1794 lines
72 KiB
Python
1794 lines
72 KiB
Python
|
# Copyright 2015 Bloomberg Finance L.P.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
r"""
|
||
|
|
||
|
=====
|
||
|
Marks
|
||
|
=====
|
||
|
|
||
|
.. currentmodule:: bqplot.marks
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: _generate/
|
||
|
|
||
|
Mark
|
||
|
Lines
|
||
|
FlexLine
|
||
|
Scatter
|
||
|
Hist
|
||
|
Bars
|
||
|
Graph
|
||
|
GridHeatMap
|
||
|
HeatMap
|
||
|
Label
|
||
|
OHLC
|
||
|
Pie
|
||
|
Map
|
||
|
"""
|
||
|
import os
|
||
|
import json
|
||
|
|
||
|
from warnings import warn
|
||
|
import ipywidgets as widgets
|
||
|
from ipywidgets import (Widget, DOMWidget, CallbackDispatcher,
|
||
|
Color, widget_serialization)
|
||
|
from traitlets import (Int, Unicode, List, Enum, Dict, Bool, Float,
|
||
|
Instance, TraitError, validate)
|
||
|
from traittypes import Array
|
||
|
|
||
|
from numpy import histogram
|
||
|
import numpy as np
|
||
|
|
||
|
from .scales import Scale, OrdinalScale, LinearScale
|
||
|
from .traits import (Date, array_serialization,
|
||
|
array_squeeze, array_dimension_bounds, array_supported_kinds)
|
||
|
from ._version import __frontend_version__
|
||
|
from .colorschemes import CATEGORY10
|
||
|
|
||
|
|
||
|
def register_mark(key=None):
|
||
|
"""Returns a decorator registering a mark class in the mark type registry.
|
||
|
|
||
|
If no key is provided, the class name is used as a key. A key is provided
|
||
|
for each core bqplot mark so that the frontend can use
|
||
|
this key regardless of the kernel language.
|
||
|
"""
|
||
|
def wrap(mark):
|
||
|
name = key if key is not None else mark.__module__ + mark.__name__
|
||
|
Mark.mark_types[name] = mark
|
||
|
return mark
|
||
|
return wrap
|
||
|
|
||
|
|
||
|
# Shape constraint for array-types
|
||
|
def shape(*dimensions):
|
||
|
def validator(trait, value):
|
||
|
err_msg_tmpl = 'Expected an array of shape {} ' + \
|
||
|
'but got an array of shape {}'
|
||
|
if value.shape != dimensions:
|
||
|
raise TraitError(err_msg_tmpl.format(dimensions, value.shape))
|
||
|
else:
|
||
|
return value
|
||
|
return validator
|
||
|
|
||
|
|
||
|
class Mark(Widget):
|
||
|
|
||
|
"""The base mark class.
|
||
|
|
||
|
Traitlet mark attributes may be decorated with metadata.
|
||
|
|
||
|
**Data Attribute Decoration**
|
||
|
|
||
|
Data attributes are decorated with the following values:
|
||
|
|
||
|
scaled: bool
|
||
|
Indicates whether the considered attribute is a data attribute which
|
||
|
must be associated with a scale in order to be taken into account.
|
||
|
rtype: string
|
||
|
Range type of the associated scale.
|
||
|
atype: string
|
||
|
Key in bqplot's axis registry of the recommended axis type to represent
|
||
|
this scale. When not specified, the default is 'bqplot.Axis'.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
display_name: string
|
||
|
Holds a user-friendly name for the trait attribute.
|
||
|
mark_types: dict (class-level attribute)
|
||
|
A registry of existing mark types.
|
||
|
scales: Dict of scales (default: {})
|
||
|
A dictionary of scales holding scales for each data attribute.
|
||
|
- If a mark holds a scaled attribute named 'x', the scales dictionary
|
||
|
must have a corresponding scale for the key 'x'.
|
||
|
- The scale's range type should be equal to the scaled attribute's
|
||
|
range type (rtype).
|
||
|
scales_metadata: Dict (default: {})
|
||
|
A dictionary of dictionaries holding metadata on the way scales are
|
||
|
used by the mark. For example, a linear scale may be used to count
|
||
|
pixels horizontally or vertically. The content of this dictionary
|
||
|
may change dynamically. It is an instance-level attribute.
|
||
|
preserve_domain: dict (default: {})
|
||
|
Indicates if this mark affects the domain(s) of the specified scale(s).
|
||
|
The keys of this dictionary are the same as the ones of the "scales"
|
||
|
attribute, and values are boolean. If a key is missing, it is
|
||
|
considered as False.
|
||
|
display_legend: bool (default: False)
|
||
|
Display toggle for the mark legend in the general figure legend
|
||
|
labels: list of unicode strings (default: [])
|
||
|
Labels of the items of the mark. This attribute has different meanings
|
||
|
depending on the type of mark.
|
||
|
apply_clip: bool (default: True)
|
||
|
Indicates whether the items that are beyond the limits of the chart
|
||
|
should be clipped.
|
||
|
visible: bool (default: True)
|
||
|
Visibility toggle for the mark.
|
||
|
selected_style: dict (default: {})
|
||
|
CSS style to be applied to selected items in the mark.
|
||
|
unselected_style: dict (default: {})
|
||
|
CSS style to be applied to items that are not selected in the mark,
|
||
|
when a selection exists.
|
||
|
selected: list of integers or None (default: None)
|
||
|
Indices of the selected items in the mark.
|
||
|
tooltip: DOMWidget or None (default: None)
|
||
|
Widget to be displayed as tooltip when elements of the scatter are
|
||
|
hovered on
|
||
|
tooltip_style: Dictionary (default: {'opacity': 0.9})
|
||
|
Styles to be applied to the tooltip widget
|
||
|
enable_hover: Bool (default: True)
|
||
|
Boolean attribute to control the hover interaction for the scatter. If
|
||
|
this is false, the on_hover custom mssg is not sent back to the python
|
||
|
side
|
||
|
interactions: Dictionary (default: {'hover': 'tooltip'})
|
||
|
Dictionary listing the different interactions for each mark. The key is
|
||
|
the event which triggers the interaction and the value is the kind of
|
||
|
interactions. Keys and values can only take strings from separate enums
|
||
|
for each mark.
|
||
|
tooltip_location : {'mouse', 'center'} (default: 'mouse')
|
||
|
Enum specifying the location of the tooltip. 'mouse' places the tooltip
|
||
|
at the location of the mouse when the tooltip is activated and 'center'
|
||
|
places the tooltip at the center of the figure. If tooltip is linked to
|
||
|
a click event, 'mouse' places the tooltip at the location of the click
|
||
|
that triggered the tooltip to be visible.
|
||
|
"""
|
||
|
mark_types = {}
|
||
|
scales = Dict(trait=Instance(Scale)).tag(sync=True, **widget_serialization)
|
||
|
scales_metadata = Dict().tag(sync=True)
|
||
|
preserve_domain = Dict().tag(sync=True)
|
||
|
display_legend = Bool().tag(sync=True, display_name='Display legend')
|
||
|
labels = List(trait=Unicode()).tag(sync=True, display_name='Labels')
|
||
|
apply_clip = Bool(True).tag(sync=True)
|
||
|
visible = Bool(True).tag(sync=True)
|
||
|
selected_style = Dict().tag(sync=True)
|
||
|
unselected_style = Dict().tag(sync=True)
|
||
|
selected = Array(None, allow_none=True).tag(sync=True, **array_serialization)
|
||
|
|
||
|
enable_hover = Bool(True).tag(sync=True)
|
||
|
tooltip = Instance(DOMWidget, allow_none=True, default_value=None)\
|
||
|
.tag(sync=True, **widget_serialization)
|
||
|
tooltip_style = Dict({'opacity': 0.9}).tag(sync=True)
|
||
|
interactions = Dict({'hover': 'tooltip'}).tag(sync=True)
|
||
|
tooltip_location = Enum(['mouse', 'center'], default_value='mouse')\
|
||
|
.tag(sync=True)
|
||
|
|
||
|
_model_name = Unicode('MarkModel').tag(sync=True)
|
||
|
_model_module = Unicode('bqplot').tag(sync=True)
|
||
|
_view_module = Unicode('bqplot').tag(sync=True)
|
||
|
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
|
||
|
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
|
||
|
_ipython_display_ = None
|
||
|
|
||
|
def _get_dimension_scales(self, dimension, preserve_domain=False):
|
||
|
"""
|
||
|
Return the list of scales corresponding to a given dimension.
