small change to SolveShorts, FASTsearch now using GPU for calculations, requirements.txt added, cuda has to be exact version 9.0, cudann exact version 7.0
This commit is contained in:
parent
ed40090463
commit
3b66a89dc2
19 changed files with 328 additions and 79 deletions
|
@ -185,14 +185,18 @@
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"# importing the libraries\n",
|
"# importing the libraries\n",
|
||||||
|
"#print('importing libraries')\n",
|
||||||
"#from SolveShorts import *\n",
|
"#from SolveShorts import *\n",
|
||||||
"#import SentSeg\n",
|
"#import SentSeg\n",
|
||||||
"#from SayYes import *\n",
|
"#from SayYes import *\n",
|
||||||
"#from Passiv2Aktiv import *\n",
|
"#from Passiv2Aktiv import *\n",
|
||||||
"#from GenitivSolve import *\n",
|
"#from GenitivSolve import *\n",
|
||||||
"#from ConjunctSolve import *\n",
|
"#from ConjunctSolve import *\n",
|
||||||
"\n",
|
"#from FremdWB import *\n",
|
||||||
|
"#from Medio import *\n",
|
||||||
"#from oi import *\n",
|
"#from oi import *\n",
|
||||||
|
"#print('done')\n",
|
||||||
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Initializing the libraries\n",
|
"# Initializing the libraries\n",
|
||||||
"#print('initializing the libraries')\n",
|
"#print('initializing the libraries')\n",
|
||||||
|
@ -210,10 +214,12 @@
|
||||||
"#cs = ConjunctSolve(None,None)\n",
|
"#cs = ConjunctSolve(None,None)\n",
|
||||||
"#print('7')\n",
|
"#print('7')\n",
|
||||||
"#oi = oi()\n",
|
"#oi = oi()\n",
|
||||||
"\n",
|
"#print('8')\n",
|
||||||
"#from FremdWB import *\n",
|
|
||||||
"#fwb = FremdWB(None,None)\n",
|
"#fwb = FremdWB(None,None)\n",
|
||||||
"#fwb.load_DB_into_FASTsearch()\n",
|
"#print('9')\n",
|
||||||
|
"#medi = Medio(None,None)\n",
|
||||||
|
"#print('done')\n",
|
||||||
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# loading the databases and models\n",
|
"# loading the databases and models\n",
|
||||||
"#print('loading SolveShorts Databases')\n",
|
"#print('loading SolveShorts Databases')\n",
|
||||||
|
@ -226,6 +232,11 @@
|
||||||
"#p2a.load_DB_into_FASTsearch()\n",
|
"#p2a.load_DB_into_FASTsearch()\n",
|
||||||
"#print('loading conjunctivesolve Databases')\n",
|
"#print('loading conjunctivesolve Databases')\n",
|
||||||
"#cs.load_DB_into_FASTsearch()\n",
|
"#cs.load_DB_into_FASTsearch()\n",
|
||||||
|
"#print('loading the fremdwb Databases')\n",
|
||||||
|
"#fwb.load_DB_into_FASTsearch()\n",
|
||||||
|
"#print('loading the mediodot Databases')\n",
|
||||||
|
"#medi.load_DB_into_FASTsearch()\n",
|
||||||
|
"\n",
|
||||||
"#print('done')\n",
|
"#print('done')\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
|
@ -241,15 +252,6 @@
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"loading SolveShorts Databases\n",
|
|
||||||
"Creating the bag of words...\n",
|
|
||||||
"\n",
|
|
||||||
"dumping the data to hkl format..\n",
|
|
||||||
"done\n",
|
|
||||||
"Creating the bag of words...\n",
|
|
||||||
"\n",
|
|
||||||
"dumping the data to hkl format..\n",
|
|
||||||
"done\n",
|
|
||||||
"dumping the session\n",
|
"dumping the session\n",
|
||||||
"done\n"
|
"done\n"
|
||||||
]
|
]
|
||||||
|
@ -257,7 +259,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "82646fa586ba44aabc1608ec7a268b2c",
|
"model_id": "74fc341e0a474605b1f95c3e4e35d0b2",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -474,7 +476,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "9e547f27f67f484c9b455ead6f63afb2",
|
