small change to SolveShorts, FASTsearch now using GPU for calculations, requirements.txt added, cuda has to be exact version 9.0, cudann exact version 7.0
This commit is contained in:
parent
ed40090463
commit
3b66a89dc2
19 changed files with 328 additions and 79 deletions
|
@ -185,14 +185,18 @@
|
|||
"source": [
|
||||
"\n",
|
||||
"# importing the libraries\n",
|
||||
"#print('importing libraries')\n",
|
||||
"#from SolveShorts import *\n",
|
||||
"#import SentSeg\n",
|
||||
"#from SayYes import *\n",
|
||||
"#from Passiv2Aktiv import *\n",
|
||||
"#from GenitivSolve import *\n",
|
||||
"#from ConjunctSolve import *\n",
|
||||
"\n",
|
||||
"#from FremdWB import *\n",
|
||||
"#from Medio import *\n",
|
||||
"#from oi import *\n",
|
||||
"#print('done')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Initializing the libraries\n",
|
||||
"#print('initializing the libraries')\n",
|
||||
|
@ -210,10 +214,12 @@
|
|||
"#cs = ConjunctSolve(None,None)\n",
|
||||
"#print('7')\n",
|
||||
"#oi = oi()\n",
|
||||
"\n",
|
||||
"#from FremdWB import *\n",
|
||||
"#print('8')\n",
|
||||
"#fwb = FremdWB(None,None)\n",
|
||||
"#fwb.load_DB_into_FASTsearch()\n",
|
||||
"#print('9')\n",
|
||||
"#medi = Medio(None,None)\n",
|
||||
"#print('done')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# loading the databases and models\n",
|
||||
"#print('loading SolveShorts Databases')\n",
|
||||
|
@ -226,6 +232,11 @@
|
|||
"#p2a.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading conjunctivesolve Databases')\n",
|
||||
"#cs.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading the fremdwb Databases')\n",
|
||||
"#fwb.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading the mediodot Databases')\n",
|
||||
"#medi.load_DB_into_FASTsearch()\n",
|
||||
"\n",
|
||||
"#print('done')\n",
|
||||
"\n"
|
||||
]
|
||||
|
@ -241,15 +252,6 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"loading SolveShorts Databases\n",
|
||||
"Creating the bag of words...\n",
|
||||
"\n",
|
||||
"dumping the data to hkl format..\n",
|
||||
"done\n",
|
||||
"Creating the bag of words...\n",
|
||||
"\n",
|
||||
"dumping the data to hkl format..\n",
|
||||
"done\n",
|
||||
"dumping the session\n",
|
||||
"done\n"
|
||||
]
|
||||
|
@ -257,7 +259,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "82646fa586ba44aabc1608ec7a268b2c",
|
||||
"model_id": "74fc341e0a474605b1f95c3e4e35d0b2",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -474,7 +476,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "9e547f27f67f484c9b455ead6f63afb2",
|
||||
"model_id": "082cb6fb58aa41cc82d918d2a056258d",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -674,7 +676,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "0d27a028dcb449e2a2a6a7dfd25acd49",
|
||||
"model_id": "dad4baed09a5407194ae2daf153e8f43",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -714,7 +716,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "564058b35ab743fabff90d4c49c5aac3",
|
||||
"model_id": "4bff927b0a404ed0b909db2bd766ac65",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -836,7 +838,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "2e67ffb1c4ec4ddeb2c18935f4d0fdc4",
|
||||
"model_id": "b6053b85bdcd4446b010b5fb872dc52c",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -862,7 +864,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "f8e8a92efa8e41bbb3efe44c35c37ec1",
|
||||
"model_id": "4d3e6e3a2bcb499697a50a1a1e88a8a4",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -15,6 +15,7 @@ import scipy as sc
|
|||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
import _pickle as cPickle
|
||||
|
||||
import hickle as hkl
|
||||
|
@ -132,21 +133,21 @@ class FASTsearch(object):
|
|||
uiOZ = uiOZ.transpose()
|
||||
|
||||
sess = tf.Session()
|
||||
with tf.device('/gpu:0'):
|
||||
with sess.as_default():
|
||||
|
||||
with sess.as_default():
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
|
||||
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
|
||||
indexedwCD = []
|
||||
for n in range(len(wCD)):
|
||||
|
@ -206,21 +207,21 @@ class FASTsearch(object):
|
|||
uiOZ = uiOZ.transpose()
|
||||
|
||||
sess = tf.Session()
|
||||
with tf.device('/gpu:0'):
|
||||
with sess.as_default():
|
||||
|
||||
with sess.as_default():
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
|
||||
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
|
||||
indexedwCD = []
|
||||
for n in range(len(wCD)):
|
||||
