulate(mul, [1, 2, 3, 4, 5])) [1, 2, 6, 24, 120] Accumulate is similar to ``reduce`` and is good for making functions like cumulative sum: >>> from functools import partial, reduce >>> sum = partial(reduce, add) >>> cumsum = partial(accumulate, add) Accumulate also takes an optional argument that will be used as the first value. This is similar to reduce. >>> list(accumulate(add, [1, 2, 3], -1)) [-1, 0, 2, 5] >>> list(accumulate(add, [], 1)) [1] See Also: itertools.accumulate : In standard itertools for Python 3.2+ """ def __cinit__(self, object binop, object seq, object initial='__no__default__'): self.binop = binop self.iter_seq = iter(seq) self.result = self # sentinel self.initial = initial def __iter__(self): return self def __next__(self): if self.result is self: if self.initial != no_default: self.result = self.initial else: self.result = next(self.iter_seq) else: self.result = self.binop(self.result, next(self.iter_seq)) return self.result cdef inline object _groupby_core(dict d, object key, object item): cdef PyObject *obj = PyDict_GetItem(d, key) if obj is NULL: val = [] PyList_Append(val, item) PyDict_SetItem(d, key, val) else: PyList_Append(obj, item) cpdef dict groupby(object key, object seq): """ Group a collection by a key function >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} Non-callable keys imply grouping on a member. >>> groupby('gender', [{'name': 'Alice', 'gender': 'F'}, ... {'name': 'Bob', 'gender': 'M'}, ... {'name': 'Charlie', 'gender': 'M'}]) # doctest:+SKIP {'F': [{'gender': 'F', 'name': 'Alice'}], 'M': [{'gender': 'M', 'name': 'Bob'}, {'gender': 'M', 'name': 'Charlie'}]} See Also: countby """ cdef dict d = {} cdef object item, keyval cdef Py_ssize_t i, N if callable(key): for item in seq: keyval = key(item) _groupby_core(d, keyval, item) elif isinstance(key, list): N = PyList_GET_SIZE(key) for item in seq: keyval = PyTuple_New(N) for i in range(N): val = PyList_GET_ITEM(key, i) val = item[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) _groupby_core(d, keyval, item) else: for item in seq: keyval = item[key] _groupby_core(d, keyval, item) return d cdef object _merge_sorted_binary(object seqs): mid = len(seqs) // 2 L1 = seqs[:mid] if len(L1) == 1: seq1 = iter(L1[0]) else: seq1 = _merge_sorted_binary(L1) L2 = seqs[mid:] if len(L2) == 1: seq2 = iter(L2[0]) else: seq2 = _merge_sorted_binary(L2) try: val2 = next(seq2) except StopIteration: return seq1 return _merge_sorted(seq1, seq2, val2) cdef class _merge_sorted: def __cinit__(self, seq1, seq2, val2): self.seq1 = seq1 self.seq2 = seq2 self.val1 = None self.val2 = val2 self.loop = 0 def __iter__(self): return self def __next__(self): if self.loop == 0: try: self.val1 = next(self.seq1) except StopIteration: self.loop = 2 return self.val2 if self.val2 < self.val1: self.loop = 1 return self.val2 return self.val1 elif self.loop == 1: try: self.val2 = next(self.seq2) except StopIteration: self.loop = 3 return self.val1 if self.val2 < self.val1: return self.val2 self.loop = 0 return self.val1 elif self.loop == 2: return next(self.seq2) return next(self.seq1) cdef object _merge_sorted_binary_key(object seqs, object key): mid = len(seqs) // 2 L1 = seqs[:mid] if len(L1) == 1: seq1 = iter(L1[0]) else: seq1 = _merge_sorted_binary_key(L1, key) L2 = seqs[mid:] if len(L2) == 1: seq2 = iter(L2[0]) else: seq2 = _merge_sorted_binary_key(L2, key) try: val2 = next(seq2) except StopIteration: return seq1 return _merge_sorted_key(seq1, seq2, val2, key) cdef class _merge_sorted_key: def __cinit__(self, seq1, seq2, val2, key): self.seq1 = seq1 self.seq2 = seq2 self.key = key self.val1 = None self.key1 = None self.val2 = val2 self.key2 = key(val2) self.loop = 0 def __iter__(self): return self def __next__(self): if self.loop == 0: try: self.val1 = next(self.seq1) except StopIteration: self.loop = 2 return self.val2 self.key1 = self.key(self.val1) if self.key2 < self.key1: self.loop = 1 return self.val2 return self.val1 elif self.loop == 1: try: self.val2 = next(self.seq2) except StopIteration: self.loop = 3 return self.val1 self.key2 = self.key(self.val2) if self.key2 < self.key1: return self.val2 self.loop = 0 return self.val1 elif self.loop == 2: return next(self.seq2) return next(self.seq1) cdef object c_merge_sorted(object seqs, object key=None): if len(seqs) == 0: return iter([]) elif len(seqs) == 1: return iter(seqs[0]) elif key is None: return _merge_sorted_binary(seqs) return _merge_sorted_binary_key(seqs, key) def merge_sorted(*seqs, **kwargs): """ Merge and sort