|
||
|
|
||
|
The preserve_domain optional argument specifies whether one should
|
||
|
filter out the scales for which preserve_domain is set to True.
|
||
|
"""
|
||
|
if preserve_domain:
|
||
|
return [
|
||
|
self.scales[k] for k in self.scales if (
|
||
|
k in self.scales_metadata and
|
||
|
self.scales_metadata[k].get('dimension') == dimension and
|
||
|
not self.preserve_domain.get(k)
|
||
|
)
|
||
|
]
|
||
|
else:
|
||
|
return [
|
||
|
self.scales[k] for k in self.scales if (
|
||
|
k in self.scales_metadata and
|
||
|
self.scales_metadata[k].get('dimension') == dimension
|
||
|
)
|
||
|
]
|
||
|
|
||
|
@validate('scales')
|
||
|
def _validate_scales(self, proposal):
|
||
|
"""
|
||
|
Validates the `scales` based on the mark's scaled attributes metadata.
|
||
|
|
||
|
First checks for missing scale and then for 'rtype' compatibility.
|
||
|
"""
|
||
|
# Validate scales' 'rtype' versus data attribute 'rtype' decoration
|
||
|
# At this stage it is already validated that all values in self.scales
|
||
|
# are instances of Scale.
|
||
|
scales = proposal.value
|
||
|
for name in self.trait_names(scaled=True):
|
||
|
trait = self.traits()[name]
|
||
|
if name not in scales:
|
||
|
# Check for missing scale
|
||
|
if not trait.allow_none:
|
||
|
raise TraitError("Missing scale for data attribute %s." %
|
||
|
name)
|
||
|
else:
|
||
|
# Check scale range type compatibility
|
||
|
if scales[name].rtype != trait.get_metadata('rtype'):
|
||
|
raise TraitError("Range type mismatch for scale %s." %
|
||
|
name)
|
||
|
return scales
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
super(Mark, self).__init__(**kwargs)
|
||
|
self._hover_handlers = CallbackDispatcher()
|
||
|
self._click_handlers = CallbackDispatcher()
|
||
|
self._legend_click_handlers = CallbackDispatcher()
|
||
|
self._legend_hover_handlers = CallbackDispatcher()
|
||
|
self._element_click_handlers = CallbackDispatcher()
|
||
|
self._bg_click_handlers = CallbackDispatcher()
|
||
|
self.on_msg(self._handle_custom_msgs)
|
||
|
|
||
|
def on_hover(self, callback, remove=False):
|
||
|
self._hover_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_click(self, callback, remove=False):
|
||
|
self._click_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_legend_click(self, callback, remove=False):
|
||
|
self._legend_click_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_legend_hover(self, callback, remove=False):
|
||
|
self._legend_hover_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_element_click(self, callback, remove=False):
|
||
|
self._element_click_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_background_click(self, callback, remove=False):
|
||
|
self._bg_click_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def _handle_custom_msgs(self, _, content, buffers=None):
|
||
|
if content.get('event', '') == 'hover':
|
||
|
self._hover_handlers(self, content)
|
||
|
if content.get('event', '') == 'click':
|
||
|
self._click_handlers(self, content)
|
||
|
elif content.get('event', '') == 'legend_click':
|
||
|
self._legend_click_handlers(self, content)
|
||
|
elif content.get('event', '') == 'legend_hover':
|
||
|
self._legend_hover_handlers(self, content)
|
||
|
elif content.get('event', '') == 'element_click':
|
||
|
self._element_click_handlers(self, content)
|
||
|
elif content.get('event', '') == 'background_click':
|
||
|
self._bg_click_handlers(self, content)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Lines')
|
||
|
class Lines(Mark):
|
||
|
|
||
|
"""Lines mark.
|
||
|
|
||
|
In the case of the Lines mark, scales for 'x' and 'y' MUST be provided.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
Font-awesome icon for the respective mark
|
||
|
name: string (class-level attribute)
|
||
|
User-friendly name of the mark
|
||
|
colors: list of colors (default: CATEGORY10)
|
||
|
List of colors of the Lines. If the list is shorter than the number
|
||
|
of lines, the colors are reused.
|
||
|
close_path: bool (default: False)
|
||
|
Whether to close the paths or not.
|
||
|
fill: {'none', 'bottom', 'top', 'inside', 'between'}
|
||
|
Fill in the area defined by the curves
|
||
|
fill_colors: list of colors (default: [])
|
||
|
Fill colors for the areas. Defaults to stroke-colors when no
|
||
|
color provided
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacity for the lines and patches. Defaults to 1 when the list is too
|
||
|
short, or the element of the list is set to None.
|
||
|
fill_opacities: list of floats (default: [])
|
||
|
Opacity for the areas. Defaults to 1 when the list is too
|
||
|
short, or the element of the list is set to None.
|
||
|
stroke_width: float (default: 2)
|
||
|
Stroke width of the Lines
|
||
|
labels_visibility: {'none', 'label'}
|
||
|
Visibility of the curve labels
|
||
|
curves_subset: list of integers or None (default: [])
|
||
|
If set to None, all the lines are displayed. Otherwise, only the items
|
||
|
in the list will have full opacity, while others will be faded.
|
||
|
line_style: {'solid', 'dashed', 'dotted', 'dash_dotted'}
|
||
|
Line style.
|
||
|
interpolation: {'linear', 'basis', 'cardinal', 'monotone'}
|
||
|
Interpolation scheme used for interpolation between the data points
|
||
|
provided. Please refer to the svg interpolate documentation for details
|
||
|
about the different interpolation schemes.
|
||
|
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse'}
|
||
|
Marker shape
|
||
|
marker_size: nonnegative int (default: 64)
|
||
|
Default marker size in pixels
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the data points (1d or 2d array)
|
||
|
y: numpy.ndarray (default: [])
|
||
|
ordinates of the data points (1d or 2d array)
|
||
|
color: numpy.ndarray (default: None)
|
||
|
colors of the different lines based on data. If it is [], then the
|
||
|
colors from the colors attribute are used. Each line has a single color
|
||
|
and if the size of colors is less than the number of lines, the
|
||
|
remaining lines are given the default colors.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
name: label of the line
|
||
|
index: index of the line being hovered on
|
||
|
color: data attribute for the color of the line
|
||
|
The following are the events which can trigger interactions:
|
||
|
click: left click of the mouse
|
||
|
hover: mouse-over an element
|
||
|
The following are the interactions which can be linked to the above events:
|
||
|
tooltip: display tooltip
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-line-chart'
|
||
|
name = 'Lines'
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([]).tag(sync=True, scaled=True,
|
||
|
rtype='Number', atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 2), array_supported_kinds())
|
||
|
y = Array([]).tag(sync=True, scaled=True,
|
||
|
rtype='Number', atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 2), array_supported_kinds())
|
||
|
color = Array(None, allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'}
|
||
|
}).tag(sync=True)
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=CATEGORY10)\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
fill_colors = List(trait=Color(default_value=None, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Fill colors')
|
||
|
stroke_width = Float(2.0).tag(sync=True, display_name='Stroke width')
|
||
|
labels_visibility = Enum(['none', 'label'], default_value='none')\
|
||
|
.tag(sync=True, display_name='Labels visibility')
|
||
|
curves_subset = List().tag(sync=True)
|
||
|
line_style = Enum(['solid', 'dashed', 'dotted', 'dash_dotted'],
|
||
|
default_value='solid')\
|
||
|
.tag(sync=True, display_name='Line style')
|
||
|
interpolation = Enum(['linear', 'basis', 'basis-open',
|
||
|
'basis-closed', 'bundle',
|
||
|
'cardinal', 'cardinal-open',
|
||
|
'cardinal-closed', 'monotone', 'step-before',
|
||
|
'step-after'],
|
||
|
default_value='linear')\
|
||
|
.tag(sync=True, display_name='Interpolation')
|
||
|
close_path = Bool().tag(sync=True, display_name='Close path')
|
||
|
fill = Enum(['none', 'bottom', 'top', 'inside', 'between'],
|
||
|
default_value='none')\
|
||
|
.tag(sync=True, display_name='Fill')
|
||
|
marker = Enum(['circle', 'cross', 'diamond', 'square', 'triangle-down',
|
||
|
'triangle-up', 'arrow', 'rectangle', 'ellipse'],
|
||
|
default_value=None, allow_none=True)\
|
||
|
.tag(sync=True, display_name='Marker')
|
||
|
marker_size = Int(64).tag(sync=True, display_name='Default size')
|
||
|
|
||
|
opacities = List().tag(sync=True, display_name='Opacity')
|
||
|
fill_opacities = List().tag(sync=True, display_name='Fill Opacity')
|
||
|
_view_name = Unicode('Lines').tag(sync=True)
|
||
|
_model_name = Unicode('LinesModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.FlexLine')
|
||
|
class FlexLine(Mark):
|
||
|
|
||
|
"""Flexible Lines mark.