"model_id": "082cb6fb58aa41cc82d918d2a056258d",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -674,7 +676,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "0d27a028dcb449e2a2a6a7dfd25acd49",
|
"model_id": "dad4baed09a5407194ae2daf153e8f43",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -714,7 +716,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "564058b35ab743fabff90d4c49c5aac3",
|
"model_id": "4bff927b0a404ed0b909db2bd766ac65",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -836,7 +838,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "2e67ffb1c4ec4ddeb2c18935f4d0fdc4",
|
"model_id": "b6053b85bdcd4446b010b5fb872dc52c",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -862,7 +864,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "f8e8a92efa8e41bbb3efe44c35c37ec1",
|
"model_id": "4d3e6e3a2bcb499697a50a1a1e88a8a4",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -15,6 +15,7 @@ import scipy as sc
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
import _pickle as cPickle
|
import _pickle as cPickle
|
||||||
|
|
||||||
import hickle as hkl
|
import hickle as hkl
|
||||||
|
@ -132,21 +133,21 @@ class FASTsearch(object):
|
||||||
uiOZ = uiOZ.transpose()
|
uiOZ = uiOZ.transpose()
|
||||||
|
|
||||||
sess = tf.Session()
|
sess = tf.Session()
|
||||||
|
with tf.device('/gpu:0'):
|
||||||
|
with sess.as_default():
|
||||||
|
|
||||||
with sess.as_default():
|
uiOZ_tensor = tf.constant(uiOZ)
|
||||||
|
|
||||||
uiOZ_tensor = tf.constant(uiOZ)
|
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||||
|
|
||||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
|
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
|
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||||
|
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
|
||||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
wCD = np.array(wordCountDoku.eval())
|
||||||
|
|
||||||
wCD = np.array(wordCountDoku.eval())
|
|
||||||
|
|
||||||
indexedwCD = []
|
indexedwCD = []
|
||||||
for n in range(len(wCD)):
|
for n in range(len(wCD)):
|
||||||
|
@ -206,21 +207,21 @@ class FASTsearch(object):
|
||||||
uiOZ = uiOZ.transpose()
|
uiOZ = uiOZ.transpose()
|
||||||
|
|
||||||
sess = tf.Session()
|
sess = tf.Session()
|
||||||
|
with tf.device('/gpu:0'):
|
||||||
|
with sess.as_default():
|
||||||
|
|
||||||
with sess.as_default():
|
uiOZ_tensor = tf.constant(uiOZ)
|
||||||
|
|
||||||
uiOZ_tensor = tf.constant(uiOZ)
|
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||||
|
|
||||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
|
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
|
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||||
|
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
|
||||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
wCD = np.array(wordCountDoku.eval())
|
||||||
|
|
||||||
wCD = np.array(wordCountDoku.eval())
|
|
||||||
|
|
||||||
indexedwCD = []
|
indexedwCD = []
|
||||||
for n in range(len(wCD)):
|
for n in range(len(wCD)):
|
||||||
|
@ -257,21 +258,21 @@ class FASTsearch(object):
|
||||||
uiOZ = uiOZ.transpose()
|
uiOZ = uiOZ.transpose()
|
||||||
|
|
||||||
sess = tf.Session()
|
sess = tf.Session()
|
||||||
|
with tf.device('/gpu:0'):
|
||||||
|
with sess.as_default():
|
||||||
|
|
||||||
with sess.as_default():
|
uiOZ_tensor = tf.constant(uiOZ)
|
||||||
|
|
||||||
uiOZ_tensor = tf.constant(uiOZ)
|
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
||||||
|
|
||||||
dbOZ_tensor_sparse = convert_sparse_matrix_to_sparse_tensor(self.dbOZ)
|
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