a collection of sorted collections This works lazily and only keeps one value from each iterable in memory. >>> list(merge_sorted([1, 3, 5], [2, 4, 6])) [1, 2, 3, 4, 5, 6] >>> ''.join(merge_sorted('abc', 'abc', 'abc')) 'aaabbbccc' The "key" function used to sort the input may be passed as a keyword. >>> list(merge_sorted([2, 3], [1, 3], key=lambda x: x // 3)) [2, 1, 3, 3] """ if 'key' in kwargs: return c_merge_sorted(seqs, kwargs['key']) return c_merge_sorted(seqs) cdef class interleave: """ interleave(seqs) Interleave a sequence of sequences >>> list(interleave([[1, 2], [3, 4]])) [1, 3, 2, 4] >>> ''.join(interleave(('ABC', 'XY'))) 'AXBYC' Both the individual sequences and the sequence of sequences may be infinite Returns a lazy iterator """ def __cinit__(self, seqs): self.iters = [iter(seq) for seq in seqs] self.newiters = [] self.i = 0 self.n = PyList_GET_SIZE(self.iters) def __iter__(self): return self def __next__(self): # This implementation is similar to what is done in `toolz` in that we # construct a new list of iterators, `self.newiters`, when a value is # successfully retrieved from an iterator from `self.iters`. cdef PyObject *obj cdef object val if self.i == self.n: self.n = PyList_GET_SIZE(self.newiters) self.i = 0 if self.n == 0: raise StopIteration self.iters = self.newiters self.newiters = [] val = PyList_GET_ITEM(self.iters, self.i) self.i += 1 obj = PtrIter_Next(val) # TODO: optimization opportunity. Previously, it was possible to # continue on given exceptions, `self.pass_exceptions`, which is # why this code is structured this way. Time to clean up? while obj is NULL: obj = PyErr_Occurred() if obj is not NULL: val = obj PyErr_Clear() raise val if self.i == self.n: self.n = PyList_GET_SIZE(self.newiters) self.i = 0 if self.n == 0: raise StopIteration self.iters = self.newiters self.newiters = [] val = PyList_GET_ITEM(self.iters, self.i) self.i += 1 obj = PtrIter_Next(val) PyList_Append(self.newiters, val) val = obj Py_XDECREF(obj) return val cdef class _unique_key: def __cinit__(self, object seq, object key): self.iter_seq = iter(seq) self.key = key self.seen = set() def __iter__(self): return self def __next__(self): cdef object item, tag item = next(self.iter_seq) tag = self.key(item) while PySet_Contains(self.seen, tag): item = next(self.iter_seq) tag = self.key(item) PySet_Add(self.seen, tag) return item cdef class _unique_identity: def __cinit__(self, object seq): self.iter_seq = iter(seq) self.seen = set() def __iter__(self): return self def __next__(self): cdef object item item = next(self.iter_seq) while PySet_Contains(self.seen, item): item = next(self.iter_seq) PySet_Add(self.seen, item) return item cpdef object unique(object seq, object key=None): """ Return only unique elements of a sequence >>> tuple(unique((1, 2, 3))) (1, 2, 3) >>> tuple(unique((1, 2, 1, 3))) (1, 2, 3) Uniqueness can be defined by key keyword >>> tuple(unique(['cat', 'mouse', 'dog', 'hen'], key=len)) ('cat', 'mouse') """ if key is None: return _unique_identity(seq) else: return _unique_key(seq, key) cpdef object isiterable(object x): """ Is x iterable? >>> isiterable([1, 2, 3]) True >>> isiterable('abc') True >>> isiterable(5) False """ try: iter(x) return True except TypeError: pass return False cpdef object isdistinct(object seq): """ All values in sequence are distinct >>> isdistinct([1, 2, 3]) True >>> isdistinct([1, 2, 1]) False >>> isdistinct("Hello") False >>> isdistinct("World") True """ if iter(seq) is seq: seen = set() for item in seq: if PySet_Contains(seen, item): return False seen.add(item) return True else: return len(seq) == len(set(seq)) cpdef object take(Py_ssize_t n, object seq): """ The first n elements of a sequence >>> list(take(2, [10, 20, 30, 40, 50])) [10, 20] See Also: drop tail """ return islice(seq, n) cpdef object tail(Py_ssize_t n, object seq): """ The last n elements of a sequence >>> tail(2, [10, 20, 30, 40, 50]) [40, 50] See Also: drop take """ if PySequence_Check(seq): return seq[-n:] return tuple(deque(seq, n)) cpdef object drop(Py_ssize_t n, object seq): """ The sequence following the first n elements >>> list(drop(2, [10, 20, 30, 40, 50])) [30, 40, 50] See Also: take tail """ if n < 0: raise ValueError('n argument for drop() must be non-negative') cdef Py_ssize_t i cdef object iter_seq iter_seq = iter(seq) try: for i in range(n): next(iter_seq) except StopIteration: pass return iter_seq cpdef object take_nth(Py_ssize_t n, object seq): """ Every nth item in seq >>> list(take_nth(2, [10, 20, 30, 40, 50])) [10, 