|
||
|
|
||
|
In the case of the FlexLines mark, scales for 'x' and 'y' MUST be provided.
|
||
|
Scales for the color and width data attributes are optional. In the case
|
||
|
where another data attribute than 'x' or 'y' is provided but the
|
||
|
corresponding scale is missing, the data attribute is ignored.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
name: string (class-level attributes)
|
||
|
user-friendly name of the mark
|
||
|
colors: list of colors (default: CATEGORY10)
|
||
|
List of colors for the Lines
|
||
|
stroke_width: float (default: 1.5)
|
||
|
Default stroke width of the Lines
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the data points (1d array)
|
||
|
y: numpy.ndarray (default: [])
|
||
|
ordinates of the data points (1d array)
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
Array controlling the color of the data points
|
||
|
width: numpy.ndarray or None (default: None)
|
||
|
Array controlling the widths of the Lines.
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-line-chart'
|
||
|
name = 'Flexible lines'
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
y = Array([]).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True)\
|
||
|
.tag(sync=True, scaled=True, rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization).valid(array_squeeze)
|
||
|
width = Array(None, allow_none=True)\
|
||
|
.tag(sync=True, scaled=True, rtype='Number',
|
||
|
**array_serialization).valid(array_squeeze)
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'}
|
||
|
}).tag(sync=True)
|
||
|
stroke_width = Float(1.5).tag(sync=True, display_name='Stroke width')
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=CATEGORY10).tag(sync=True)
|
||
|
_view_name = Unicode('FlexLine').tag(sync=True)
|
||
|
_model_name = Unicode('FlexLineModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
class _ScatterBase(Mark):
|
||
|
"""
|
||
|
Base Mark for Label and Scatter
|
||
|
"""
|
||
|
# Scaled attributes
|
||
|
x = Array([], allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 1))
|
||
|
y = Array([], allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
opacity = Array(None, allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Number',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
size = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
rotation = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'},
|
||
|
'size': {'dimension': 'size'},
|
||
|
'opacity': {'dimension': 'opacity'},
|
||
|
'rotation': {'dimension': 'rotation'}
|
||
|
}).tag(sync=True)
|
||
|
default_opacities = Array([1.0])\
|
||
|
.tag(sync=True, display_name='Opacities', **array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
hovered_style = Dict().tag(sync=True)
|
||
|
unhovered_style = Dict().tag(sync=True)
|
||
|
hovered_point = Int(None, allow_none=True).tag(sync=True)
|
||
|
|
||
|
enable_move = Bool().tag(sync=True)
|
||
|
enable_delete = Bool().tag(sync=True)
|
||
|
restrict_x = Bool().tag(sync=True)
|
||
|
restrict_y = Bool().tag(sync=True)
|
||
|
update_on_move = Bool().tag(sync=True)
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
self._drag_start_handlers = CallbackDispatcher()
|
||
|
self._drag_handlers = CallbackDispatcher()
|
||
|
self._drag_end_handlers = CallbackDispatcher()
|
||
|
super(_ScatterBase, self).__init__(**kwargs)
|
||
|
|
||
|
def on_drag_start(self, callback, remove=False):
|
||
|
self._drag_start_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_drag(self, callback, remove=False):
|
||
|
self._drag_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def on_drag_end(self, callback, remove=False):
|
||
|
self._drag_end_handlers.register_callback(callback, remove=remove)
|
||
|
|
||
|
def _handle_custom_msgs(self, _, content, buffers=None):
|
||
|
event = content.get('event', '')
|
||
|
|
||
|
if event == 'drag_start':
|
||
|
self._drag_start_handlers(self, content)
|
||
|
elif event == 'drag':
|
||
|
self._drag_handlers(self, content)
|
||
|
elif event == 'drag_end':
|
||
|
self._drag_end_handlers(self, content)
|
||
|
|
||
|
super(_ScatterBase, self)._handle_custom_msgs(self, content)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Scatter')
|
||
|
class Scatter(_ScatterBase):
|
||
|
|
||
|
"""Scatter mark.
|
||
|
|
||
|
In the case of the Scatter mark, scales for 'x' and 'y' MUST be provided.
|
||
|
The scales of other data attributes are optional. In the case where another
|
||
|
data attribute than 'x' or 'y' is provided but the corresponding scale is
|
||
|
missing, the data attribute is ignored.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
Font-awesome icon for that mark
|
||
|
name: string (class-level attribute)
|
||
|
User-friendly name of the mark
|
||
|
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse'}
|
||
|
Marker shape
|
||
|
colors: list of colors (default: ['steelblue'])
|
||
|
List of colors of the markers. If the list is shorter than the number
|
||
|
of points, the colors are reused.
|
||
|
default_colors: Deprecated
|
||
|
Same as `colors`, deprecated as of version 0.8.4
|
||
|
fill: Bool (default: True)
|
||
|
Whether to fill the markers or not
|
||
|
stroke: Color or None (default: None)
|
||
|
Stroke color of the marker
|
||
|
stroke_width: Float (default: 1.5)
|
||
|
Stroke width of the marker
|
||
|
default_opacities: list of floats (default: [1.0])
|
||
|
Default opacities of the markers. If the list is shorter than
|
||
|
the number
|
||
|
of points, the opacities are reused.
|
||
|
default_skew: float (default: 0.5)
|
||
|
Default skew of the marker.
|
||
|
This number is validated to be between 0 and 1.
|
||
|
default_size: nonnegative int (default: 64)
|
||
|
Default marker size in pixel.
|
||
|
If size data is provided with a scale, default_size stands for the
|
||
|
maximal marker size (i.e. the maximum value for the 'size' scale range)
|
||
|
drag_size: nonnegative float (default: 5.)
|
||
|
Ratio of the size of the dragged scatter size to the default
|
||
|
scatter size.
|
||
|
names: numpy.ndarray (default: None)
|
||
|
Labels for the points of the chart
|
||
|
display_names: bool (default: True)
|
||
|
Controls whether names are displayed for points in the scatter
|
||
|
enable_move: bool (default: False)
|
||
|
Controls whether points can be moved by dragging. Refer to restrict_x,
|
||
|
restrict_y for more options.
|
||
|
restrict_x: bool (default: False)
|
||
|
Restricts movement of the point to only along the x axis. This is valid
|
||
|
only when enable_move is set to True. If both restrict_x and restrict_y
|
||
|
are set to True, the point cannot be moved.
|
||
|
restrict_y: bool (default: False)
|
||
|
Restricts movement of the point to only along the y axis. This is valid
|
||
|
only when enable_move is set to True. If both restrict_x and restrict_y
|
||
|
are set to True, the point cannot be moved.
|
||
|
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the data points (1d array)
|
||
|
y: numpy.ndarray (default: [])
|
||
|
ordinates of the data points (1d array)
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the data points (1d array). Defaults to default_color when not
|
||
|
provided or when a value is NaN
|
||
|
opacity: numpy.ndarray or None (default: None)
|
||
|
opacity of the data points (1d array). Defaults to default_opacity when
|
||
|
not provided or when a value is NaN
|
||
|
size: numpy.ndarray or None (default: None)
|
||
|
size of the data points. Defaults to default_size when not provided or
|
||
|
when a value is NaN
|
||
|
skew: numpy.ndarray or None (default: None)
|
||
|
skewness of the markers representing the data points. Defaults to
|
||
|
default_skew when not provided or when a value is NaN
|
||
|
rotation: numpy.ndarray or None (default: None)
|
||
|
orientation of the markers representing the data points.