|
@ -257,21 +258,21 @@ class FASTsearch(object):
|
|||
uiOZ = uiOZ.transpose()
|
||||
|
||||
sess = tf.Session()
|
||||
with tf.device('/gpu:0'):
|
||||
with sess.as_default():
|
||||
|
||||
with sess.as_default():
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
|
||||
uiOZ_tensor = tf.constant(uiOZ)
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||
|
||||
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
wCD = np.array(wordCountDoku.eval())
|
||||
|
||||
indexedwCD = []
|
||||
for n in range(len(wCD)):
|
||||
|
|
|
@ -185,14 +185,18 @@
|
|||
"source": [
|
||||
"\n",
|
||||
"# importing the libraries\n",
|
||||
"#print('importing libraries')\n",
|
||||
"#from SolveShorts import *\n",
|
||||
"#import SentSeg\n",
|
||||
"#from SayYes import *\n",
|
||||
"#from Passiv2Aktiv import *\n",
|
||||
"#from GenitivSolve import *\n",
|
||||
"#from ConjunctSolve import *\n",
|
||||
"\n",
|
||||
"#from FremdWB import *\n",
|
||||
"#from Medio import *\n",
|
||||
"#from oi import *\n",
|
||||
"#print('done')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Initializing the libraries\n",
|
||||
"#print('initializing the libraries')\n",
|
||||
|
@ -210,10 +214,12 @@
|
|||
"#cs = ConjunctSolve(None,None)\n",
|
||||
"#print('7')\n",
|
||||
"#oi = oi()\n",
|
||||
"\n",
|
||||
"#from FremdWB import *\n",
|
||||
"#print('8')\n",
|
||||
"#fwb = FremdWB(None,None)\n",
|
||||
"#fwb.load_DB_into_FASTsearch()\n",
|
||||
"#print('9')\n",
|
||||
"#medi = Medio(None,None)\n",
|
||||
"#print('done')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# loading the databases and models\n",
|
||||
"#print('loading SolveShorts Databases')\n",
|
||||
|
@ -226,6 +232,11 @@
|
|||
"#p2a.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading conjunctivesolve Databases')\n",
|
||||
"#cs.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading the fremdwb Databases')\n",
|
||||
"#fwb.load_DB_into_FASTsearch()\n",
|
||||
"#print('loading the mediodot Databases')\n",
|
||||
"#medi.load_DB_into_FASTsearch()\n",
|
||||
"\n",
|
||||
"#print('done')\n",
|
||||
"\n"
|
||||
]
|
||||
|
@ -241,15 +252,6 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"loading SolveShorts Databases\n",
|
||||
"Creating the bag of words...\n",
|
||||
"\n",
|
||||
"dumping the data to hkl format..\n",
|
||||
"done\n",
|
||||
"Creating the bag of words...\n",
|
||||
"\n",
|
||||
"dumping the data to hkl format..\n",
|
||||
"done\n",
|
||||
"dumping the session\n",
|
||||
"done\n"
|
||||
]
|
||||
|
@ -257,7 +259,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "82646fa586ba44aabc1608ec7a268b2c",
|
||||
"model_id": "74fc341e0a474605b1f95c3e4e35d0b2",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -474,7 +476,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "9e547f27f67f484c9b455ead6f63afb2",
|
||||
"model_id": "082cb6fb58aa41cc82d918d2a056258d",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -674,7 +676,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "0d27a028dcb449e2a2a6a7dfd25acd49",
|
||||
"model_id": "dad4baed09a5407194ae2daf153e8f43",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -714,7 +716,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "564058b35ab743fabff90d4c49c5aac3",
|
||||
"model_id": "4bff927b0a404ed0b909db2bd766ac65",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -836,7 +838,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "2e67ffb1c4ec4ddeb2c18935f4d0fdc4",
|
||||
"model_id": "b6053b85bdcd4446b010b5fb872dc52c",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
@ -862,7 +864,7 @@
|
|||
{
|
||||
"data": {
|
||||
"application/vnd.jupyter.widget-view+json": {
|
||||
"model_id": "f8e8a92efa8e41bbb3efe44c35c37ec1",
|
||||
"model_id": "4d3e6e3a2bcb499697a50a1a1e88a8a4",
|
||||
"version_major": 2,
|
||||
"version_minor": 0
|
||||
},
|
||||
|
|
|
@ -130,7 +130,7 @@ class SolveShorts(object):
|
|||
NhasToBeChecked = False
|
||||
|
||||
# Liste von falsch erkannten, zb er sollte nicht erkannt werden :)
|
||||
if sentence[n] in ['Er', 'er', 'ab', 'Ab', 'so', 'da', 'an', 'mit']:
|
||||
if sentence[n] in ['Er', 'er', 'ab', 'Ab', 'so', 'da', 'an', 'mit', 'Am', 'am']:
|
||||
NhasToBeChecked = False
|
||||
|
||||
if n != 0 and sentence[n][-1] != '.' and doc[n - 1].dep_[:2] != 'ART':
|
||||
|
|
7
Prototyp/Verbesserungen/Input144.txt
Normal file
7
Prototyp/Verbesserungen/Input144.txt
Normal file
|
@ -0,0 +1,7 @@
|
|||
die Rede ist vom NRW-Polizeiskandal .