30, 50] """ return islice(seq, 0, None, n) cpdef object first(object seq): """ The first element in a sequence >>> first('ABC') 'A' """ return next(iter(seq)) cpdef object second(object seq): """ The second element in a sequence >>> second('ABC') 'B' """ seq = iter(seq) next(seq) return next(seq) cpdef object nth(Py_ssize_t n, object seq): """ The nth element in a sequence >>> nth(1, 'ABC') 'B' """ if PySequence_Check(seq): return seq[n] if n < 0: raise ValueError('"n" must be positive when indexing an iterator') seq = iter(seq) while n > 0: n -= 1 next(seq) return next(seq) cpdef object last(object seq): """ The last element in a sequence >>> last('ABC') 'C' """ cdef object val if PySequence_Check(seq): return seq[-1] val = no_default for val in seq: pass if val == no_default: raise IndexError return val cpdef object rest(object seq): seq = iter(seq) next(seq) return seq cdef tuple _get_exceptions = (IndexError, KeyError, TypeError) cdef tuple _get_list_exc = (IndexError, KeyError) cpdef object get(object ind, object seq, object default='__no__default__'): """ Get element in a sequence or dict Provides standard indexing >>> get(1, 'ABC') # Same as 'ABC'[1] 'B' Pass a list to get multiple values >>> get([1, 2], 'ABC') # ('ABC'[1], 'ABC'[2]) ('B', 'C') Works on any value that supports indexing/getitem For example here we see that it works with dictionaries >>> phonebook = {'Alice': '555-1234', ... 'Bob': '555-5678', ... 'Charlie':'555-9999'} >>> get('Alice', phonebook) '555-1234' >>> get(['Alice', 'Bob'], phonebook) ('555-1234', '555-5678') Provide a default for missing values >>> get(['Alice', 'Dennis'], phonebook, None) ('555-1234', None) See Also: pluck """ cdef Py_ssize_t i cdef object val cdef tuple result cdef PyObject *obj if isinstance(ind, list): i = PyList_GET_SIZE(ind) result = PyTuple_New(i) # List of indices, no default if default == no_default: for i, val in enumerate(ind): val = seq[val] Py_INCREF(val) PyTuple_SET_ITEM(result, i, val) return result # List of indices with default for i, val in enumerate(ind): obj = PtrObject_GetItem(seq, val) if obj is NULL: val = PyErr_Occurred() PyErr_Clear() if not PyErr_GivenExceptionMatches(val, _get_list_exc): raise val Py_INCREF(default) PyTuple_SET_ITEM(result, i, default) else: val = obj PyTuple_SET_ITEM(result, i, val) return result obj = PtrObject_GetItem(seq, ind) if obj is NULL: val = PyErr_Occurred() PyErr_Clear() if default == no_default: raise val if PyErr_GivenExceptionMatches(val, _get_exceptions): return default raise val val = obj Py_XDECREF(obj) return val cpdef object concat(object seqs): """ Concatenate zero or more iterables, any of which may be infinite. An infinite sequence will prevent the rest of the arguments from being included. We use chain.from_iterable rather than ``chain(*seqs)`` so that seqs can be a generator. >>> list(concat([[], [1], [2, 3]])) [1, 2, 3] See also: itertools.chain.from_iterable equivalent """ return chain.from_iterable(seqs) def concatv(*seqs): """ Variadic version of concat >>> list(concatv([], ["a"], ["b", "c"])) ['a', 'b', 'c'] See also: itertools.chain """ return chain.from_iterable(seqs) cpdef object mapcat(object func, object seqs): """ Apply func to each sequence in seqs, concatenating results. >>> list(mapcat(lambda s: [c.upper() for c in s], ... [["a", "b"], ["c", "d", "e"]])) ['A', 'B', 'C', 'D', 'E'] """ return concat(map(func, seqs)) cpdef object cons(object el, object seq): """ Add el to beginning of (possibly infinite) sequence seq. >>> list(cons(1, [2, 3])) [1, 2, 3] """ return chain((el,), seq) cdef class interpose: """ interpose(el, seq) Introduce element between each pair of elements in seq >>> list(interpose("a", [1, 2, 3])) [1, 'a', 2, 'a', 3] """ def __cinit__(self, object el, object seq): self.el = el self.iter_seq = iter(seq) self.do_el = False try: self.val = next(self.iter_seq) except StopIteration: self.do_el = True def __iter__(self): return self def __next__(self): if self.do_el: self.val = next(self.iter_seq) self.do_el = False return self.el else: self.do_el = True return self.val cpdef dict frequencies(object seq): """ Find number of occurrences of each value in seq >>> frequencies(['cat', 'cat', 'ox', 'pig', 'pig', 'cat']) #doctest: +SKIP {'cat': 3, 'ox': 1, 'pig': 2} See Also: countby groupby """ cdef dict d = {} cdef PyObject *obj cdef Py_ssize_t val for item in seq: obj = PyDict_GetItem(d, item) if obj is NULL: d[item] = 1 else: val = obj d[item] = val + 1 return d cdef inline object _reduceby_core(dict