|
||
|
The rotation scale's range is [0, 180]
|
||
|
Defaults to 0 when not provided or when a value is NaN.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
All the data attributes
|
||
|
index: index of the marker being hovered on
|
||
|
The following are the events which can trigger interactions:
|
||
|
click: left click of the mouse
|
||
|
hover: mouse-over an element
|
||
|
The following are the interactions which can be linked to the above events:
|
||
|
tooltip: display tooltip
|
||
|
add: add new points to the scatter (can only linked to click)
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-cloud'
|
||
|
name = 'Scatter'
|
||
|
|
||
|
# Scaled attribtes
|
||
|
skew = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Other attributes
|
||
|
marker = Enum(['circle', 'cross', 'diamond', 'square', 'triangle-down',
|
||
|
'triangle-up', 'arrow', 'rectangle', 'ellipse'],
|
||
|
default_value='circle').tag(sync=True, display_name='Marker')
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=['steelblue'])\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'},
|
||
|
'size': {'dimension': 'size'},
|
||
|
'opacity': {'dimension': 'opacity'},
|
||
|
'rotation': {'dimension': 'rotation'},
|
||
|
'skew': {'dimension': 'skew'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
@property
|
||
|
def default_colors(self):
|
||
|
return self.colors
|
||
|
|
||
|
@default_colors.setter
|
||
|
def default_colors(self, value):
|
||
|
warn("default_colors is deprecated, use colors instead.",
|
||
|
DeprecationWarning)
|
||
|
self.colors = value
|
||
|
|
||
|
stroke = Color(None, allow_none=True).tag(sync=True,
|
||
|
display_name='Stroke color')
|
||
|
stroke_width = Float(1.5).tag(sync=True, display_name='Stroke width')
|
||
|
default_skew = Float(0.5, min=0, max=1).tag(sync=True)
|
||
|
default_size = Int(64).tag(sync=True, display_name='Default size')
|
||
|
|
||
|
names = Array(None, allow_none=True)\
|
||
|
.tag(sync=True, **array_serialization).valid(array_squeeze)
|
||
|
display_names = Bool(True).tag(sync=True, display_name='Display names')
|
||
|
fill = Bool(True).tag(sync=True)
|
||
|
drag_color = Color(None, allow_none=True).tag(sync=True)
|
||
|
drag_size = Float(5.).tag(sync=True)
|
||
|
names_unique = Bool(True).tag(sync=True)
|
||
|
|
||
|
_view_name = Unicode('Scatter').tag(sync=True)
|
||
|
_model_name = Unicode('ScatterModel').tag(sync=True)
|
||
|
|
||
|
@register_mark('bqplot.ScatterGL')
|
||
|
class ScatterGL(Scatter):
|
||
|
_view_name = Unicode('ScatterGL').tag(sync=True)
|
||
|
_model_name = Unicode('ScatterGLModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Label')
|
||
|
class Label(_ScatterBase):
|
||
|
|
||
|
"""Label mark.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
x_offset: int (default: 0)
|
||
|
horizontal offset in pixels from the stated x location
|
||
|
y_offset: int (default: 0)
|
||
|
vertical offset in pixels from the stated y location
|
||
|
text: string (default: '')
|
||
|
text to be displayed
|
||
|
default_size: string (default: '14px')
|
||
|
font size in px, em or ex
|
||
|
font_weight: {'bold', 'normal', 'bolder'}
|
||
|
font weight of the caption
|
||
|
drag_size: nonnegative float (default: 1.)
|
||
|
Ratio of the size of the dragged label font size to the default
|
||
|
label font size.
|
||
|
align: {'start', 'middle', 'end'}
|
||
|
alignment of the text with respect to the provided location
|
||
|
enable_move: Bool (default: False)
|
||
|
Enable the label to be moved by dragging. Refer to restrict_x,
|
||
|
restrict_y for more options.
|
||
|
restrict_x: bool (default: False)
|
||
|
Restricts movement of the label to only along the x axis. This is valid
|
||
|
only when enable_move is set to True. If both restrict_x and restrict_y
|
||
|
are set to True, the label cannot be moved.
|
||
|
restrict_y: bool (default: False)
|
||
|
Restricts movement of the label to only along the y axis. This is valid
|
||
|
only when enable_move is set to True. If both restrict_x and restrict_y
|
||
|
are set to True, the label cannot be moved.
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
horizontal position of the labels, in data coordinates or in
|
||
|
figure coordinates
|
||
|
y: numpy.ndarray (default: [])
|
||
|
vertical position of the labels, in data coordinates or in
|
||
|
figure coordinates
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
label colors
|
||
|
size: numpy.ndarray or None (default: None)
|
||
|
label sizes
|
||
|
rotation: numpy.ndarray or None (default: None)
|
||
|
label rotations
|
||
|
opacity: numpy.ndarray or None (default: None)
|
||
|
label opacities
|
||
|
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-font'
|
||
|
name = 'Labels'
|
||
|
|
||
|
# Other attributes
|
||
|
x_offset = Int(0).tag(sync=True)
|
||
|
y_offset = Int(0).tag(sync=True)
|
||
|
|
||
|
colors = List(trait=Color(default_value=None,
|
||
|
allow_none=True),
|
||
|
default_value=CATEGORY10)\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
rotate_angle = Float(0.0).tag(sync=True)
|
||
|
text = Array(None, allow_none=True)\
|
||
|
.tag(sync=True, **array_serialization).valid(array_squeeze)
|
||
|
default_size = Float(16.).tag(sync=True)
|
||
|
drag_size = Float(1.).tag(sync=True)
|
||
|
font_unit = Enum(['px', 'em', 'pt', '%'],
|
||
|
default_value='px').tag(sync=True)
|
||
|
font_weight = Enum(['bold', 'normal', 'bolder'],
|
||
|
default_value='bold').tag(sync=True)
|
||
|
align = Enum(['start', 'middle', 'end'],
|
||
|
default_value='start').tag(sync=True)
|
||
|
|
||
|
_view_name = Unicode('Label').tag(sync=True)
|
||
|
_model_name = Unicode('LabelModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Hist')
|
||
|
class Hist(Mark):
|
||
|
|
||
|
"""Histogram mark.
|
||
|
|
||
|
In the case of the Hist mark, scales for 'sample' and 'count' MUST be
|
||
|
provided.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
font-awesome icon for that mark
|
||
|
name: string (class-level attribute)
|
||
|
user-friendly name of the mark
|
||
|
bins: nonnegative int (default: 10)
|
||
|
number of bins in the histogram
|
||
|
normalized: bool (default: False)
|
||
|
Boolean attribute to return normalized values which
|
||
|
sum to 1 or direct counts for the `count` attribute. The scale of
|
||
|
`count` attribute is determined by the value of this flag.
|
||
|
colors: list of colors (default: ['steelblue'])
|
||
|
List of colors of the Histogram. If the list is shorter than the number
|
||
|
of bins, the colors are reused.
|
||
|
stroke: Color or None (default: None)
|
||
|
Stroke color of the histogram
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacity for the bins of the histogram. Defaults to 1 when the list
|
||
|
is too short, or the element of the list is set to None.
|
||
|
midpoints: list (default: [])
|
||
|
midpoints of the bins of the histogram. It is a read-only attribute.
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
sample: numpy.ndarray (default: [])
|
||
|
sample of which the histogram must be computed.
|
||
|
count: numpy.ndarray (read-only)
|
||
|
number of sample points per bin. It is a read-only attribute.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
midpoint: mid-point of the bin related to the rectangle hovered on
|
||
|
count: number of elements in the bin hovered on
|
||
|
bin_start: start point of the bin
|
||
|
bin-end: end point of the bin
|
||
|
index: index of the bin
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-signal'
|
||
|
name = 'Histogram'
|
||
|
|
||
|
# Scaled attributes
|
||
|
sample = Array([]).tag(sync=True, display_name='Sample',
|
||
|
scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
count = Array([], read_only=True).tag(sync=True,
|
||
|
display_name='Count',
|
||
|
scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze)
|
||
|
normalized = Bool().tag(sync=True)
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'sample': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'count': {'orientation': 'vertical', 'dimension': 'y'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
bins = Int(10).tag(sync=True, display_name='Number of bins')
|
||
|
midpoints = List(read_only=True).tag(sync=True, display_name='Mid points')
|
||
|
# midpoints is a read-only attribute that is set when the mark is drawn
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=['steelblue'])\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
stroke = Color(None, allow_none=True).tag(sync=True)
|
||
|
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Opacities')
|
||
|
|
||
|
_view_name = Unicode('Hist').tag(sync=True)
|
||
|
_model_name = Unicode('HistModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Boxplot')
|
||
|
class Boxplot(Mark):
|
||
|
|
||
|
"""Boxplot marks.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
stroke: Color or None
|
||
|
stroke color of the marker
|
||
|
color: Color
|
||
|
fill color of the box
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacities for the markers of the boxplot. Defaults to 1 when the
|
||
|
list is too short, or the element of the list is set to None.