|
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
||||||
#uiOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(uiOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
#dbOZ_tensor_sparse =tf.contrib.layers.dense_to_sparse(dbOZ_tensor, eos_token=0, outputs_collections=None, scope=None )
|
|
||||||
|
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
||||||
|
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
||||||
#wordCountDoku = tf.matmul(uiOZ_tensor, dbOZ_tensor)
|
|
||||||
wordCountDoku = tf.sparse_tensor_dense_matmul(dbOZ_tensor_sparse, uiOZ_tensor)
|
wCD = np.array(wordCountDoku.eval())
|
||||||
|
|
||||||
wCD = np.array(wordCountDoku.eval())
|
|
||||||
|
|
||||||
indexedwCD = []
|
indexedwCD = []
|
||||||
for n in range(len(wCD)):
|
for n in range(len(wCD)):
|
||||||
|
|
|
@ -185,14 +185,18 @@
|
||||||
"source": [
|
"source": [
|
||||||
"\n",
|
"\n",
|
||||||
"# importing the libraries\n",
|
"# importing the libraries\n",
|
||||||
|
"#print('importing libraries')\n",
|
||||||
"#from SolveShorts import *\n",
|
"#from SolveShorts import *\n",
|
||||||
"#import SentSeg\n",
|
"#import SentSeg\n",
|
||||||
"#from SayYes import *\n",
|
"#from SayYes import *\n",
|
||||||
"#from Passiv2Aktiv import *\n",
|
"#from Passiv2Aktiv import *\n",
|
||||||
"#from GenitivSolve import *\n",
|
"#from GenitivSolve import *\n",
|
||||||
"#from ConjunctSolve import *\n",
|
"#from ConjunctSolve import *\n",
|
||||||
"\n",
|
"#from FremdWB import *\n",
|
||||||
|
"#from Medio import *\n",
|
||||||
"#from oi import *\n",
|
"#from oi import *\n",
|
||||||
|
"#print('done')\n",
|
||||||
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Initializing the libraries\n",
|
"# Initializing the libraries\n",
|
||||||
"#print('initializing the libraries')\n",
|
"#print('initializing the libraries')\n",
|
||||||
|
@ -210,10 +214,12 @@
|
||||||
"#cs = ConjunctSolve(None,None)\n",
|
"#cs = ConjunctSolve(None,None)\n",
|
||||||
"#print('7')\n",
|
"#print('7')\n",
|
||||||
"#oi = oi()\n",
|
"#oi = oi()\n",
|
||||||
"\n",
|
"#print('8')\n",
|
||||||
"#from FremdWB import *\n",
|
|
||||||
"#fwb = FremdWB(None,None)\n",
|
"#fwb = FremdWB(None,None)\n",
|
||||||
"#fwb.load_DB_into_FASTsearch()\n",
|
"#print('9')\n",
|
||||||
|
"#medi = Medio(None,None)\n",
|
||||||
|
"#print('done')\n",
|
||||||
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# loading the databases and models\n",
|
"# loading the databases and models\n",
|
||||||
"#print('loading SolveShorts Databases')\n",
|
"#print('loading SolveShorts Databases')\n",
|
||||||
|
@ -226,6 +232,11 @@
|
||||||
"#p2a.load_DB_into_FASTsearch()\n",
|
"#p2a.load_DB_into_FASTsearch()\n",
|
||||||
"#print('loading conjunctivesolve Databases')\n",
|
"#print('loading conjunctivesolve Databases')\n",
|
||||||
"#cs.load_DB_into_FASTsearch()\n",
|
"#cs.load_DB_into_FASTsearch()\n",
|
||||||
|
"#print('loading the fremdwb Databases')\n",
|
||||||
|
"#fwb.load_DB_into_FASTsearch()\n",
|
||||||
|
"#print('loading the mediodot Databases')\n",
|
||||||
|
"#medi.load_DB_into_FASTsearch()\n",
|
||||||
|
"\n",
|
||||||
"#print('done')\n",
|
"#print('done')\n",
|
||||||
"\n"
|
"\n"
|
||||||
]
|
]
|
||||||
|
@ -241,15 +252,6 @@
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"loading SolveShorts Databases\n",
|
|
||||||
"Creating the bag of words...\n",
|
|
||||||
"\n",
|
|
||||||
"dumping the data to hkl format..\n",
|
|
||||||
"done\n",
|
|
||||||
"Creating the bag of words...\n",
|
|
||||||
"\n",
|
|
||||||
"dumping the data to hkl format..\n",