d, object key, object item, object binop, object init, bint skip_init, bint call_init): cdef PyObject *obj = PyDict_GetItem(d, key) if obj is not NULL: PyDict_SetItem(d, key, binop(obj, item)) elif skip_init: PyDict_SetItem(d, key, item) elif call_init: PyDict_SetItem(d, key, binop(init(), item)) else: PyDict_SetItem(d, key, binop(init, item)) cpdef dict reduceby(object key, object binop, object seq, object init='__no__default__'): """ Perform a simultaneous groupby and reduction The computation: >>> result = reduceby(key, binop, seq, init) # doctest: +SKIP is equivalent to the following: >>> def reduction(group): # doctest: +SKIP ... return reduce(binop, group, init) # doctest: +SKIP >>> groups = groupby(key, seq) # doctest: +SKIP >>> result = valmap(reduction, groups) # doctest: +SKIP But the former does not build the intermediate groups, allowing it to operate in much less space. This makes it suitable for larger datasets that do not fit comfortably in memory The ``init`` keyword argument is the default initialization of the reduction. This can be either a constant value like ``0`` or a callable like ``lambda : 0`` as might be used in ``defaultdict``. Simple Examples --------------- >>> from operator import add, mul >>> iseven = lambda x: x % 2 == 0 >>> data = [1, 2, 3, 4, 5] >>> reduceby(iseven, add, data) # doctest: +SKIP {False: 9, True: 6} >>> reduceby(iseven, mul, data) # doctest: +SKIP {False: 15, True: 8} Complex Example --------------- >>> projects = [{'name': 'build roads', 'state': 'CA', 'cost': 1000000}, ... {'name': 'fight crime', 'state': 'IL', 'cost': 100000}, ... {'name': 'help farmers', 'state': 'IL', 'cost': 2000000}, ... {'name': 'help farmers', 'state': 'CA', 'cost': 200000}] >>> reduceby('state', # doctest: +SKIP ... lambda acc, x: acc + x['cost'], ... projects, 0) {'CA': 1200000, 'IL': 2100000} Example Using ``init`` ---------------------- >>> def set_add(s, i): ... s.add(i) ... return s >>> reduceby(iseven, set_add, [1, 2, 3, 4, 1, 2, 3], set) # doctest: +SKIP {True: set([2, 4]), False: set([1, 3])} """ cdef dict d = {} cdef object item, keyval cdef Py_ssize_t i, N cdef bint skip_init = init == no_default cdef bint call_init = callable(init) if callable(key): for item in seq: keyval = key(item) _reduceby_core(d, keyval, item, binop, init, skip_init, call_init) elif isinstance(key, list): N = PyList_GET_SIZE(key) for item in seq: keyval = PyTuple_New(N) for i in range(N): val = PyList_GET_ITEM(key, i) val = item[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) _reduceby_core(d, keyval, item, binop, init, skip_init, call_init) else: for item in seq: keyval = item[key] _reduceby_core(d, keyval, item, binop, init, skip_init, call_init) return d cdef class iterate: """ iterate(func, x) Repeatedly apply a function func onto an original input Yields x, then func(x), then func(func(x)), then func(func(func(x))), etc.. >>> def inc(x): return x + 1 >>> counter = iterate(inc, 0) >>> next(counter) 0 >>> next(counter) 1 >>> next(counter) 2 >>> double = lambda x: x * 2 >>> powers_of_two = iterate(double, 1) >>> next(powers_of_two) 1 >>> next(powers_of_two) 2 >>> next(powers_of_two) 4 >>> next(powers_of_two) 8 """ def __cinit__(self, object func, object x): self.func = func self.x = x self.val = self # sentinel def __iter__(self): return self def __next__(self): if self.val is self: self.val = self.x else: self.x = self.func(self.x) return self.x cdef class sliding_window: """ sliding_window(n, seq) A sequence of overlapping subsequences >>> list(sliding_window(2, [1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)] This function creates a sliding window suitable for transformations like sliding means / smoothing >>> mean = lambda seq: float(sum(seq)) / len(seq) >>> list(map(mean, sliding_window(2, [1, 2, 3, 4]))) [1.5, 2.5, 3.5] """ def __cinit__(self, Py_ssize_t n, object seq): cdef Py_ssize_t i self.iterseq = iter(seq) self.prev = PyTuple_New(n) for i in range(1, n): seq = next(self.iterseq) Py_INCREF(seq) PyTuple_SET_ITEM(self.prev, i, seq) self.n = n def __iter__(self): return self def __next__(self): cdef tuple current cdef object item cdef Py_ssize_t i current = PyTuple_New(self.n) for i in range(1, self.n): item = self.prev[i] Py_INCREF(item) PyTuple_SET_ITEM(current, i-1, item) item = next(self.iterseq) Py_INCREF(item) PyTuple_SET_ITEM(current, self.n-1, item) self.prev = current return current no_pad = '__no__pad__' cpdef object partition(Py_ssize_t n, object seq, object pad='__no__pad__'): """ Partition