713 lines
25 KiB
Python
713 lines
25 KiB
Python
|
"""
|
||
|
This module implements multioutput regression and classification.
|
||
|
|
||
|
The estimators provided in this module are meta-estimators: they require
|
||
|
a base estimator to be provided in their constructor. The meta-estimator
|
||
|
extends single output estimators to multioutput estimators.
|
||
|
"""
|
||
|
|
||
|
# Author: Tim Head <betatim@gmail.com>
|
||
|
# Author: Hugo Bowne-Anderson <hugobowne@gmail.com>
|
||
|
# Author: Chris Rivera <chris.richard.rivera@gmail.com>
|
||
|
# Author: Michael Williamson
|
||
|
# Author: James Ashton Nichols <james.ashton.nichols@gmail.com>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
from .base import BaseEstimator, clone, MetaEstimatorMixin
|
||
|
from .base import RegressorMixin, ClassifierMixin, is_classifier
|
||
|
from .model_selection import cross_val_predict
|
||
|
from .utils import check_array, check_X_y, check_random_state
|
||
|
from .utils.fixes import parallel_helper
|
||
|
from .utils.metaestimators import if_delegate_has_method
|
||
|
from .utils.validation import check_is_fitted, has_fit_parameter
|
||
|
from .utils.multiclass import check_classification_targets
|
||
|
from .utils import Parallel, delayed
|
||
|
from .externals import six
|
||
|
|
||
|
__all__ = ["MultiOutputRegressor", "MultiOutputClassifier",
|
||
|
"ClassifierChain", "RegressorChain"]
|
||
|
|
||
|
|
||
|
def _fit_estimator(estimator, X, y, sample_weight=None):
|
||
|
estimator = clone(estimator)
|
||
|
if sample_weight is not None:
|
||
|
estimator.fit(X, y, sample_weight=sample_weight)
|
||
|
else:
|
||
|
estimator.fit(X, y)
|
||
|
return estimator
|
||
|
|
||
|
|
||
|
def _partial_fit_estimator(estimator, X, y, classes=None, sample_weight=None,
|
||
|
first_time=True):
|
||
|
if first_time:
|
||
|
estimator = clone(estimator)
|
||
|
|
||
|
if sample_weight is not None:
|
||
|
if classes is not None:
|
||
|
estimator.partial_fit(X, y, classes=classes,
|
||
|
sample_weight=sample_weight)
|
||
|
else:
|
||
|
estimator.partial_fit(X, y, sample_weight=sample_weight)
|
||
|
else:
|
||
|
if classes is not None:
|
||
|
estimator.partial_fit(X, y, classes=classes)
|
||
|
else:
|
||
|
estimator.partial_fit(X, y)
|
||
|
return estimator
|
||
|
|
||
|
|
||
|
class MultiOutputEstimator(six.with_metaclass(ABCMeta, BaseEstimator,
|
||
|
MetaEstimatorMixin)):
|
||
|
@abstractmethod
|
||
|
def __init__(self, estimator, n_jobs=None):
|
||
|
self.estimator = estimator
|
||
|
self.n_jobs = n_jobs
|
||
|
|
||
|
@if_delegate_has_method('estimator')
|
||
|
def partial_fit(self, X, y, classes=None, sample_weight=None):
|
||
|
"""Incrementally fit the model to data.
|
||
|
Fit a separate model for each output variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : (sparse) array-like, shape (n_samples, n_features)
|
||
|
Data.
|
||
|
|
||
|
y : (sparse) array-like, shape (n_samples, n_outputs)
|
||
|
Multi-output targets.
|
||
|
|
||
|
classes : list of numpy arrays, shape (n_outputs)
|
||
|
Each array is unique classes for one output in str/int
|
||
|
Can be obtained by via
|
||
|
``[np.unique(y[:, i]) for i in range(y.shape[1])]``, where y is the
|
||
|
target matrix of the entire dataset.
|
||
|
This argument is required for the first call to partial_fit
|
||
|
and can be omitted in the subsequent calls.
|
||
|
Note that y doesn't need to contain all labels in `classes`.