|
|
||||||
"done\n",
|
|
||||||
"dumping the session\n",
|
"dumping the session\n",
|
||||||
"done\n"
|
"done\n"
|
||||||
]
|
]
|
||||||
|
@ -257,7 +259,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "82646fa586ba44aabc1608ec7a268b2c",
|
"model_id": "74fc341e0a474605b1f95c3e4e35d0b2",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -474,7 +476,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "9e547f27f67f484c9b455ead6f63afb2",
|
"model_id": "082cb6fb58aa41cc82d918d2a056258d",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -674,7 +676,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "0d27a028dcb449e2a2a6a7dfd25acd49",
|
"model_id": "dad4baed09a5407194ae2daf153e8f43",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -714,7 +716,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "564058b35ab743fabff90d4c49c5aac3",
|
"model_id": "4bff927b0a404ed0b909db2bd766ac65",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -836,7 +838,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "2e67ffb1c4ec4ddeb2c18935f4d0fdc4",
|
"model_id": "b6053b85bdcd4446b010b5fb872dc52c",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
@ -862,7 +864,7 @@
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "f8e8a92efa8e41bbb3efe44c35c37ec1",
|
"model_id": "4d3e6e3a2bcb499697a50a1a1e88a8a4",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
|
|
|
@ -130,7 +130,7 @@ class SolveShorts(object):
|
||||||
NhasToBeChecked = False
|
NhasToBeChecked = False
|
||||||
|
|
||||||
# Liste von falsch erkannten, zb er sollte nicht erkannt werden :)
|
# Liste von falsch erkannten, zb er sollte nicht erkannt werden :)
|
||||||
if sentence[n] in ['Er', 'er', 'ab', 'Ab', 'so', 'da', 'an', 'mit']:
|
if sentence[n] in ['Er', 'er', 'ab', 'Ab', 'so', 'da', 'an', 'mit', 'Am', 'am']:
|
||||||
NhasToBeChecked = False
|
NhasToBeChecked = False
|
||||||
|
|
||||||
if n != 0 and sentence[n][-1] != '.' and doc[n - 1].dep_[:2] != 'ART':
|
if n != 0 and sentence[n][-1] != '.' and doc[n - 1].dep_[:2] != 'ART':
|
||||||
|
|
7
Prototyp/Verbesserungen/Input144.txt
Normal file
7
Prototyp/Verbesserungen/Input144.txt
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
die Rede ist vom NRW-Polizeiskandal .
|
||||||
|
29 PolizistInnen wurden suspendiert, weil sie Teil rechtsextremer Whatsapp-Chatgruppen waren, die teils seit 2012 bestanden .
|
||||||
|
die Betroffenen gehörten fast alle zum Polizeipräsidium Essen, eine Dienstgruppe in Mülheim wurde komplett freigestellt, inklusive Dienstgruppenführer .
|
||||||
|
am Donnerstag sprach Reul von einer weiteren suspendierten Beamtin, auch sie aus der Mülheimer Gruppe .
|
||||||
|
Bundesweit wird nun über Konsequenzen diskutiert .
|
||||||
|
und die Affäre könnte sich noch ausweiten .
|
||||||
|
denn bisher hatten die Ermittler nur das Telefon eines Beamten, welches die Ermittlungen ins Rollen brachten .
|
16
Prototyp/Verbesserungen/Output144.txt
Normal file
16
Prototyp/Verbesserungen/Output144.txt
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
die Rede ist vom NRW-Polizeiskandal .
|
||||||
|
29 PolizistInnen wurden suspendiert .
|
||||||
|
Teil sie waren rechtsextremer Whatsapp-Chatgruppen weil .
|
||||||
|
Teils bestanden diese seit 2012 .
|
||||||
|
die Betroffenen gehoerten fast alle zum Polizeipraesidium Essen .
|
||||||
|
eine Dienstgruppe in Muelheim wurde komplett freigestellt .
|
||||||
|
Inklusive Dienstgruppenfuehrer .
|
||||||
|
am (amos) Donnerstag sprach Reul von einer weiteren suspendierten Beamtin .