|
||
|
outlier-color: color
|
||
|
color for the outlier
|
||
|
box_width: int (default: None)
|
||
|
width of the box in pixels. The minimum value is 5.
|
||
|
If set to None, box_with is auto calculated
|
||
|
auto_detect_outliers: bool (default: True)
|
||
|
Flag to toggle outlier auto-detection
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the data points (1d array)
|
||
|
y: numpy.ndarray (default: [[]])
|
||
|
Sample data points (2d array)
|
||
|
"""
|
||
|
|
||
|
# Mark decoration
|
||
|
icon = 'fa-birthday-cake'
|
||
|
name = 'Boxplot chart'
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis', **array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Second dimension must contain OHLC data, otherwise the behavior
|
||
|
# is undefined.
|
||
|
y = Array([[]]).tag(sync=True, scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis', **array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 2), array_supported_kinds())
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
stroke = Color(None, allow_none=True)\
|
||
|
.tag(sync=True, display_name='Stroke color')
|
||
|
box_fill_color = Color('steelblue', sync=True,
|
||
|
display_name='Fill color for the box')
|
||
|
outlier_fill_color = Color('gray').tag(sync=True,
|
||
|
display_name='Outlier fill color')
|
||
|
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Opacities')
|
||
|
box_width = Int(None, min=5, allow_none=True).tag(sync=True, display_name='Box Width')
|
||
|
auto_detect_outliers = Bool(True).tag(sync=True, display_name='Auto-detect Outliers')
|
||
|
|
||
|
_view_name = Unicode('Boxplot').tag(sync=True)
|
||
|
_model_name = Unicode('BoxplotModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Bars')
|
||
|
class Bars(Mark):
|
||
|
|
||
|
"""Bar mark.
|
||
|
|
||
|
In the case of the Bars mark, scales for 'x' and 'y' MUST be provided.
|
||
|
The scales of other data attributes are optional. In the case where another
|
||
|
data attribute than 'x' or 'y' is provided but the corresponding scale is
|
||
|
missing, the data attribute is ignored.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
font-awesome icon for that mark
|
||
|
name: string (class-level attribute)
|
||
|
user-friendly name of the mark
|
||
|
color_mode: {'auto', 'group', 'element'}
|
||
|
enum attribute to specify if color should be the same for all bars with
|
||
|
the same x or for all bars which belong to the same array in Y
|
||
|
'group' means for every x all bars have same color.
|
||
|
'element' means for every dimension of y, all bars have same color.
|
||
|
'auto' picks 'group' and 'element' for 1-d and 2-d values of
|
||
|
Y respectively.
|
||
|
type: {'stacked', 'grouped'}
|
||
|
whether 2-dimensional bar charts should appear grouped or stacked.
|
||
|
colors: list of colors (default: ['steelblue'])
|
||
|
list of colors for the bars.
|
||
|
orientation: {'horizontal', 'vertical'}
|
||
|
Specifies whether the bar chart is drawn horizontally or vertically.
|
||
|
If a horizontal bar chart is drawn, the x data is drawn vertically.
|
||
|
padding: float (default: 0.05)
|
||
|
Attribute to control the spacing between the bars value is specified
|
||
|
as a percentage of the width of the bar
|
||
|
fill: Bool (default: True)
|
||
|
Whether to fill the bars or not
|
||
|
stroke: Color or None (default: None)
|
||
|
Stroke color for the bars
|
||
|
stroke_width: Float (default: 0.)
|
||
|
Stroke width of the bars
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacities for the bars. Defaults to 1 when the list is too
|
||
|
short, or the element of the list is set to None.
|
||
|
base: float (default: 0.0)
|
||
|
reference value from which the bars are drawn. defaults to 0.0
|
||
|
align: {'center', 'left', 'right'}
|
||
|
alignment of bars with respect to the tick value
|
||
|
label_display: bool (default: False)
|
||
|
whether or not to display bar data labels
|
||
|
label_display_format: string (default: .2f)
|
||
|
format for displaying values.
|
||
|
label_font_style: dict
|
||
|
CSS style for the text of each cell
|
||
|
label_display_vertical_offset: float
|
||
|
vertical offset value for the label display
|
||
|
label_display_horizontal_offset: float
|
||
|
horizontal offset value for the label display
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the data points (1d array)
|
||
|
y: numpy.ndarray (default: [])
|
||
|
ordinates of the values for the data points
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the data points (1d array). Defaults to default_color when not
|
||
|
provided or when a value is NaN
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
All the data attributes
|
||
|
index: index of the bar being hovered on
|
||
|
sub_index: if data is two dimensional, this is the minor index
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-bar-chart'
|
||
|
name = 'Bar chart'
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
y = Array([]).tag(sync=True, scaled=True, rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 2), array_supported_kinds())
|
||
|
color = Array(None, allow_none=True)\
|
||
|
.tag(sync=True, scaled=True, rtype='Color',
|
||
|
atype='bqplot.ColorAxis', **array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Bar text labels attributes -- add default values.
|
||
|
# Add bool for displaying a label or not. Add d3 formatting in docstring
|
||
|
label_display = Bool(default_value=False).tag(sync=True)
|
||
|
label_display_format = Unicode(default_value=".2f",
|
||
|
allow_none=False).tag(sync=True)
|
||
|
label_font_style = Dict().tag(sync=True)
|
||
|
label_display_vertical_offset = Float(default_value=0.0,
|
||
|
allow_none=False).tag(sync=True)
|
||
|
label_display_horizontal_offset = Float(default_value=0.0,
|
||
|
allow_none=False).tag(sync=True)
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'}
|
||
|
}).tag(sync=True)
|
||
|
color_mode = Enum(['auto', 'group', 'element'], default_value='auto')\
|
||
|
.tag(sync=True)
|
||
|
type = Enum(['stacked', 'grouped'], default_value='stacked')\
|
||
|
.tag(sync=True, display_name='Type')
|
||
|
colors = List(trait=Color(default_value=None,
|
||
|
allow_none=True),
|
||
|
default_value=['steelblue'])\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
padding = Float(0.05).tag(sync=True)
|
||
|
fill = Bool(True).tag(sync=True)
|
||
|
stroke = Color(None, allow_none=True).tag(sync=True)
|
||
|
stroke_width = Float(1.).tag(sync=True, display_name='Stroke width')
|
||
|
base = Float().tag(sync=True)
|
||
|
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Opacities')
|
||
|
align = Enum(['center', 'left', 'right'], default_value='center')\
|
||
|
.tag(sync=True)
|
||
|
orientation = Enum(['vertical', 'horizontal'], default_value='vertical')\
|
||
|
.tag(sync=True)
|
||
|
|
||
|
@validate('orientation')
|
||
|
def _validate_orientation(self, proposal):
|
||
|
value = proposal['value']
|
||
|
x_orient = "horizontal" if value == "vertical" else "vertical"
|
||
|
self.scales_metadata = {'x': {'orientation': x_orient,
|
||
|
'dimension': 'x'},
|
||
|
'y': {'orientation': value, 'dimension': 'y'}}
|
||
|
return value
|
||
|
|
||
|
_view_name = Unicode('Bars').tag(sync=True)
|
||
|
_model_name = Unicode('BarsModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Bins')
|
||
|
class Bins(Bars):
|
||
|
|
||
|
"""Backend histogram mark.
|
||
|
|
||
|
A `Bars` instance that bins sample data.
|
||
|
|
||
|
It is very similar in purpose to the `Hist` mark, the difference being that
|
||
|
the binning is done in the backend (python), which avoids large amounts of
|
||
|
data being shipped back and forth to the frontend. It should therefore be
|
||
|
preferred for large data.
|
||
|
The binning method is the numpy `histogram` method.
|
||
|
|
||
|
The following documentation is in part taken from the numpy documentation.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
font-awesome icon for that mark
|
||
|
name: string (class-level attribute)
|
||
|
user-friendly name of the mark
|
||
|
bins: nonnegative int (default: 10)
|
||
|
or {'auto', 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'}
|
||
|
If `bins` is an int, it defines the number of equal-width
|
||
|
bins in the given range (10, by default).
|
||
|
If `bins` is a string (method name), `histogram` will use
|
||
|
the method chosen to calculate the optimal bin width and
|
||
|
consequently the number of bins (see `Notes` for more detail on
|
||
|
the estimators) from the data that falls within the requested
|
||
|
range.
|
||
|
density : bool (default: `False`)
|
||
|
If `False`, the height of each bin is the number of samples in it.
|
||
|
If `True`, the height of each bin is the value of the
|
||
|
probability *density* function at the bin, normalized such that
|
||
|
the *integral* over the range is 1. Note that the sum of the
|
||
|
histogram values will not be equal to 1 unless bins of unity
|
||
|
width are chosen; it is not a probability *mass* function.
|
||
|
min : float (default: None)
|
||
|
The lower range of the bins. If not provided, lower range
|
||
|
is simply `x.min()`.
|
||
|
max : float (default: None)
|
||
|
The upper range of the bins. If not provided, lower range
|
||
|
is simply `x.max()`.
|
||
|
Data Attributes
|
||
|
sample: numpy.ndarray (default: [])
|
||
|
sample of which the histogram must be computed.