|
||
|
|
||
|
sample_weight : array-like, shape = (n_samples) or None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
Only supported if the underlying regressor supports sample
|
||
|
weights.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
X, y = check_X_y(X, y,
|
||
|
multi_output=True,
|
||
|
accept_sparse=True)
|
||
|
|
||
|
if y.ndim == 1:
|
||
|
raise ValueError("y must have at least two dimensions for "
|
||
|
"multi-output regression but has only one.")
|
||
|
|
||
|
if (sample_weight is not None and
|
||
|
not has_fit_parameter(self.estimator, 'sample_weight')):
|
||
|
raise ValueError("Underlying estimator does not support"
|
||
|
" sample weights.")
|
||
|
|
||
|
first_time = not hasattr(self, 'estimators_')
|
||
|
|
||
|
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(_partial_fit_estimator)(
|
||
|
self.estimators_[i] if not first_time else self.estimator,
|
||
|
X, y[:, i],
|
||
|
classes[i] if classes is not None else None,
|
||
|
sample_weight, first_time) for i in range(y.shape[1]))
|
||
|
return self
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
""" Fit the model to data.
|
||
|
Fit a separate model for each output variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : (sparse) array-like, shape (n_samples, n_features)
|
||
|
Data.
|
||
|
|
||
|
y : (sparse) array-like, shape (n_samples, n_outputs)
|
||
|
Multi-output targets. An indicator matrix turns on multilabel
|
||
|
estimation.
|
||
|
|
||
|
sample_weight : array-like, shape = (n_samples) or None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
Only supported if the underlying regressor supports sample
|
||
|
weights.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
|
||
|
if not hasattr(self.estimator, "fit"):
|
||
|
raise ValueError("The base estimator should implement a fit method")
|
||
|
|
||
|
X, y = check_X_y(X, y,
|
||
|
multi_output=True,
|
||
|
accept_sparse=True)
|
||
|
|
||
|
if is_classifier(self):
|
||
|
check_classification_targets(y)
|
||
|
|
||
|
if y.ndim == 1:
|
||
|
raise ValueError("y must have at least two dimensions for "
|
||
|
"multi-output regression but has only one.")
|
||
|
|
||
|
if (sample_weight is not None and
|
||
|
not has_fit_parameter(self.estimator, 'sample_weight')):
|
||
|
raise ValueError("Underlying estimator does not support"
|
||
|
" sample weights.")
|
||
|
|
||
|
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(_fit_estimator)(
|
||
|
self.estimator, X, y[:, i], sample_weight)
|
||
|
for i in range(y.shape[1]))
|
||
|
return self
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict multi-output variable using a model
|
||
|
trained for each target variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : (sparse) array-like, shape (n_samples, n_features)
|
||
|
Data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : (sparse) array-like, shape (n_samples, n_outputs)
|
||
|
Multi-output targets predicted across multiple predictors.
|
||
|
Note: Separate models are generated for each predictor.
|
||
|
"""
|
||
|
check_is_fitted(self, 'estimators_')
|
||
|
if not hasattr(self.estimator, "predict"):
|
||
|
raise ValueError("The base estimator should implement a predict method")
|
||
|
|
||
|
X = check_array(X, accept_sparse=True)
|
||
|
|
||
|
y = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(parallel_helper)(e, 'predict', X)
|
||
|
for e in self.estimators_)
|
||
|
|
||
|
return np.asarray(y).T
|
||
|
|
||
|
|
||
|
class MultiOutputRegressor(MultiOutputEstimator, RegressorMixin):
|
||
|
"""Multi target regression
|
||
|
|
||
|
This strategy consists of fitting one regressor per target. This is a
|
||
|
simple strategy for extending regressors that do not natively support
|
||
|
multi-target regression.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object
|
||
|
An estimator object implementing `fit` and `predict`.
|
||
|
|
||
|
n_jobs : int or None, optional (default=None)
|
||
|
The number of jobs to run in parallel for `fit`.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
When individual estimators are fast to train or predict
|
||
|
using `n_jobs>1` can result in slower performance due
|
||
|
to the overhead of spawning processes.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, estimator, n_jobs=None):
|
||
|
super(MultiOutputRegressor, self).__init__(estimator, n_jobs)
|
||
|
|
||
|
@if_delegate_has_method('estimator')
|
||
|
def partial_fit(self, X, y, sample_weight=None):
|
||
|
"""Incrementally fit the model to data.