|
||||||
|
auch sie aus der Muelheimer Gruppe .
|
||||||
|
bundesweit diskutiert jemand nun ueber Konsequenzen .
|
||||||
|
und die Affaere koennte sich noch ausweiten .
|
||||||
|
eine Affaere ist ein Skandal .
|
||||||
|
zum Beispiel :
|
||||||
|
etwas was viele Menschen schlimm finden .
|
||||||
|
die Ermittler eines Beamten hatten nur das Telefon denn bisher .
|
||||||
|
dieses ins Rollen brachten die Ermittlungen .
|
15
Prototyp/Verbesserungen/Verbesserungen144.txt
Normal file
15
Prototyp/Verbesserungen/Verbesserungen144.txt
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
die Rede ist vom NRW-Polizeiskandal .
|
||||||
|
29 PolizistInnen wurden suspendiert .
|
||||||
|
weil sie Teil rechtsextremer Whatsapp-Chatgruppen waren .
|
||||||
|
Teils bestanden diese seit 2012 .
|
||||||
|
die Betroffenen gehoerten fast alle zum Polizeipraesidium Essen .
|
||||||
|
eine Dienstgruppe in Muelheim wurde komplett freigestellt .
|
||||||
|
Inklusive Dienstgruppenfuehrer .
|
||||||
|
am Donnerstag sprach Reul von einer weiteren suspendierten Beamtin .
|
||||||
|
auch sie aus der Muelheimer Gruppe .
|
||||||
|
bundesweit diskutiert jemand nun ueber Konsequenzen .
|
||||||
|
und die Affaere koennte sich noch ausweiten .
|
||||||
|
eine Affaere ist ein Skandal .
|
||||||
|
zum Beispiel: etwas was viele Menschen schlimm finden .
|
||||||
|
denn bisher hatten die Ermittler nur das Telefon eines Beamten .
|
||||||
|
dieses brachten die Ermittlungen ins Rollen .
|
|
@ -1 +1 @@
|
||||||
143
|
144
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
206
Prototyp/requirements.txt
Normal file
206
Prototyp/requirements.txt
Normal file
|
@ -0,0 +1,206 @@
|
||||||
|
absl-py==0.6.1
|
||||||
|
aiohttp==3.5.4
|
||||||
|
aiohttp-socks==0.2.2
|
||||||
|
anytree==2.4.3
|
||||||
|
appdirs==1.4.3
|
||||||
|
appmode==0.7.0
|
||||||
|
argh==0.26.2
|
||||||
|
asn1crypto==0.24.0
|
||||||
|
astor==0.7.1
|
||||||
|
astunparse==1.6.3
|
||||||
|
async-generator==1.10
|
||||||
|
async-timeout==3.0.1
|
||||||
|
attrs==18.2.0
|
||||||
|
Automat==0.7.0
|
||||||
|
backcall==0.1.0
|
||||||
|
beautifulsoup4==4.6.3
|
||||||
|
bleach==1.5.0
|
||||||
|
blis==0.4.1
|
||||||
|
boto==2.49.0
|
||||||
|
boto3==1.9.71
|
||||||
|
botocore==1.12.71
|
||||||
|
bqplot==0.12.6
|
||||||
|
bz2file==0.98
|
||||||
|
CacheControl==0.12.5
|
||||||
|
cachetools==4.1.1
|
||||||
|
catalogue==1.0.0
|
||||||
|
certifi==2019.6.16
|
||||||
|
cffi==1.11.5
|
||||||
|
chardet==3.0.4
|
||||||
|
Click==7.0
|
||||||
|
colorama==0.4.1
|
||||||
|