|
||||
29 PolizistInnen wurden suspendiert, weil sie Teil rechtsextremer Whatsapp-Chatgruppen waren, die teils seit 2012 bestanden .
|
||||
die Betroffenen gehörten fast alle zum Polizeipräsidium Essen, eine Dienstgruppe in Mülheim wurde komplett freigestellt, inklusive Dienstgruppenführer .
|
||||
am Donnerstag sprach Reul von einer weiteren suspendierten Beamtin, auch sie aus der Mülheimer Gruppe .
|
||||
Bundesweit wird nun über Konsequenzen diskutiert .
|
||||
und die Affäre könnte sich noch ausweiten .
|
||||
denn bisher hatten die Ermittler nur das Telefon eines Beamten, welches die Ermittlungen ins Rollen brachten .
|
16
Prototyp/Verbesserungen/Output144.txt
Normal file
16
Prototyp/Verbesserungen/Output144.txt
Normal file
|
@ -0,0 +1,16 @@
|
|||
die Rede ist vom NRW-Polizeiskandal .
|
||||
29 PolizistInnen wurden suspendiert .
|
||||
Teil sie waren rechtsextremer Whatsapp-Chatgruppen weil .
|
||||
Teils bestanden diese seit 2012 .
|
||||
die Betroffenen gehoerten fast alle zum Polizeipraesidium Essen .
|
||||
eine Dienstgruppe in Muelheim wurde komplett freigestellt .
|
||||
Inklusive Dienstgruppenfuehrer .
|
||||
am (amos) Donnerstag sprach Reul von einer weiteren suspendierten Beamtin .
|
||||
auch sie aus der Muelheimer Gruppe .
|
||||
bundesweit diskutiert jemand nun ueber Konsequenzen .
|
||||
und die Affaere koennte sich noch ausweiten .
|
||||
eine Affaere ist ein Skandal .
|
||||
zum Beispiel :
|
||||
etwas was viele Menschen schlimm finden .
|
||||
die Ermittler eines Beamten hatten nur das Telefon denn bisher .
|
||||
dieses ins Rollen brachten die Ermittlungen .
|
15
Prototyp/Verbesserungen/Verbesserungen144.txt
Normal file
15
Prototyp/Verbesserungen/Verbesserungen144.txt
Normal file
|
@ -0,0 +1,15 @@
|
|||
die Rede ist vom NRW-Polizeiskandal .
|
||||
29 PolizistInnen wurden suspendiert .
|
||||
weil sie Teil rechtsextremer Whatsapp-Chatgruppen waren .
|
||||
Teils bestanden diese seit 2012 .
|
||||
die Betroffenen gehoerten fast alle zum Polizeipraesidium Essen .
|
||||
eine Dienstgruppe in Muelheim wurde komplett freigestellt .
|
||||
Inklusive Dienstgruppenfuehrer .
|
||||
am Donnerstag sprach Reul von einer weiteren suspendierten Beamtin .
|
||||
auch sie aus der Muelheimer Gruppe .
|
||||
bundesweit diskutiert jemand nun ueber Konsequenzen .
|
||||
und die Affaere koennte sich noch ausweiten .
|
||||
eine Affaere ist ein Skandal .
|
||||
zum Beispiel: etwas was viele Menschen schlimm finden .
|
||||
denn bisher hatten die Ermittler nur das Telefon eines Beamten .
