Metadata-Version: 2.1 Name: PyStemmer Version: 1.3.0 Summary: Snowball stemming algorithms, for information retrieval Home-page: http://snowball.tartarus.org/ Author: Richard Boulton Author-email: richard@tartarus.org Maintainer: Richard Boulton Maintainer-email: richard@tartarus.org License: ['MIT', 'BSD'] Download-URL: http://snowball.tartarus.org/wrappers/PyStemmer-1.3.0.tar.gz Keywords: python,information retrieval,language processing,morphological analysis,stemming algorithms,stemmers Platform: any Classifier: Development Status :: 5 - Production/Stable Classifier: Intended Audience :: Developers Classifier: License :: OSI Approved :: MIT License Classifier: License :: OSI Approved :: BSD License Classifier: Natural Language :: Danish Classifier: Natural Language :: Dutch Classifier: Natural Language :: English Classifier: Natural Language :: Finnish Classifier: Natural Language :: French Classifier: Natural Language :: German Classifier: Natural Language :: Italian Classifier: Natural Language :: Norwegian Classifier: Natural Language :: Portuguese Classifier: Natural Language :: Russian Classifier: Natural Language :: Spanish Classifier: Natural Language :: Swedish Classifier: Operating System :: OS Independent Classifier: Programming Language :: C Classifier: Programming Language :: Other Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 2 Classifier: Programming Language :: Python :: 2.6 Classifier: Programming Language :: Python :: 2.7 Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.2 Classifier: Programming Language :: Python :: 3.3 Classifier: Topic :: Database Classifier: Topic :: Internet :: WWW/HTTP :: Indexing/Search Classifier: Topic :: Text Processing :: Indexing Classifier: Topic :: Text Processing :: Linguistic Stemming algorithms PyStemmer provides access to efficient algorithms for calculating a "stemmed" form of a word. This is a form with most of the common morphological endings removed; hopefully representing a common linguistic base form. This is most useful in building search engines and information retrieval software; for example, a search with stemming enabled should be able to find a document containing "cycling" given the query "cycles". PyStemmer provides algorithms for several (mainly european) languages, by wrapping the libstemmer library from the Snowball project in a Python module. It also provides access to the classic Porter stemming algorithm for english: although this has been superceded by an improved algorithm, the original algorithm may be of interest to information retrieval researchers wishing to reproduce results of earlier experiments.