sequence into tuples of length n >>> list(partition(2, [1, 2, 3, 4])) [(1, 2), (3, 4)] If the length of ``seq`` is not evenly divisible by ``n``, the final tuple is dropped if ``pad`` is not specified, or filled to length ``n`` by pad: >>> list(partition(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4)] >>> list(partition(2, [1, 2, 3, 4, 5], pad=None)) [(1, 2), (3, 4), (5, None)] See Also: partition_all """ args = [iter(seq)] * n if pad == '__no__pad__': return zip(*args) else: return zip_longest(*args, fillvalue=pad) cdef class partition_all: """ partition_all(n, seq) Partition all elements of sequence into tuples of length at most n The final tuple may be shorter to accommodate extra elements. >>> list(partition_all(2, [1, 2, 3, 4])) [(1, 2), (3, 4)] >>> list(partition_all(2, [1, 2, 3, 4, 5])) [(1, 2), (3, 4), (5,)] See Also: partition """ def __cinit__(self, Py_ssize_t n, object seq): self.n = n self.iterseq = iter(seq) def __iter__(self): return self def __next__(self): cdef tuple result cdef object item cdef Py_ssize_t i = 0 result = PyTuple_New(self.n) for item in self.iterseq: Py_INCREF(item) PyTuple_SET_ITEM(result, i, item) i += 1 if i == self.n: return result # iterable exhausted before filling the tuple if i == 0: raise StopIteration return PyTuple_GetSlice(result, 0, i) cpdef object count(object seq): """ Count the number of items in seq Like the builtin ``len`` but works on lazy sequencies. Not to be confused with ``itertools.count`` See also: len """ if iter(seq) is not seq and hasattr(seq, '__len__'): return len(seq) cdef Py_ssize_t i = 0 for _ in seq: i += 1 return i cdef class _pluck_index: def __cinit__(self, object ind, object seqs): self.ind = ind self.iterseqs = iter(seqs) def __iter__(self): return self def __next__(self): val = next(self.iterseqs) return val[self.ind] cdef class _pluck_index_default: def __cinit__(self, object ind, object seqs, object default): self.ind = ind self.iterseqs = iter(seqs) self.default = default def __iter__(self): return self def __next__(self): cdef PyObject *obj cdef object val val = next(self.iterseqs) obj = PtrObject_GetItem(val, self.ind) if obj is NULL: val = PyErr_Occurred() PyErr_Clear() if not PyErr_GivenExceptionMatches(val, _get_exceptions): raise val return self.default val = obj Py_XDECREF(obj) return val cdef class _pluck_list: def __cinit__(self, list ind not None, object seqs): self.ind = ind self.iterseqs = iter(seqs) self.n = len(ind) def __iter__(self): return self def __next__(self): cdef Py_ssize_t i cdef tuple result cdef object val, seq seq = next(self.iterseqs) result = PyTuple_New(self.n) for i, val in enumerate(self.ind): val = seq[val] Py_INCREF(val) PyTuple_SET_ITEM(result, i, val) return result cdef class _pluck_list_default: def __cinit__(self, list ind not None, object seqs, object default): self.ind = ind self.iterseqs = iter(seqs) self.default = default self.n = len(ind) def __iter__(self): return self def __next__(self): cdef Py_ssize_t i cdef object val, seq cdef tuple result seq = next(self.iterseqs) result = PyTuple_New(self.n) for i, val in enumerate(self.ind): obj = PtrObject_GetItem(seq, val) if obj is NULL: val = PyErr_Occurred() PyErr_Clear() if not PyErr_GivenExceptionMatches(val, _get_list_exc): raise val Py_INCREF(self.default) PyTuple_SET_ITEM(result, i, self.default) else: val = obj PyTuple_SET_ITEM(result, i, val) return result cpdef object pluck(object ind, object seqs, object default='__no__default__'): """ plucks an element or several elements from each item in a sequence. ``pluck`` maps ``itertoolz.get`` over a sequence and returns one or more elements of each item in the sequence. This is equivalent to running `map(curried.get(ind), seqs)` ``ind`` can be either a single string/index or a list of strings/indices. ``seqs`` should be sequence containing sequences or dicts. e.g. >>> data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}] >>> list(pluck('name', data)) ['Cheese', 'Pies'] >>> list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]])) [(1, 2), (4, 5)] See Also: get map """ if isinstance(ind, list): if default != no_default: return _pluck_list_default(ind, seqs, default) if PyList_GET_SIZE(ind) < 10: return _pluck_list(ind, seqs) return map(itemgetter(*ind), seqs) if default == no_default: return _pluck_index(ind, seqs) return _pluck_index_default(ind, seqs, default) cdef class _getter_index: def __cinit__(self, object ind): self.ind = ind def __call__(self, object seq): return seq[self.ind] cdef class _getter_list: def __cinit__(self, list ind not None): self.ind = ind self.n = len(ind) def __call__(self, object seq): cdef Py_ssize_t i cdef tuple result cdef object val result = PyTuple_New(self.n) for i, val in enumerate(self.ind): val = seq[val] Py_INCREF(val) PyTuple_SET_ITEM(result, i, val) return result cdef class _getter_null: def __call__(self, object seq): return () # TODO: benchmark getters (and compare against itemgetter) cpdef object getter(object index): if isinstance(index, list): if PyList_GET_SIZE(index) == 0: return _getter_null() elif PyList_GET_SIZE(index) < 10: return _getter_list(index) return itemgetter(*index) return _getter_index(index) cpdef object join(object leftkey, object leftseq, object rightkey, object rightseq, object left_default='__no__default__', object right_default='__no__default__'): """ Join two sequences on common attributes This is a semi-streaming operation. The LEFT sequence is fully evaluated and placed into memory. The RIGHT sequence is evaluated lazily and so can be arbitrarily large. >>> friends = [('Alice', 'Edith'), ... ('Alice', 'Zhao'), ... ('Edith', 'Alice'), ... ('Zhao', 'Alice'), ... ('Zhao', 'Edith')] >>> cities = [('Alice', 'NYC'), ... ('Alice', 'Chicago'), ... ('Dan', 'Syndey'), ... ('Edith', 'Paris'), ... ('Edith', 'Berlin'), ... ('Zhao', 'Shanghai')] >>> # Vacation opportunities >>> # In what cities do people have friends? >>> result = join(second, friends, ... first, cities) >>> for ((a, b), (c, d)) in sorted(unique(result)): ... print((a, d)) ('Alice', 'Berlin') ('Alice', 'Paris') ('Alice', 'Shanghai') ('Edith', 'Chicago') ('Edith', 'NYC') ('Zhao', 'Chicago') ('Zhao', 'NYC') ('Zhao', 'Berlin') ('Zhao', 'Paris') Specify outer joins with keyword arguments ``left_default`` and/or ``right_default``. Here is a full outer join in which unmatched elements are paired with None. >>> identity = lambda x: x >>> list(join(identity, [1, 2, 3], ... identity, [2, 3, 4], ... left_default=None, right_default=None)) [(2, 2), (3, 3), (None, 4), (1, None)] Usually the key arguments are callables to be applied to the sequences. If the keys are not obviously callable then it is assumed that indexing was intended, e.g. the following is a legal change >>> # result = join(second, friends, first, cities) >>> result = join(1, friends, 0, cities) # doctest: +SKIP """ if left_default == no_default and right_default == no_default: if callable(rightkey): return _inner_join_key(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif isinstance(rightkey, list): return _inner_join_indices(leftkey, leftseq, rightkey, rightseq, left_default, right_default) else: return _inner_join_index(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif left_default != no_default and right_default == no_default: if callable(rightkey): return _right_outer_join_key(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif isinstance(rightkey, list): return _right_outer_join_indices(leftkey, leftseq, rightkey, rightseq, left_default, right_default) else: return _right_outer_join_index(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif left_default == no_default and right_default != no_default: if callable(rightkey): return _left_outer_join_key(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif isinstance(rightkey, list): return _left_outer_join_indices(leftkey, leftseq, rightkey, rightseq, left_default, right_default) else: return _left_outer_join_index(leftkey, leftseq, rightkey, rightseq, left_default, right_default) else: if callable(rightkey): return _outer_join_key(leftkey, leftseq, rightkey, rightseq, left_default, right_default) elif isinstance(rightkey, list): return _outer_join_indices(leftkey, leftseq, rightkey, rightseq, left_default, right_default) else: return _outer_join_index(leftkey, leftseq, rightkey, rightseq, left_default, right_default) cdef class _join: def __cinit__(self, object leftkey, object leftseq, object rightkey, object rightseq, object left_default=no_default, object right_default=no_default): self.left_default = left_default self.right_default = right_default self._rightkey = rightkey self.rightseq = iter(rightseq) if isinstance(rightkey, list): self.N = len(rightkey) self.d = groupby(leftkey, leftseq) self.seen_keys = set() self.matches = [] self.right = None self.is_rightseq_exhausted = False def __iter__(self): return self cdef object rightkey(self): pass cdef class _right_outer_join(_join): def __next__(self): cdef PyObject *obj if self.i == PyList_GET_SIZE(self.matches): self.right = next(self.rightseq) key = self.rightkey() obj = PyDict_GetItem(self.d, key) if obj is NULL: return (self.left_default, self.right) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right) cdef class _right_outer_join_key(_right_outer_join): cdef object rightkey(self): return self._rightkey(self.right) cdef class _right_outer_join_index(_right_outer_join): cdef object rightkey(self): return self.right[self._rightkey] cdef class _right_outer_join_indices(_right_outer_join): cdef object rightkey(self): keyval = PyTuple_New(self.N) for i in range(self.N): val = PyList_GET_ITEM(self._rightkey, i) val = self.right[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) return keyval cdef class _outer_join(_join): def __next__(self): cdef PyObject *obj if not self.is_rightseq_exhausted: if self.i == PyList_GET_SIZE(self.matches): try: self.right = next(self.rightseq) except StopIteration: self.is_rightseq_exhausted = True self.keys = iter(self.d) return next(self) key = self.rightkey() PySet_Add(self.seen_keys, key) obj = PyDict_GetItem(self.d, key) if obj is NULL: return (self.left_default, self.right) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right) else: if self.i == PyList_GET_SIZE(self.matches): key = next(self.keys) while key in self.seen_keys: key = next(self.keys) obj = PyDict_GetItem(self.d, key) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right_default) cdef class _outer_join_key(_outer_join): cdef object rightkey(self): return self._rightkey(self.right) cdef class _outer_join_index(_outer_join): cdef object rightkey(self): return self.right[self._rightkey] cdef class _outer_join_indices(_outer_join): cdef object rightkey(self): keyval = PyTuple_New(self.N) for i in range(self.N): val = PyList_GET_ITEM(self._rightkey, i) val = self.right[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) return keyval cdef class _left_outer_join(_join): def __next__(self): cdef PyObject *obj if not self.is_rightseq_exhausted: if self.i == PyList_GET_SIZE(self.matches): obj = NULL while obj is NULL: try: self.right = next(self.rightseq) except StopIteration: self.is_rightseq_exhausted = True self.keys = iter(self.d) return next(self) key = self.rightkey() PySet_Add(self.seen_keys, key) obj = PyDict_GetItem(self.d, key) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right) else: if self.i == PyList_GET_SIZE(self.matches): key = next(self.keys) while key in self.seen_keys: key = next(self.keys) obj = PyDict_GetItem(self.d, key) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right_default) cdef class _left_outer_join_key(_left_outer_join): cdef object rightkey(self): return self._rightkey(self.right) cdef class _left_outer_join_index(_left_outer_join): cdef object rightkey(self): return self.right[self._rightkey] cdef class _left_outer_join_indices(_left_outer_join): cdef object rightkey(self): keyval = PyTuple_New(self.N) for i in range(self.N): val = PyList_GET_ITEM(self._rightkey, i) val = self.right[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) return keyval cdef class _inner_join(_join): def __next__(self): cdef PyObject *obj = NULL if self.i == PyList_GET_SIZE(self.matches): while obj is NULL: self.right = next(self.rightseq) key = self.rightkey() obj = PyDict_GetItem(self.d, key) self.matches = obj self.i = 0 match = PyList_GET_ITEM(self.matches, self.i) # skip error checking self.i += 1 return (match, self.right) cdef class _inner_join_key(_inner_join): cdef object rightkey(self): return self._rightkey(self.right) cdef class _inner_join_index(_inner_join): cdef object rightkey(self): return self.right[self._rightkey] cdef class _inner_join_indices(_inner_join): cdef object rightkey(self): keyval = PyTuple_New(self.N) for i in range(self.N): val = PyList_GET_ITEM(self._rightkey, i) val = self.right[val] Py_INCREF(val) PyTuple_SET_ITEM(keyval, i, val) return keyval cdef class _diff_key: def __cinit__(self, object seqs, object key, object default=no_default): self.N = len(seqs) if self.N < 2: raise TypeError('Too few sequences given (min 2 required)') if default == no_default: self.iters = zip(*seqs) else: self.iters = zip_longest(*seqs, fillvalue=default) self.key = key def __iter__(self): return self def __next__(self): cdef object val, val2, items cdef Py_ssize_t i while True: items = next(self.iters) val = self.key(PyTuple_GET_ITEM(items, 0)) for i in range(1, self.N): val2 = self.key(PyTuple_GET_ITEM(items, i)) if PyObject_RichCompareBool(val, val2, Py_NE): return items cdef class _diff_identity: def __cinit__(self, object