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
All the `Bars` data attributes (`x`, `y`, `color`)
|
||
|
index: index of the bin
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-signal'
|
||
|
name = 'Backend Histogram'
|
||
|
|
||
|
# Scaled Attributes
|
||
|
sample = Array([]).tag(
|
||
|
sync=False, display_name='Sample', rtype='Number',
|
||
|
atype='bqplot.Axis', **array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Binning options
|
||
|
min = Float(None, allow_none=True).tag(sync=True)
|
||
|
max = Float(None, allow_none=True).tag(sync=True)
|
||
|
density = Bool().tag(sync=True)
|
||
|
bins = (Int(10) | List() | Enum(['auto', 'fd', 'doane',
|
||
|
'scott', 'rice', 'sturges', 'sqrt']))\
|
||
|
.tag(sync=True, display_name='Number of bins')
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
'''
|
||
|
Sets listeners on the data and the binning parameters.
|
||
|
Adjusts `Bars` defaults to suit a histogram better.
|
||
|
'''
|
||
|
self.observe(self.bin_data,
|
||
|
names=['sample', 'bins', 'density', 'min', 'max'])
|
||
|
# One unique color by default
|
||
|
kwargs.setdefault('colors', [CATEGORY10[0]])
|
||
|
# No spacing between bars
|
||
|
kwargs.setdefault('padding', 0.)
|
||
|
|
||
|
super(Bins, self).__init__(**kwargs)
|
||
|
|
||
|
def bin_data(self, *args):
|
||
|
'''
|
||
|
Performs the binning of `sample` data, and draws the corresponding bars
|
||
|
'''
|
||
|
# Get range
|
||
|
_min = self.sample.min() if self.min is None else self.min
|
||
|
_max = self.sample.max() if self.max is None else self.max
|
||
|
_range = (min(_min, _max), max(_min, _max))
|
||
|
# Bin the samples
|
||
|
counts, bin_edges = histogram(self.sample, bins=self.bins,
|
||
|
range=_range, density=self.density)
|
||
|
midpoints = (bin_edges[:-1] + bin_edges[1:]) / 2
|
||
|
# Redraw the underlying Bars
|
||
|
with self.hold_sync():
|
||
|
self.x, self.y = midpoints, counts
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.OHLC')
|
||
|
class OHLC(Mark):
|
||
|
|
||
|
"""Open/High/Low/Close marks.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
icon: string (class-level attribute)
|
||
|
font-awesome icon for that mark
|
||
|
name: string (class-level attribute)
|
||
|
user-friendly name of the mark
|
||
|
marker: {'candle', 'bar'}
|
||
|
marker type
|
||
|
stroke: color (default: None)
|
||
|
stroke color of the marker
|
||
|
stroke_width: float (default: 1.0)
|
||
|
stroke width of the marker
|
||
|
colors: List of colors (default: ['limegreen', 'red'])
|
||
|
fill colors for the markers (up/down)
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacities for the markers of the OHLC mark. Defaults to 1 when
|
||
|
the list is too short, or the element of the list is set to None.
|
||
|
format: string (default: 'ohlc')
|
||
|
description of y data being passed
|
||
|
supports all permutations of the strings 'ohlc', 'oc', and 'hl'
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray
|
||
|
abscissas of the data points (1d array)
|
||
|
y: numpy.ndarrays
|
||
|
Open/High/Low/Close ordinates of the data points (2d array)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
x: the x value associated with the bar/candle
|
||
|
open: open value for the bar/candle
|
||
|
high: high value for the bar/candle
|
||
|
low: low value for the bar/candle
|
||
|
close: close value for the bar/candle
|
||
|
index: index of the bar/candle being hovered on
|
||
|
"""
|
||
|
|
||
|
# Mark decoration
|
||
|
icon = 'fa-birthday-cake'
|
||
|
name = 'OHLC chart'
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([]).tag(sync=True, scaled=True,
|
||
|
rtype='Number', atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
y = Array([[]]).tag(sync=True, scaled=True,
|
||
|
rtype='Number', atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 2))
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'}
|
||
|
}).tag(sync=True)
|
||
|
marker = Enum(['candle', 'bar'], default_value='candle',
|
||
|
display_name='Marker').tag(sync=True)
|
||
|
stroke = Color(None, display_name='Stroke color', allow_none=True)\
|
||
|
.tag(sync=True)
|
||
|
stroke_width = Float(1.0).tag(sync=True, display_name='Stroke Width')
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=['green', 'red'])\
|
||
|
.tag(sync=True, display_name='Colors')
|
||
|
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Opacities')
|
||
|
format = Unicode('ohlc').tag(sync=True, display_name='Format')
|
||
|
|
||
|
_view_name = Unicode('OHLC').tag(sync=True)
|
||
|
_model_name = Unicode('OHLCModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Pie')
|
||
|
class Pie(Mark):
|
||
|
|
||
|
"""Piechart mark.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
colors: list of colors (default: CATEGORY10)
|
||
|
list of colors for the slices.
|
||
|
stroke: color (default: 'white')
|
||
|
stroke color for the marker
|
||
|
opacities: list of floats (default: [])
|
||
|
Opacities for the slices of the Pie mark. Defaults to 1 when the list
|
||
|
is too short, or the element of the list is set to None.
|
||
|
sort: bool (default: False)
|
||
|
sort the pie slices by descending sizes
|
||
|
x: Float (default: 0.5) or Date
|
||
|
horizontal position of the pie center, in data coordinates or in figure
|
||
|
coordinates
|
||
|
y: Float (default: 0.5)
|
||
|
vertical y position of the pie center, in data coordinates or in figure
|
||
|
coordinates
|
||
|
radius: Float
|
||
|
radius of the pie, in pixels
|
||
|
inner_radius: Float
|
||
|
inner radius of the pie, in pixels
|
||
|
start_angle: Float (default: 0.0)
|
||
|
start angle of the pie (from top), in degrees
|
||
|
end_angle: Float (default: 360.0)
|
||
|
end angle of the pie (from top), in degrees
|
||
|
display_labels: {'none', 'inside', 'outside'} (default: 'inside')
|
||
|
label display options
|
||
|
display_values: bool (default: False)
|
||
|
if True show values along with labels
|
||
|
values_format: string (default: '.2f')
|
||
|
format for displaying values
|
||
|
label_color: Color or None (default: None)
|
||
|
color of the labels
|
||
|
font_size: string (default: '14px')
|
||
|
label font size in px, em or ex
|
||
|
font_weight: {'bold', 'normal', 'bolder'} (default: 'normal')
|
||
|
label font weight
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
sizes: numpy.ndarray (default: [])
|
||
|
proportions of the pie slices
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the data points. Defaults to colors when not provided.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The fields which can be passed to the default tooltip are:
|
||
|
: the x value associated with the bar/candle
|
||
|
open: open value for the bar/candle
|
||
|
high: high value for the bar/candle
|
||
|
low: low value for the bar/candle
|
||
|
close: close value for the bar/candle
|
||
|
index: index of the bar/candle being hovered on
|
||
|
"""
|
||
|
# Mark decoration
|
||
|
icon = 'fa-pie-chart'
|
||
|
name = 'Pie chart'
|
||
|
|
||
|
# Scaled attributes
|
||
|
sizes = Array([]).tag(sync=True, rtype='Number', **array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
# Other attributes
|
||
|
x = (Float(0.5) | Date() | Unicode()).tag(sync=True)
|
||
|
y = (Float(0.5) | Date() | Unicode()).tag(sync=True)
|
||
|
|
||
|
scales_metadata = Dict({'color': {'dimension': 'color'}}).tag(sync=True)
|
||
|
sort = Bool().tag(sync=True)
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=CATEGORY10).tag(sync=True,
|
||
|
display_name='Colors')
|
||
|
stroke = Color(None, allow_none=True).tag(sync=True)
|
||
|
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
|
||
|
.tag(sync=True, display_name='Opacities')
|
||
|
radius = Float(180.0, min=0.0, max=float('inf')).tag(sync=True)
|
||
|
inner_radius = Float(0.1, min=0.0, max=float('inf')).tag(sync=True)
|
||
|
start_angle = Float().tag(sync=True)
|
||
|
end_angle = Float(360.0).tag(sync=True)
|
||
|
display_labels = Enum(['none', 'inside', 'outside'],
|
||
|
default_value='inside').tag(sync=True)
|
||
|
display_values = Bool(False).tag(sync=True)
|
||
|
values_format = Unicode(default_value='.1f').tag(sync=True)
|
||
|
label_color = Color(None, allow_none=True).tag(sync=True)
|
||
|
font_size = Unicode(default_value='12px').tag(sync=True)
|
||
|
font_weight = Enum(['bold', 'normal', 'bolder'],
|
||
|
default_value='normal').tag(sync=True)
|
||
|
|
||
|
_view_name = Unicode('Pie').tag(sync=True)
|
||
|
_model_name = Unicode('PieModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
def topo_load(name):
|
||
|
with open(os.path.join(os.path.split(os.path.realpath(__file__))[0],
|
||
|
name)) as data_file:
|
||
|
data = json.load(data_file)
|
||
|
return data
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Map')
|
||
|
class Map(Mark):
|
||
|
|
||
|
"""Map mark.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
colors: Dict (default: {})
|
||
|
default colors for items of the map when no color data is passed.
