basabuuka_prototyp/venv/lib/python3.5/site-packages/toolz/dicttoolz.py

316 lines
8.5 KiB
Python
Raw Normal View History

2020-08-16 19:36:44 +02:00
import copy
import operator
from toolz.compatibility import (map, zip, iteritems, iterkeys, itervalues,
reduce)
__all__ = ('merge', 'merge_with', 'valmap', 'keymap', 'itemmap',
'valfilter', 'keyfilter', 'itemfilter',
'assoc', 'dissoc', 'assoc_in', 'update_in', 'get_in')
def _get_factory(f, kwargs):
factory = kwargs.pop('factory', dict)
if kwargs:
raise TypeError("{0}() got an unexpected keyword argument "
"'{1}'".format(f.__name__, kwargs.popitem()[0]))
return factory
def merge(*dicts, **kwargs):
""" Merge a collection of dictionaries
>>> merge({1: 'one'}, {2: 'two'})
{1: 'one', 2: 'two'}
Later dictionaries have precedence
>>> merge({1: 2, 3: 4}, {3: 3, 4: 4})
{1: 2, 3: 3, 4: 4}
See Also:
merge_with
"""
if len(dicts) == 1 and not isinstance(dicts[0], dict):
dicts = dicts[0]
factory = _get_factory(merge, kwargs)
rv = factory()
for d in dicts:
rv.update(d)
return rv
def merge_with(func, *dicts, **kwargs):
""" Merge dictionaries and apply function to combined values
A key may occur in more than one dict, and all values mapped from the key
will be passed to the function as a list, such as func([val1, val2, ...]).
>>> merge_with(sum, {1: 1, 2: 2}, {1: 10, 2: 20})
{1: 11, 2: 22}
>>> merge_with(first, {1: 1, 2: 2}, {2: 20, 3: 30}) # doctest: +SKIP
{1: 1, 2: 2, 3: 30}
See Also:
merge
"""
if len(dicts) == 1 and not isinstance(dicts[0], dict):
dicts = dicts[0]
factory = _get_factory(merge_with, kwargs)
result = factory()
for d in dicts:
for k, v in iteritems(d):
if k not in result:
result[k] = [v]
else:
result[k].append(v)
return valmap(func, result, factory)
def valmap(func, d, factory=dict):
""" Apply function to values of dictionary
>>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
>>> valmap(sum, bills) # doctest: +SKIP
{'Alice': 65, 'Bob': 45}
See Also:
keymap
itemmap
"""
rv = factory()
rv.update(zip(iterkeys(d), map(func, itervalues(d))))
return rv
def keymap(func, d, factory=dict):
""" Apply function to keys of dictionary
>>> bills = {"Alice": [20, 15, 30], "Bob": [10, 35]}
>>> keymap(str.lower, bills) # doctest: +SKIP
{'alice': [20, 15, 30], 'bob': [10, 35]}
See Also:
valmap
itemmap
"""
rv = factory()
rv.update(zip(map(func, iterkeys(d)), itervalues(d)))
return rv
def itemmap(func, d, factory=dict):
""" Apply function to items of dictionary
>>> accountids = {"Alice": 10, "Bob": 20}
>>> itemmap(reversed, accountids) # doctest: +SKIP
{10: "Alice", 20: "Bob"}
See Also:
keymap
valmap
"""
rv = factory()
rv.update(map(func, iteritems(d)))
return rv
def valfilter(predicate, d, factory=dict):
""" Filter items in dictionary by value
>>> iseven = lambda x: x % 2 == 0
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
>>> valfilter(iseven, d)
{1: 2, 3: 4}
See Also:
keyfilter
itemfilter
valmap
"""
rv = factory()
for k, v in iteritems(d):
if predicate(v):
rv[k] = v
return rv
def keyfilter(predicate, d, factory=dict):
""" Filter items in dictionary by key
>>> iseven = lambda x: x % 2 == 0
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
>>> keyfilter(iseven, d)
{2: 3, 4: 5}
See Also:
valfilter
itemfilter
keymap
"""
rv = factory()
for k, v in iteritems(d):
if predicate(k):
rv[k] = v
return rv
def itemfilter(predicate, d, factory=dict):
""" Filter items in dictionary by item
>>> def isvalid(item):
... k, v = item
... return k % 2 == 0 and v < 4
>>> d = {1: 2, 2: 3, 3: 4, 4: 5}
>>> itemfilter(isvalid, d)
{2: 3}
See Also:
keyfilter
valfilter
itemmap
"""
rv = factory()
for item in iteritems(d):
if predicate(item):
k, v = item
rv[k] = v
return rv
def assoc(d, key, value, factory=dict):
""" Return a new dict with new key value pair
New dict has d[key] set to value. Does not modify the initial dictionary.