constantly==15.1.0
|
||||||
|
cryptography==2.4.2
|
||||||
|
cssselect==1.0.3
|
||||||
|
cycler==0.10.0
|
||||||
|
cymem==2.0.2
|
||||||
|
Cython==0.29.2
|
||||||
|
cytoolz==0.9.0.1
|
||||||
|
de-core-news-sm==2.0.0
|
||||||
|
decorator==4.3.0
|
||||||
|
defusedxml==0.5.0
|
||||||
|
dill==0.2.8.2
|
||||||
|
distlib==0.2.8
|
||||||
|
distro==1.3.0
|
||||||
|
dnspython==1.16.0
|
||||||
|
docutils==0.14
|
||||||
|
ecdsa==0.13
|
||||||
|
engineering-notation==0.6.0
|
||||||
|
entrypoints==0.2.3
|
||||||
|
gast==0.2.0
|
||||||
|
gensim==3.6.0
|
||||||
|
Glances==3.0.2
|
||||||
|
grpcio==1.17.0
|
||||||
|
gunicorn==19.9.0
|
||||||
|
h5py==2.8.0
|
||||||
|
hickle==3.3.2
|
||||||
|
html5lib==0.9999999
|
||||||
|
hyperlink==18.0.0
|
||||||
|
idna==2.7
|
||||||
|
idna-ssl==1.1.0
|
||||||
|
importlib-metadata==1.4.0
|
||||||
|
incremental==17.5.0
|
||||||
|
ipykernel==4.9.0
|
||||||
|
ipython==7.1.1
|
||||||
|
ipython-genutils==0.1.0
|
||||||
|
ipyvue==1.3.1
|
||||||
|
ipyvuetify==1.2.2
|
||||||
|
ipywidgets==7.5.1
|
||||||
|
jedi==0.13.1
|
||||||
|
Jinja2==2.10
|
||||||
|
jmespath==0.9.3
|
||||||
|
jsonrpclib-pelix==0.3.2
|
||||||
|
jsonschema==2.6.0
|
||||||
|
jupyter-client==6.1.2
|
||||||
|
jupyter-console==6.0.0
|
||||||
|
jupyter-contrib-core==0.3.3
|
||||||
|
jupyter-contrib-nbextensions==0.5.1
|
||||||
|
jupyter-core==4.6.0
|
||||||
|
jupyter-highlight-selected-word==0.2.0
|
||||||
|
jupyter-latex-envs==1.4.6
|
||||||
|
jupyter-nbextensions-configurator==0.4.1
|
||||||
|
jupyter-server==0.1.1
|
||||||
|
jupyterlab-pygments==0.1.0
|
||||||
|
jupyterthemes==0.20.0
|
||||||
|
Keras-Applications==1.0.6
|
||||||
|
Keras-Preprocessing==1.0.5
|
||||||
|
kiwisolver==1.0.1
|
||||||
|
lesscpy==0.14.0
|
||||||
|
lockfile==0.12.2
|
||||||
|
lxml==4.2.5
|
||||||
|
Markdown==2.6.11
|
||||||
|
MarkupSafe==1.1.0
|
||||||
|
matplotlib==3.0.2
|
||||||
|
mistune==0.8.4
|
||||||
|
mock==3.0.5
|
||||||
|
more-itertools==8.1.0
|
||||||
|
msgpack==0.5.6
|
||||||
|
msgpack-numpy==0.4.3.2
|
||||||
|
multidict==4.5.2
|
||||||
|
murmurhash==1.0.1
|
||||||
|
nbconvert==5.6.1
|
||||||
|
nbformat==4.4.0
|
||||||
|
ngrok==0.0.1
|
||||||
|
nltk==3.4.1
|
||||||
|
notebook==5.7.2
|
||||||
|
numpy==1.15.4
|
||||||
|
oauthlib==3.1.0
|
||||||
|
olefile==0.46
|
||||||
|
opt-einsum==3.3.0
|
||||||
|
packaging==18.0
|
||||||
|
pandas==0.23.4
|
||||||
|
pandocfilters==1.4.2
|
||||||
|
parsel==1.5.1
|
||||||
|
parso==0.3.1
|
||||||
|
pathlib2==2.3.5
|
||||||
|
pbkdf2==1.3
|
||||||
|
pdfminer3k==1.3.1
|
||||||
|
pep517==0.3
|
||||||
|