|
||
|
Fit a separate model for each output variable.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : (sparse) array-like, shape (n_samples, n_features)
|
||
|
Data.
|
||
|
|
||
|
y : (sparse) array-like, shape (n_samples, n_outputs)
|
||
|
Multi-output targets.
|
||
|
|
||
|
sample_weight : array-like, shape = (n_samples) or None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
Only supported if the underlying regressor supports sample
|
||
|
weights.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
super(MultiOutputRegressor, self).partial_fit(
|
||
|
X, y, sample_weight=sample_weight)
|
||
|
|
||
|
def score(self, X, y, sample_weight=None):
|
||
|
"""Returns the coefficient of determination R^2 of the prediction.
|
||
|
|
||
|
The coefficient R^2 is defined as (1 - u/v), where u is the residual
|
||
|
sum of squares ((y_true - y_pred) ** 2).sum() and v is the regression
|
||
|
sum of squares ((y_true - y_true.mean()) ** 2).sum().
|
||
|
Best possible score is 1.0 and it can be negative (because the
|
||
|
model can be arbitrarily worse). A constant model that always
|
||
|
predicts the expected value of y, disregarding the input features,
|
||
|
would get a R^2 score of 0.0.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
R^2 is calculated by weighting all the targets equally using
|
||
|
`multioutput='uniform_average'`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Test samples.
|
||
|
|
||
|
y : array-like, shape (n_samples) or (n_samples, n_outputs)
|
||
|
True values for X.
|
||
|
|
||
|
sample_weight : array-like, shape [n_samples], optional
|
||
|
Sample weights.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : float
|
||
|
R^2 of self.predict(X) wrt. y.
|
||
|
"""
|
||
|
# XXX remove in 0.19 when r2_score default for multioutput changes
|
||
|
from .metrics import r2_score
|
||
|
return r2_score(y, self.predict(X), sample_weight=sample_weight,
|
||
|
multioutput='uniform_average')
|
||
|
|
||
|
|
||
|
class MultiOutputClassifier(MultiOutputEstimator, ClassifierMixin):
|
||
|
"""Multi target classification
|
||
|
|
||
|
This strategy consists of fitting one classifier per target. This is a
|
||
|
simple strategy for extending classifiers that do not natively support
|
||
|
multi-target classification
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object
|
||
|
An estimator object implementing `fit`, `score` and `predict_proba`.
|
||
|
|
||
|
n_jobs : int or None, optional (default=None)
|
||
|
The number of jobs to use for the computation.
|
||
|
It does each target variable in y in parallel.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
estimators_ : list of ``n_output`` estimators
|
||
|
Estimators used for predictions.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, estimator, n_jobs=None):
|
||
|
super(MultiOutputClassifier, self).__init__(estimator, n_jobs)
|
||
|
|
||
|
def predict_proba(self, X):
|
||
|
"""Probability estimates.
|
||
|
Returns prediction probabilities for each class of each output.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Data
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : array of shape = [n_samples, n_classes], or a list of n_outputs \
|
||
|
such arrays if n_outputs > 1.
|
||
|
The class probabilities of the input samples. The order of the
|
||
|
classes corresponds to that in the attribute `classes_`.
|
||
|
"""
|
||
|
check_is_fitted(self, 'estimators_')
|
||
|
if not hasattr(self.estimator, "predict_proba"):
|
||
|
raise ValueError("The base estimator should implement"
|
||
|
"predict_proba method")
|
||
|
|
||
|
results = [estimator.predict_proba(X) for estimator in
|
||
|
self.estimators_]
|
||
|
return results
|
||
|
|
||
|
def score(self, X, y):
|
||
|
""""Returns the mean accuracy on the given test data and labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape [n_samples, n_features]
|
||
|
Test samples
|
||
|
|
||
|
y : array-like, shape [n_samples, n_outputs]
|
||
|
True values for X
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
scores : float
|
||
|
accuracy_score of self.predict(X) versus y
|
||
|
"""
|
||
|
check_is_fitted(self, 'estimators_')
|
||
|
n_outputs_ = len(self.estimators_)
|
||
|
if y.ndim == 1:
|
||
|
raise ValueError("y must have at least two dimensions for "
|
||
|
"multi target classification but has only one")
|
||
|
if y.shape[1] != n_outputs_:
|
||
|
raise ValueError("The number of outputs of Y for fit {0} and"
|
||
|
" score {1} should be same".