|
||
|
The dictionary should be indexed by the id of the element and have
|
||
|
the corresponding colors as values. The key `default_color`
|
||
|
controls the items for which no color is specified.
|
||
|
selected_styles: Dict (default: {'selected_fill': 'Red',
|
||
|
'selected_stroke': None, 'selected_stroke_width': 2.0})
|
||
|
Dictionary containing the styles for selected subunits
|
||
|
hovered_styles: Dict (default: {'hovered_fill': 'Orange',
|
||
|
'hovered_stroke': None, 'hovered_stroke_width': 2.0})
|
||
|
Dictionary containing the styles for hovered subunits
|
||
|
hover_highlight: bool (default: True)
|
||
|
boolean to control if the map should be aware of which country is being
|
||
|
hovered on.
|
||
|
map_data: dict (default: topo_load("map_data/WorldMap.json"))
|
||
|
a topojson-formatted dictionary with the objects to map under the key
|
||
|
'subunits'.
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
color: Dict or None (default: None)
|
||
|
dictionary containing the data associated with every country for the
|
||
|
color scale
|
||
|
"""
|
||
|
|
||
|
# Mark decoration
|
||
|
icon = 'fa-globe'
|
||
|
name = 'Map'
|
||
|
|
||
|
# Scaled attributes
|
||
|
color = Dict(allow_none=True).tag(sync=True, scaled=True, rtype='Color',
|
||
|
atype='bqplot.ColorAxis')
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({'color': {'dimension': 'color'}}).tag(sync=True)
|
||
|
hover_highlight = Bool(True).tag(sync=True)
|
||
|
hovered_styles = Dict({
|
||
|
'hovered_fill': 'Orange',
|
||
|
'hovered_stroke': None,
|
||
|
'hovered_stroke_width': 2.0}, allow_none=True).tag(sync=True)
|
||
|
|
||
|
stroke_color = Color(default_value=None, allow_none=True).tag(sync=True)
|
||
|
colors = Dict().tag(sync=True, display_name='Colors')
|
||
|
scales_metadata = Dict({'color': {'dimension': 'color'},
|
||
|
'projection': {'dimension': 'geo'}}).tag(sync=True)
|
||
|
selected_styles = Dict({
|
||
|
'selected_fill': 'Red',
|
||
|
'selected_stroke': None,
|
||
|
'selected_stroke_width': 2.0
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
map_data = Dict(topo_load('map_data/WorldMap.json')).tag(sync=True)
|
||
|
|
||
|
_view_name = Unicode('Map').tag(sync=True)
|
||
|
_model_name = Unicode('MapModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.GridHeatMap')
|
||
|
class GridHeatMap(Mark):
|
||
|
|
||
|
"""GridHeatMap mark.
|
||
|
|
||
|
Alignment: The tiles can be aligned so that the data matches either the
|
||
|
start, the end or the midpoints of the tiles. This is controlled by the
|
||
|
align attribute.
|
||
|
|
||
|
Suppose the data passed is a m-by-n matrix. If the scale for the rows is
|
||
|
Ordinal, then alignment is by default the mid points. For a non-ordinal
|
||
|
scale, the data cannot be aligned to the mid points of the rectangles.
|
||
|
|
||
|
If it is not ordinal, then two cases arise. If the number of rows passed
|
||
|
is m, then align attribute can be used. If the number of rows passed
|
||
|
is m+1, then the data are the boundaries of the m rectangles.
|
||
|
|
||
|
If rows and columns are not passed, and scales for them are also
|
||
|
not passed, then ordinal scales are generated for the rows and columns.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
row_align: Enum(['start', 'end'])
|
||
|
This is only valid if the number of entries in `row` exactly match the
|
||
|
number of rows in `color` and the `row_scale` is not `OrdinalScale`.
|
||
|
`start` aligns the row values passed to be aligned with the start
|
||
|
of the tiles and `end` aligns the row values to the end of the tiles.
|
||
|
column_align: Enum(['start', end'])
|
||
|
This is only valid if the number of entries in `column` exactly
|
||
|
match the number of columns in `color` and the `column_scale` is
|
||
|
not `OrdinalScale`. `start` aligns the column values passed to
|
||
|
be aligned with the start of the tiles and `end` aligns the
|
||
|
column values to the end of the tiles.
|
||
|
anchor_style: dict (default: {})
|
||
|
Controls the style for the element which serves as the anchor during
|
||
|
selection.
|
||
|
display_format: string (default: None)
|
||
|
format for displaying values. If None, then values are not displayed
|
||
|
font_style: dict
|
||
|
CSS style for the text of each cell
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the data points (2d array). The number of elements in
|
||
|
this array correspond to the number of cells created in the heatmap.
|
||
|
row: numpy.ndarray or None (default: None)
|
||
|
labels for the rows of the `color` array passed. The length of
|
||
|
this can be no more than 1 away from the number of rows in `color`.
|
||
|
This is a scaled attribute and can be used to affect the height of the
|
||
|
cells as the entries of `row` can indicate the start or the end points
|
||
|
of the cells. Refer to the property `row_align`.
|
||
|
If this property is None, then a uniformly spaced grid is generated in
|
||
|
the row direction.
|
||
|
column: numpy.ndarray or None (default: None)
|
||
|
labels for the columns of the `color` array passed. The length of
|
||
|
this can be no more than 1 away from the number of columns in `color`
|
||
|
This is a scaled attribute and can be used to affect the width of the
|
||
|
cells as the entries of `column` can indicate the start or the
|
||
|
end points of the cells. Refer to the property `column_align`.
|
||
|
If this property is None, then a uniformly spaced grid is generated in
|
||
|
the column direction.