pexpect==4.6.0
|
||||||
|
pickleshare==0.7.5
|
||||||
|
Pillow==5.3.0
|
||||||
|
plac==0.9.6
|
||||||
|
pluggy==0.13.1
|
||||||
|
ply==3.11
|
||||||
|
preshed==2.0.1
|
||||||
|
progress==1.4
|
||||||
|
prometheus-client==0.4.2
|
||||||
|
prompt-toolkit==2.0.7
|
||||||
|
protobuf==3.6.1
|
||||||
|
psutil==5.4.8
|
||||||
|
ptyprocess==0.6.0
|
||||||
|
py==1.8.1
|
||||||
|
pyaes==1.6.1
|
||||||
|
pyasn1==0.4.4
|
||||||
|
pyasn1-modules==0.2.2
|
||||||
|
pycparser==2.19
|
||||||
|
pycryptodomex==3.6.6
|
||||||
|
PyDispatcher==2.0.5
|
||||||
|
Pygments==2.6.1
|
||||||
|
PyHamcrest==1.9.0
|
||||||
|
pyOpenSSL==18.0.0
|
||||||
|
pyparsing==2.3.0
|
||||||
|
PyQt5==5.11.3
|
||||||
|
PyQt5-sip==4.19.13
|
||||||
|
PySocks==1.6.8
|
||||||
|
PyStemmer==1.3.0
|
||||||
|
pytest==5.3.2
|
||||||
|
python-dateutil==2.7.5
|
||||||
|
pytoml==0.1.20
|
||||||
|
pytz==2018.7
|
||||||
|
PyYAML==5.3
|
||||||
|
pyzmq==17.1.0
|
||||||
|
qrcode==6.0
|
||||||
|
QtPy==1.5.1
|
||||||
|
queuelib==1.5.0
|
||||||
|
regex==2018.1.10
|
||||||
|
requests==2.20.1
|
||||||
|
requests-oauthlib==1.3.0
|
||||||
|
retrying==1.3.3
|
||||||
|
rsa==4.6
|
||||||
|
s3transfer==0.1.13
|
||||||
|
scikit-learn==0.20.0
|
||||||
|
scipy==1.1.0
|
||||||
|
Scrapy==1.5.1
|
||||||
|
Send2Trash==1.5.0
|
||||||
|
service-identity==18.1.0
|
||||||
|
simplegeneric==0.8.1
|
||||||
|
six==1.12.0
|
||||||
|
smart-open==1.7.1
|
||||||
|
spacy==2.0.18
|
||||||
|
srsly==1.0.1
|
||||||
|
tensorboard==1.12.0
|
||||||
|
tensorboard-plugin-wit==1.7.0
|
||||||
|
tensorflow==1.12.0
|
||||||
|
tensorflow-gpu==1.12.0
|
||||||
|
tensorflow-serving-api==1.12.0
|
||||||
|
tensorflow-tensorboard==1.5.1
|
||||||
|
termcolor==1.1.0
|
||||||
|
terminado==0.8.1
|
||||||
|
testpath==0.4.2
|
||||||
|
thinc==6.12.1
|
||||||
|
tk-tools==0.12.0
|
||||||
|
toolz==0.9.0
|
||||||
|
tornado==5.1.1
|
||||||
|
tqdm==4.28.1
|
||||||
|
traitlets==4.3.2
|
||||||
|
traittypes==0.2.1
|
||||||
|
Twisted==18.9.0
|
||||||
|
typing-extensions==3.7.4.1
|
||||||
|
ujson==1.35
|
||||||
|
urllib3==1.24.1
|
||||||
|
virtualenv==16.1.0
|
||||||
|
voila==0.1.21
|
||||||
|
voila-gridstack==0.0.8
|
||||||
|
voila-vuetify==0.2.2
|
||||||
|
w3lib==1.19.0
|
||||||
|
wasabi==0.6.0
|
||||||
|
wcwidth==0.1.7
|
||||||
|
webencodings==0.5.1
|
||||||
|
websocket-client==0.54.0
|
||||||
|
Werkzeug==0.14.1
|
||||||
|
widgetsnbextension==3.5.1
|
||||||
|
wrapt==1.10.11
|
||||||
|
yarl==1.3.0
|
||||||
|
zipp==0.6.0
|
||||||
|
zope.interface==4.6.0
|
Binary file not shown.
Loading…
Reference in a new issue