|
||
|
format(n_outputs_, y.shape[1]))
|
||
|
y_pred = self.predict(X)
|
||
|
return np.mean(np.all(y == y_pred, axis=1))
|
||
|
|
||
|
|
||
|
class _BaseChain(six.with_metaclass(ABCMeta, BaseEstimator)):
|
||
|
def __init__(self, base_estimator, order=None, cv=None, random_state=None):
|
||
|
self.base_estimator = base_estimator
|
||
|
self.order = order
|
||
|
self.cv = cv
|
||
|
self.random_state = random_state
|
||
|
|
||
|
@abstractmethod
|
||
|
def fit(self, X, Y):
|
||
|
"""Fit the model to data matrix X and targets Y.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data.
|
||
|
Y : array-like, shape (n_samples, n_classes)
|
||
|
The target values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
X, Y = check_X_y(X, Y, multi_output=True, accept_sparse=True)
|
||
|
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
check_array(X, accept_sparse=True)
|
||
|
self.order_ = self.order
|
||
|
if self.order_ is None:
|
||
|
self.order_ = np.array(range(Y.shape[1]))
|
||
|
elif isinstance(self.order_, str):
|
||
|
if self.order_ == 'random':
|
||
|
self.order_ = random_state.permutation(Y.shape[1])
|
||
|
elif sorted(self.order_) != list(range(Y.shape[1])):
|
||
|
raise ValueError("invalid order")
|
||
|
|
||
|
self.estimators_ = [clone(self.base_estimator)
|
||
|
for _ in range(Y.shape[1])]
|
||
|
|
||
|
if self.cv is None:
|
||
|
Y_pred_chain = Y[:, self.order_]
|
||
|
if sp.issparse(X):
|
||
|
X_aug = sp.hstack((X, Y_pred_chain), format='lil')
|
||
|
X_aug = X_aug.tocsr()
|
||
|
else:
|
||
|
X_aug = np.hstack((X, Y_pred_chain))
|
||
|
|
||
|
elif sp.issparse(X):
|
||
|
Y_pred_chain = sp.lil_matrix((X.shape[0], Y.shape[1]))
|
||
|
X_aug = sp.hstack((X, Y_pred_chain), format='lil')
|
||
|
|
||
|
else:
|
||
|
Y_pred_chain = np.zeros((X.shape[0], Y.shape[1]))
|
||
|
X_aug = np.hstack((X, Y_pred_chain))
|
||
|
|
||
|
del Y_pred_chain
|
||
|
|
||
|
for chain_idx, estimator in enumerate(self.estimators_):
|
||
|
y = Y[:, self.order_[chain_idx]]
|
||
|
estimator.fit(X_aug[:, :(X.shape[1] + chain_idx)], y)
|
||
|
if self.cv is not None and chain_idx < len(self.estimators_) - 1:
|
||
|
col_idx = X.shape[1] + chain_idx
|
||
|
cv_result = cross_val_predict(
|
||
|
self.base_estimator, X_aug[:, :col_idx],
|
||
|
y=y, cv=self.cv)
|
||
|
if sp.issparse(X_aug):
|
||
|
X_aug[:, col_idx] = np.expand_dims(cv_result, 1)
|
||
|
else:
|
||
|
X_aug[:, col_idx] = cv_result
|
||
|
|
||
|
return self
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict on the data matrix X using the ClassifierChain model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y_pred : array-like, shape (n_samples, n_classes)
|
||
|
The predicted values.
|
||
|
|
||
|
"""
|
||
|
X = check_array(X, accept_sparse=True)
|
||
|
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
|
||
|
for chain_idx, estimator in enumerate(self.estimators_):
|
||
|
previous_predictions = Y_pred_chain[:, :chain_idx]
|
||
|
if sp.issparse(X):
|
||
|
if chain_idx == 0:
|
||
|
X_aug = X
|
||
|
else:
|
||
|
X_aug = sp.hstack((X, previous_predictions))
|
||
|
else:
|
||
|
X_aug = np.hstack((X, previous_predictions))
|
||
|
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
|
||
|
|
||
|
inv_order = np.empty_like(self.order_)
|
||
|
inv_order[self.order_] = np.arange(len(self.order_))
|
||
|
Y_pred = Y_pred_chain[:, inv_order]
|
||
|
|
||
|
return Y_pred
|
||
|
|
||
|
|
||
|
class ClassifierChain(_BaseChain, ClassifierMixin, MetaEstimatorMixin):
|
||
|
"""A multi-label model that arranges binary classifiers into a chain.