|
||||
dieses brachten die Ermittlungen ins Rollen .
|
|
@ -1 +1 @@
|
|||
143
|
||||
144
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
206
Prototyp/requirements.txt
Normal file
206
Prototyp/requirements.txt
Normal file
|
@ -0,0 +1,206 @@
|
|||
absl-py==0.6.1
|
||||
aiohttp==3.5.4
|
||||
aiohttp-socks==0.2.2
|
||||
anytree==2.4.3
|
||||
appdirs==1.4.3
|
||||
appmode==0.7.0
|
||||
argh==0.26.2
|
||||
asn1crypto==0.24.0
|
||||
astor==0.7.1
|
||||
astunparse==1.6.3
|
||||
async-generator==1.10
|
||||
async-timeout==3.0.1
|
||||
attrs==18.2.0
|
||||
Automat==0.7.0
|
||||
backcall==0.1.0
|
||||
beautifulsoup4==4.6.3
|
||||
bleach==1.5.0
|
||||
blis==0.4.1
|
||||
boto==2.49.0
|
||||
boto3==1.9.71
|
||||
botocore==1.12.71
|
||||
bqplot==0.12.6
|
||||
bz2file==0.98
|
||||
CacheControl==0.12.5
|
||||
cachetools==4.1.1
|
||||
catalogue==1.0.0
|
||||
certifi==2019.6.16
|
||||
cffi==1.11.5
|
||||
chardet==3.0.4
|
||||
Click==7.0
|
||||
colorama==0.4.1
|
||||
constantly==15.1.0
|
||||
cryptography==2.4.2
|
||||
cssselect==1.0.3
|
||||
cycler==0.10.0
|
||||
cymem==2.0.2
|
||||
Cython==0.29.2
|
||||
cytoolz==0.9.0.1
|
||||
de-core-news-sm==2.0.0
|
||||
decorator==4.3.0
|
||||
defusedxml==0.5.0
|
||||
dill==0.2.8.2
|
||||
distlib==0.2.8
|
||||
distro==1.3.0
|
||||
dnspython==1.16.0
|
||||
docutils==0.14
|
||||
ecdsa==0.13
|
||||
engineering-notation==0.6.0
|
||||
entrypoints==0.2.3
|
||||
gast==0.2.0
|
||||
gensim==3.6.0
|
||||
Glances==3.0.2
|
||||
grpcio==1.17.0
|
||||
gunicorn==19.9.0
|
||||
h5py==2.8.0
|
||||
hickle==3.3.2
|
||||
html5lib==0.9999999
|
||||
hyperlink==18.0.0
|
||||
idna==2.7
|
||||
idna-ssl==1.1.0
|
||||
importlib-metadata==1.4.0
|
||||
incremental==17.5.0
|
||||
ipykernel==4.9.0
|
||||
ipython==7.1.1
|
||||
ipython-genutils==0.1.0
|
||||
ipyvue==1.3.1
|
||||
ipyvuetify==1.2.2
|
||||
ipywidgets==7.5.1
|
||||
jedi==0.13.1
|
||||
Jinja2==2.10
|
||||
jmespath==0.9.3
|
||||
jsonrpclib-pelix==0.3.2
|
||||
jsonschema==2.6.0
|
||||
jupyter-client==6.1.2
|
||||
jupyter-console==6.0.0
|
||||
jupyter-contrib-core==0.3.3
|
||||
jupyter-contrib-nbextensions==0.5.1
|
||||
jupyter-core==4.6.0
|
||||
jupyter-highlight-selected-word==0.2.0
|
||||
jupyter-latex-envs==1.4.6
|
||||
jupyter-nbextensions-configurator==0.4.1
|
||||
jupyter-server==0.1.1
|
||||
jupyterlab-pygments==0.1.0
|
||||
jupyterthemes==0.20.0
|
||||
Keras-Applications==1.0.6
|
||||
Keras-Preprocessing==1.0.5
|
||||
kiwisolver==1.0.1
|
||||
lesscpy==0.14.0
|
||||
lockfile==0.12.2
|
||||
lxml==4.2.5
|
||||
Markdown==2.6.11
|
||||
MarkupSafe==1.1.0
|
||||
matplotlib==3.0.2
|
||||
mistune==0.8.4
|
||||
mock==3.0.5
|
||||
more-itertools==8.1.0
|
||||
msgpack==0.5.6