seqs, object default=no_default): self.N = len(seqs) if self.N < 2: raise TypeError('Too few sequences given (min 2 required)') if default == no_default: self.iters = zip(*seqs) else: self.iters = zip_longest(*seqs, fillvalue=default) def __iter__(self): return self def __next__(self): cdef object val, val2, items cdef Py_ssize_t i while True: items = next(self.iters) val = PyTuple_GET_ITEM(items, 0) for i in range(1, self.N): val2 = PyTuple_GET_ITEM(items, i) if PyObject_RichCompareBool(val, val2, Py_NE): return items cdef object c_diff(object seqs, object default=no_default, object key=None): if key is None: return _diff_identity(seqs, default=default) else: return _diff_key(seqs, key, default=default) def diff(*seqs, **kwargs): """ Return those items that differ between sequences >>> list(diff([1, 2, 3], [1, 2, 10, 100])) [(3, 10)] Shorter sequences may be padded with a ``default`` value: >>> list(diff([1, 2, 3], [1, 2, 10, 100], default=None)) [(3, 10), (None, 100)] A ``key`` function may also be applied to each item to use during comparisons: >>> list(diff(['apples', 'bananas'], ['Apples', 'Oranges'], key=str.lower)) [('bananas', 'Oranges')] """ N = len(seqs) if N == 1 and isinstance(seqs[0], list): seqs = seqs[0] default = kwargs.get('default', no_default) key = kwargs.get('key') return c_diff(seqs, default=default, key=key) cpdef object topk(Py_ssize_t k, object seq, object key=None): """ Find the k largest elements of a sequence Operates lazily in ``n*log(k)`` time >>> topk(2, [1, 100, 10, 1000]) (1000, 100) Use a key function to change sorted order >>> topk(2, ['Alice', 'Bob', 'Charlie', 'Dan'], key=len) ('Charlie', 'Alice') See also: heapq.nlargest """ cdef object item, val, top cdef object it = iter(seq) cdef object _heapreplace = heapreplace cdef Py_ssize_t i = k cdef list pq = [] if key is not None and not callable(key): key = getter(key) if k < 2: if k < 1: return () top = list(take(1, it)) if len(top) == 0: return () it = concatv(top, it) if key is None: return (max(it),) else: return (max(it, key=key),) for item in it: if key is None: PyList_Append(pq, (item, i)) else: PyList_Append(pq, (key(item), i, item)) i -= 1 if i == 0: break if i != 0: pq.sort(reverse=True) k = 0 if key is None else 2 return tuple([item[k] for item in pq]) heapify(pq) top = pq[0][0] if key is None: for item in it: if top < item: _heapreplace(pq, (item, i)) top = pq[0][0] i -= 1 else: for item in it: val = key(item) if top < val: _heapreplace(pq, (val, i, item)) top = pq[0][0] i -= 1 pq.sort(reverse=True) k = 0 if key is None else 2 return tuple([item[k] for item in pq]) cpdef object peek(object seq): """ Retrieve the next element of a sequence Returns the first element and an iterable equivalent to the original sequence, still having the element retrieved. >>> seq = [0, 1, 2, 3, 4] >>> first, seq = peek(seq) >>> first 0 >>> list(seq) [0, 1, 2, 3, 4] """ iterator = iter(seq) item = next(iterator) return item, chain((item,), iterator) cdef class random_sample: """ random_sample(prob, seq, random_state=None) Return elements from a sequence with probability of prob Returns a lazy iterator of random items from seq. ``random_sample`` considers each item independently and without replacement. See below how the first time it returned 13 items and the next time it returned 6 items. >>> seq = list(range(100)) >>> list(random_sample(0.1, seq)) # doctest: +SKIP [6, 9, 19, 35, 45, 50, 58, 62, 68, 72, 78, 86, 95] >>> list(random_sample(0.1, seq)) # doctest: +SKIP [6, 44, 54, 61, 69, 94] Providing an integer seed for ``random_state`` will result in deterministic sampling. Given the same seed it will return the same sample every time. >>> list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98] >>> list(random_sample(0.1, seq, random_state=2016)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98] ``random_state`` can also be any object with a method ``random`` that returns floats between 0.0 and 1.0 (exclusive). >>> from random import Random >>> randobj = Random(2016) >>> list(random_sample(0.1, seq, random_state=randobj)) [7, 9, 19, 25, 30, 32, 34, 48, 59, 60, 81, 98] """ def __cinit__(self, object prob, object seq, random_state=None): float(prob) self.prob = prob self.iter_seq = iter(seq) if not hasattr(random_state, 'random'): random_state = Random(random_state) self.random_func = random_state.random def __iter__(self): return self def __next__(self): while True: if self.random_func() < self.prob: return next(self.iter_seq) next(self.iter_seq)