|
||
|
|
||
|
Each model makes a prediction in the order specified by the chain using
|
||
|
all of the available features provided to the model plus the predictions
|
||
|
of models that are earlier in the chain.
|
||
|
|
||
|
Read more in the :ref:`User Guide <classifierchain>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : estimator
|
||
|
The base estimator from which the classifier chain is built.
|
||
|
|
||
|
order : array-like, shape=[n_outputs] or 'random', optional
|
||
|
By default the order will be determined by the order of columns in
|
||
|
the label matrix Y.::
|
||
|
|
||
|
order = [0, 1, 2, ..., Y.shape[1] - 1]
|
||
|
|
||
|
The order of the chain can be explicitly set by providing a list of
|
||
|
integers. For example, for a chain of length 5.::
|
||
|
|
||
|
order = [1, 3, 2, 4, 0]
|
||
|
|
||
|
means that the first model in the chain will make predictions for
|
||
|
column 1 in the Y matrix, the second model will make predictions
|
||
|
for column 3, etc.
|
||
|
|
||
|
If order is 'random' a random ordering will be used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, optional \
|
||
|
(default=None)
|
||
|
Determines whether to use cross validated predictions or true
|
||
|
labels for the results of previous estimators in the chain.
|
||
|
If cv is None the true labels are used when fitting. Otherwise
|
||
|
possible inputs for cv are:
|
||
|
|
||
|
* integer, to specify the number of folds in a (Stratified)KFold,
|
||
|
* An object to be used as a cross-validation generator.
|
||
|
* An iterable yielding train, test splits.
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional (default=None)
|
||
|
If int, random_state is the seed used by the random number generator;
|
||
|
If RandomState instance, random_state is the random number generator;
|
||
|
If None, the random number generator is the RandomState instance used
|
||
|
by `np.random`.
|
||
|
|
||
|
The random number generator is used to generate random chain orders.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
classes_ : list
|
||
|
A list of arrays of length ``len(estimators_)`` containing the
|
||
|
class labels for each estimator in the chain.
|
||
|
|
||
|
estimators_ : list
|
||
|
A list of clones of base_estimator.
|
||
|
|
||
|
order_ : list
|
||
|
The order of labels in the classifier chain.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
RegressorChain: Equivalent for regression
|
||
|
MultioutputClassifier: Classifies each output independently rather than
|
||
|
chaining.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, "Classifier
|
||
|
Chains for Multi-label Classification", 2009.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def fit(self, X, Y):
|
||
|
"""Fit the model to data matrix X and targets Y.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data.
|
||
|
Y : array-like, shape (n_samples, n_classes)
|
||
|
The target values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
super(ClassifierChain, self).fit(X, Y)
|
||
|
self.classes_ = []
|
||
|
for chain_idx, estimator in enumerate(self.estimators_):
|
||
|
self.classes_.append(estimator.classes_)
|
||
|
return self
|
||
|
|
||
|
@if_delegate_has_method('base_estimator')
|
||
|
def predict_proba(self, X):
|
||
|
"""Predict probability estimates.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y_prob : array-like, shape (n_samples, n_classes)
|
||
|
"""
|
||
|
X = check_array(X, accept_sparse=True)
|
||
|
Y_prob_chain = np.zeros((X.shape[0], len(self.estimators_)))
|
||
|
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
|
||
|
for chain_idx, estimator in enumerate(self.estimators_):
|
||
|
previous_predictions = Y_pred_chain[:, :chain_idx]
|
||
|
if sp.issparse(X):
|
||
|
X_aug = sp.hstack((X, previous_predictions))
|
||
|
else:
|
||
|
X_aug = np.hstack((X, previous_predictions))
|
||
|
Y_prob_chain[:, chain_idx] = estimator.predict_proba(X_aug)[:, 1]
|
||
|
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
|
||
|
inv_order = np.empty_like(self.order_)
|
||
|
inv_order[self.order_] = np.arange(len(self.order_))
|
||
|
Y_prob = Y_prob_chain[:, inv_order]
|
||
|
|
||
|
return Y_prob
|
||
|
|
||
|
@if_delegate_has_method('base_estimator')
|
||
|
def decision_function(self, X):
|
||
|
"""Evaluate the decision_function of the models in the chain.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y_decision : array-like, shape (n_samples, n_classes )
|
||
|
Returns the decision function of the sample for each model
|
||
|
in the chain.