|
||||
msgpack-numpy==0.4.3.2
|
||||
multidict==4.5.2
|
||||
murmurhash==1.0.1
|
||||
nbconvert==5.6.1
|
||||
nbformat==4.4.0
|
||||
ngrok==0.0.1
|
||||
nltk==3.4.1
|
||||
notebook==5.7.2
|
||||
numpy==1.15.4
|
||||
oauthlib==3.1.0
|
||||
olefile==0.46
|
||||
opt-einsum==3.3.0
|
||||
packaging==18.0
|
||||
pandas==0.23.4
|
||||
pandocfilters==1.4.2
|
||||
parsel==1.5.1
|
||||
parso==0.3.1
|
||||
pathlib2==2.3.5
|
||||
pbkdf2==1.3
|
||||
pdfminer3k==1.3.1
|
||||
pep517==0.3
|
||||
pexpect==4.6.0
|
||||
pickleshare==0.7.5
|
||||
Pillow==5.3.0
|
||||
plac==0.9.6
|
||||
pluggy==0.13.1
|
||||
ply==3.11
|
||||
preshed==2.0.1
|
||||
progress==1.4
|
||||
prometheus-client==0.4.2
|
||||
prompt-toolkit==2.0.7
|
||||
protobuf==3.6.1
|
||||
psutil==5.4.8
|
||||
ptyprocess==0.6.0
|
||||
py==1.8.1
|
||||
pyaes==1.6.1
|
||||
pyasn1==0.4.4
|
||||
pyasn1-modules==0.2.2
|
||||
pycparser==2.19
|
||||
pycryptodomex==3.6.6
|
||||
PyDispatcher==2.0.5
|
||||
Pygments==2.6.1
|
||||
PyHamcrest==1.9.0
|
||||
pyOpenSSL==18.0.0
|
||||
pyparsing==2.3.0
|
||||
PyQt5==5.11.3
|
||||
PyQt5-sip==4.19.13
|
||||
PySocks==1.6.8
|
||||
PyStemmer==1.3.0
|
||||
pytest==5.3.2
|
||||
python-dateutil==2.7.5
|
||||
pytoml==0.1.20
|
||||
pytz==2018.7
|
||||
PyYAML==5.3
|
||||
pyzmq==17.1.0
|
||||
qrcode==6.0
|
||||
QtPy==1.5.1
|
||||
queuelib==1.5.0
|
||||
regex==2018.1.10
|
||||
requests==2.20.1
|
||||
requests-oauthlib==1.3.0
|
||||
retrying==1.3.3
|
||||
rsa==4.6
|
||||
s3transfer==0.1.13
|
||||
scikit-learn==0.20.0
|
||||
scipy==1.1.0
|
||||
Scrapy==1.5.1
|
||||
Send2Trash==1.5.0
|
||||
service-identity==18.1.0
|
||||
simplegeneric==0.8.1
|
||||
six==1.12.0
|
||||
smart-open==1.7.1
|
||||
spacy==2.0.18
|
||||
srsly==1.0.1
|
||||
tensorboard==1.12.0
|
||||
tensorboard-plugin-wit==1.7.0
|
||||
tensorflow==1.12.0
|
||||
tensorflow-gpu==1.12.0
|
||||
tensorflow-serving-api==1.12.0
|
||||
tensorflow-tensorboard==1.5.1
|
||||
termcolor==1.1.0
|
||||
terminado==0.8.1
|
||||
testpath==0.4.2
|
||||
thinc==6.12.1
|
||||
tk-tools==0.12.0
|
||||
toolz==0.9.0
|
||||
tornado==5.1.1
|
||||
tqdm==4.28.1
|
||||
traitlets==4.3.2
|
||||
traittypes==0.2.1
|
||||
Twisted==18.9.0
|
||||
typing-extensions==3.7.4.1
|
||||
ujson==1.35
|
||||
urllib3==1.24.1
|
||||
virtualenv==16.1.0
|
||||
voila==0.1.21
|
||||
voila-gridstack==0.0.8
|
||||
voila-vuetify==0.2.2
|
||||
w3lib==1.19.0
|
||||
wasabi==0.6.0
|
||||
wcwidth==0.1.7
|
||||
webencodings==0.5.1
|
||||
websocket-client==0.54.0
|
||||
Werkzeug==0.14.1
|
||||
widgetsnbextension==3.5.1
|
||||
wrapt==1.10.11
|
||||
yarl==1.3.0
|
||||
zipp==0.6.0
|
||||
zope.interface==4.6.0
|
Binary file not shown.
Loading…
Reference in a new issue