|
||
|
"""
|
||
|
# Scaled attributes
|
||
|
row = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
column = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 2))
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'row': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'column': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'color': {'dimension': 'color'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
row_align = Enum(['start', 'end'], default_value='start').tag(sync=True)
|
||
|
column_align = Enum(['start', 'end'], default_value='start').tag(sync=True)
|
||
|
null_color = Color('black', allow_none=True).tag(sync=True)
|
||
|
stroke = Color('black', allow_none=True).tag(sync=True)
|
||
|
opacity = Float(1.0, min=0.2, max=1).tag(sync=True, display_name='Opacity')
|
||
|
anchor_style = Dict().tag(sync=True)
|
||
|
display_format = Unicode(default_value=None, allow_none=True)\
|
||
|
.tag(sync=True)
|
||
|
font_style = Dict().tag(sync=True)
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
# Adding scales in case they are not passed too.
|
||
|
scales = kwargs.pop('scales', {})
|
||
|
|
||
|
if(scales.get('row', None) is None):
|
||
|
row_scale = OrdinalScale(reverse=True)
|
||
|
scales['row'] = row_scale
|
||
|
|
||
|
if(scales.get('column', None) is None):
|
||
|
column_scale = OrdinalScale()
|
||
|
scales['column'] = column_scale
|
||
|
kwargs['scales'] = scales
|
||
|
super(GridHeatMap, self).__init__(**kwargs)
|
||
|
|
||
|
@validate('row')
|
||
|
def _validate_row(self, proposal):
|
||
|
row = proposal.value
|
||
|
|
||
|
if row is None:
|
||
|
return row
|
||
|
|
||
|
color = np.asarray(self.color)
|
||
|
n_rows = color.shape[0]
|
||
|
if len(row) != n_rows and len(row) != n_rows + 1 and len(row) != n_rows - 1:
|
||
|
raise TraitError('row must be an array of size color.shape[0]')
|
||
|
|
||
|
return row
|
||
|
|
||
|
@validate('column')
|
||
|
def _validate_column(self, proposal):
|
||
|
column = proposal.value
|
||
|
|
||
|
if column is None:
|
||
|
return column
|
||
|
|
||
|
color = np.asarray(self.color)
|
||
|
n_columns = color.shape[1]
|
||
|
if len(column) != n_columns and len(column) != n_columns + 1 and len(column) != n_columns - 1:
|
||
|
raise TraitError('column must be an array of size color.shape[1]')
|
||
|
|
||
|
return column
|
||
|
|
||
|
_view_name = Unicode('GridHeatMap').tag(sync=True)
|
||
|
_model_name = Unicode('GridHeatMapModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.HeatMap')
|
||
|
class HeatMap(Mark):
|
||
|
|
||
|
"""HeatMap mark.
|
||
|
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the data points (2d array).
|
||
|
x: numpy.ndarray or None (default: None)
|
||
|
labels for the columns of the `color` array passed. The length of
|
||
|
this has to be the number of columns in `color`.
|
||
|
This is a scaled attribute.
|
||
|
y: numpy.ndarray or None (default: None)
|
||
|
labels for the rows of the `color` array passed. The length of this has
|
||
|
to be the number of rows in `color`.
|
||
|
This is a scaled attribute.
|
||
|
"""
|
||
|
# Scaled attributes
|
||
|
x = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
y = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True).tag(sync=True, scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(2, 2))
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
null_color = Color('black', allow_none=True).tag(sync=True)
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
data = kwargs['color']
|
||
|
kwargs.setdefault('x', range(data.shape[1]))
|
||
|
kwargs.setdefault('y', range(data.shape[0]))
|
||
|
scales = kwargs.pop('scales', {})
|
||
|
# Adding default x and y data if they are not passed.
|
||
|
# Adding scales in case they are not passed too.
|
||
|
|
||
|
if(scales.get('x', None) is None):
|
||
|
x_scale = LinearScale()
|
||
|
scales['x'] = x_scale
|
||
|
|
||
|
if(scales.get('y', None) is None):
|
||
|
y_scale = LinearScale()
|
||
|
scales['y'] = y_scale
|
||
|
kwargs['scales'] = scales
|
||
|
super(HeatMap, self).__init__(**kwargs)
|
||
|
|
||
|
_view_name = Unicode('HeatMap').tag(sync=True)
|
||
|
_model_name = Unicode('HeatMapModel').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Graph')
|
||
|
class Graph(Mark):
|
||
|
"""Graph with nodes and links.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
node_data: List
|
||
|
list of node attributes for the graph
|
||
|
link_matrix: numpy.ndarray of shape(len(nodes), len(nodes))
|
||
|
link data passed as 2d matrix
|
||
|
link_data: List
|
||
|
list of link attributes for the graph
|
||
|
charge: int (default: -300)
|
||
|
charge of force layout. Will be ignored when x and y data attributes
|
||
|
are set
|
||
|
link_distance: float (default: 100)
|
||
|
link distance in pixels between nodes. Will be ignored when x and y
|
||
|
data attributes are set
|
||
|
link_type: {'arc', 'line', 'slant_line'} (default: 'arc')
|
||
|
Enum representing link type
|
||
|
directed: bool (default: True)
|
||
|
directed or undirected graph
|
||
|
highlight_links: bool (default: True)
|
||
|
highlights incoming and outgoing links when hovered on a node
|
||
|
colors: list (default: CATEGORY10)
|
||
|
list of node colors
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: numpy.ndarray (default: [])
|
||
|
abscissas of the node data points (1d array)
|
||
|
y: numpy.ndarray (default: [])
|
||
|
ordinates of the node data points (1d array)
|
||
|
color: numpy.ndarray or None (default: None)
|
||
|
color of the node data points (1d array).
|
||
|
link_color: numpy.ndarray of shape(len(nodes), len(nodes))
|
||
|
link data passed as 2d matrix
|
||
|
"""
|
||
|
charge = Int(-600).tag(sync=True)
|
||
|
link_distance = Float(100).tag(sync=True)
|
||
|
node_data = List().tag(sync=True)
|
||
|
link_data = List().tag(sync=True)
|
||
|
link_matrix = Array([]).tag(sync=True, rtype='Number',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 2))
|
||
|
link_type = Enum(['arc', 'line', 'slant_line'],
|
||
|
default_value='arc').tag(sync=True)
|
||
|
directed = Bool(True).tag(sync=True)
|
||
|
colors = List(trait=Color(default_value=None, allow_none=True),
|
||
|
default_value=CATEGORY10).tag(sync=True,
|
||
|
display_name='Colors')
|
||
|
interactions = Dict({'hover': 'tooltip', 'click': 'select'}).tag(sync=True)
|
||
|
highlight_links = Bool(True).tag(sync=True)
|
||
|
|
||
|
# Scaled attributes
|
||
|
x = Array([], allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 1))
|
||
|
y = Array([], allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_dimension_bounds(1, 1))
|
||
|
color = Array(None, allow_none=True).tag(sync=True,
|
||
|
scaled=True,
|
||
|
rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 1))
|
||
|
|
||
|
link_color = Array([]).tag(sync=True, rtype='Color',
|
||
|
atype='bqplot.ColorAxis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, array_dimension_bounds(1, 2))
|
||
|
|
||
|
hovered_style = Dict().tag(sync=True)
|
||
|
unhovered_style = Dict().tag(sync=True)
|
||
|
hovered_point = Int(None, allow_none=True).tag(sync=True)
|
||
|
|
||
|
# Other attributes
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
'color': {'dimension': 'color'},
|
||
|
'link_color': {'dimension': 'link_color'}
|
||
|
}).tag(sync=True)
|
||
|
|
||
|
_model_name = Unicode('GraphModel').tag(sync=True)
|
||
|
_view_name = Unicode('Graph').tag(sync=True)
|
||
|
|
||
|
|
||
|
@register_mark('bqplot.Image')
|
||
|
class Image(Mark):
|
||
|
"""Image mark, based on the ipywidgets image
|
||
|
|
||
|
If no scales are passed, uses the parent Figure scales.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
image: Instance of ipywidgets.Image
|
||
|
Image to be displayed
|
||
|
|
||
|
Data Attributes
|
||
|
|
||
|
x: tuple (default: (0, 1))
|
||
|
abscissas of the left and right-hand side of the image
|
||
|
in the format (x0, x1)
|
||
|
y: tuple (default: (0, 1))
|
||
|
ordinates of the bottom and top side of the image
|
||
|
in the format (y0, y1)
|
||
|
"""
|
||
|
_view_name = Unicode('Image').tag(sync=True)
|
||
|
_model_name = Unicode('ImageModel').tag(sync=True)
|
||
|
image = Instance(widgets.Image).tag(sync=True, **widget_serialization)
|
||
|
x = Array(default_value=(0, 1)).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, shape(2))
|
||
|
y = Array(default_value=(0, 1)).tag(sync=True, scaled=True,
|
||
|
rtype='Number',
|
||
|
atype='bqplot.Axis',
|
||
|
**array_serialization)\
|
||
|
.valid(array_squeeze, shape(2))
|
||
|
scales_metadata = Dict({
|
||
|
'x': {'orientation': 'horizontal', 'dimension': 'x'},
|
||
|
'y': {'orientation': 'vertical', 'dimension': 'y'},
|
||
|
}).tag(sync=True)
|