|
||
|
"""
|
||
|
Y_decision_chain = np.zeros((X.shape[0], len(self.estimators_)))
|
||
|
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
|
||
|
for chain_idx, estimator in enumerate(self.estimators_):
|
||
|
previous_predictions = Y_pred_chain[:, :chain_idx]
|
||
|
if sp.issparse(X):
|
||
|
X_aug = sp.hstack((X, previous_predictions))
|
||
|
else:
|
||
|
X_aug = np.hstack((X, previous_predictions))
|
||
|
Y_decision_chain[:, chain_idx] = estimator.decision_function(X_aug)
|
||
|
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
|
||
|
|
||
|
inv_order = np.empty_like(self.order_)
|
||
|
inv_order[self.order_] = np.arange(len(self.order_))
|
||
|
Y_decision = Y_decision_chain[:, inv_order]
|
||
|
|
||
|
return Y_decision
|
||
|
|
||
|
|
||
|
class RegressorChain(_BaseChain, RegressorMixin, MetaEstimatorMixin):
|
||
|
"""A multi-label model that arranges regressions into a chain.
|
||
|
|
||
|
Each model makes a prediction in the order specified by the chain using
|
||
|
all of the available features provided to the model plus the predictions
|
||
|
of models that are earlier in the chain.
|
||
|
|
||
|
Read more in the :ref:`User Guide <regressorchain>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : estimator
|
||
|
The base estimator from which the classifier chain is built.
|
||
|
|
||
|
order : array-like, shape=[n_outputs] or 'random', optional
|
||
|
By default the order will be determined by the order of columns in
|
||
|
the label matrix Y.::
|
||
|
|
||
|
order = [0, 1, 2, ..., Y.shape[1] - 1]
|
||
|
|
||
|
The order of the chain can be explicitly set by providing a list of
|
||
|
integers. For example, for a chain of length 5.::
|
||
|
|
||
|
order = [1, 3, 2, 4, 0]
|
||
|
|
||
|
means that the first model in the chain will make predictions for
|
||
|
column 1 in the Y matrix, the second model will make predictions
|
||
|
for column 3, etc.
|
||
|
|
||
|
If order is 'random' a random ordering will be used.
|
||
|
|
||
|
cv : int, cross-validation generator or an iterable, optional \
|
||
|
(default=None)
|
||
|
Determines whether to use cross validated predictions or true
|
||
|
labels for the results of previous estimators in the chain.
|
||
|
If cv is None the true labels are used when fitting. Otherwise
|
||
|
possible inputs for cv are:
|
||
|
|
||
|
* integer, to specify the number of folds in a (Stratified)KFold,
|
||
|
* An object to be used as a cross-validation generator.
|
||
|
* An iterable yielding train, test splits.
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional (default=None)
|
||
|
If int, random_state is the seed used by the random number generator;
|
||
|
If RandomState instance, random_state is the random number generator;
|
||
|
If None, the random number generator is the RandomState instance used
|
||
|
by `np.random`.
|
||
|
|
||
|
The random number generator is used to generate random chain orders.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
estimators_ : list
|
||
|
A list of clones of base_estimator.
|
||
|
|
||
|
order_ : list
|
||
|
The order of labels in the classifier chain.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
ClassifierChain: Equivalent for classification
|
||
|
MultioutputRegressor: Learns each output independently rather than
|
||
|
chaining.
|
||
|
|
||
|
"""
|
||
|
def fit(self, X, Y):
|
||
|
"""Fit the model to data matrix X and targets Y.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||
|
The input data.
|
||
|
Y : array-like, shape (n_samples, n_classes)
|
||
|
The target values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
super(RegressorChain, self).fit(X, Y)
|
||
|
return self
|