>>> assoc({'x': 1}, 'x', 2)
{'x': 2}
>>> assoc({'x': 1}, 'y', 3) # doctest: +SKIP
{'x': 1, 'y': 3}
"""
d2 = factory()
d2[key] = value
return merge(d, d2, factory=factory)
def dissoc(d, *keys):
""" Return a new dict with the given key(s) removed.
New dict has d[key] deleted for each supplied key.
Does not modify the initial dictionary.
>>> dissoc({'x': 1, 'y': 2}, 'y')
{'x': 1}
>>> dissoc({'x': 1, 'y': 2}, 'y', 'x')
{}
>>> dissoc({'x': 1}, 'y') # Ignores missing keys
{'x': 1}
"""
d2 = copy.copy(d)
for key in keys:
if key in d2:
del d2[key]
return d2
def assoc_in(d, keys, value, factory=dict):
""" Return a new dict with new, potentially nested, key value pair
>>> purchase = {'name': 'Alice',
... 'order': {'items': ['Apple', 'Orange'],
... 'costs': [0.50, 1.25]},
... 'credit card': '5555-1234-1234-1234'}
>>> assoc_in(purchase, ['order', 'costs'], [0.25, 1.00]) # doctest: +SKIP
{'credit card': '5555-1234-1234-1234',
'name': 'Alice',
'order': {'costs': [0.25, 1.00], 'items': ['Apple', 'Orange']}}
"""
return update_in(d, keys, lambda x: value, value, factory)
def update_in(d, keys, func, default=None, factory=dict):
""" Update value in a (potentially) nested dictionary
inputs:
d - dictionary on which to operate
keys - list or tuple giving the location of the value to be changed in d
func - function to operate on that value
If keys == [k0,..,kX] and d[k0]..[kX] == v, update_in returns a copy of the
original dictionary with v replaced by func(v), but does not mutate the
original dictionary.
If k0 is not a key in d, update_in creates nested dictionaries to the depth
specified by the keys, with the innermost value set to func(default).
>>> inc = lambda x: x + 1
>>> update_in({'a': 0}, ['a'], inc)
{'a': 1}
>>> transaction = {'name': 'Alice',
... 'purchase': {'items': ['Apple', 'Orange'],
... 'costs': [0.50, 1.25]},
... 'credit card': '5555-1234-1234-1234'}
>>> update_in(transaction, ['purchase', 'costs'], sum) # doctest: +SKIP
{'credit card': '5555-1234-1234-1234',
'name': 'Alice',
'purchase': {'costs': 1.75, 'items': ['Apple', 'Orange']}}
>>> # updating a value when k0 is not in d
>>> update_in({}, [1, 2, 3], str, default="bar")
{1: {2: {3: 'bar'}}}
>>> update_in({1: 'foo'}, [2, 3, 4], inc, 0)
{1: 'foo', 2: {3: {4: 1}}}
"""
assert len(keys) > 0
k, ks = keys[0], keys[1:]
if ks:
return assoc(d, k, update_in(d[k] if (k in d) else factory(),
ks, func, default, factory),
factory)
else:
innermost = func(d[k]) if (k in d) else func(default)
return assoc(d, k, innermost, factory)
def get_in(keys, coll, default=None, no_default=False):
""" Returns coll[i0][i1]...[iX] where [i0, i1, ..., iX]==keys.
If coll[i0][i1]...[iX] cannot be found, returns ``default``, unless
``no_default`` is specified, then it raises KeyError or IndexError.
``get_in`` is a generalization of ``operator.getitem`` for nested data
structures such as dictionaries and lists.
>>> transaction = {'name': 'Alice',
... 'purchase': {'items': ['Apple', 'Orange'],
... 'costs': [0.50, 1.25]},
... 'credit card': '5555-1234-1234-1234'}
>>> get_in(['purchase', 'items', 0], transaction)
'Apple'
>>> get_in(['name'], transaction)
'Alice'
>>> get_in(['purchase', 'total'], transaction)
>>> get_in(['purchase', 'items', 'apple'], transaction)
>>> get_in(['purchase', 'items', 10], transaction)
>>> get_in(['purchase', 'total'], transaction, 0)
0
>>> get_in(['y'], {}, no_default=True)
Traceback (most recent call last):
...
KeyError: 'y'
See Also:
itertoolz.get
operator.getitem
"""
try:
return reduce(operator.getitem, keys, coll)
except (KeyError, IndexError, TypeError):
if no_default:
raise
return default