888 lines
32 KiB
Python
888 lines
32 KiB
Python
|
"""
|
||
|
The :mod:`sklearn.pipeline` module implements utilities to build a composite
|
||
|
estimator, as a chain of transforms and estimators.
|
||
|
"""
|
||
|
# Author: Edouard Duchesnay
|
||
|
# Gael Varoquaux
|
||
|
# Virgile Fritsch
|
||
|
# Alexandre Gramfort
|
||
|
# Lars Buitinck
|
||
|
# License: BSD
|
||
|
|
||
|
from collections import defaultdict
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import sparse
|
||
|
|
||
|
from .base import clone, TransformerMixin
|
||
|
from .utils import Parallel, delayed
|
||
|
from .externals import six
|
||
|
from .utils.metaestimators import if_delegate_has_method
|
||
|
from .utils import Bunch
|
||
|
from .utils.validation import check_memory
|
||
|
|
||
|
from .utils.metaestimators import _BaseComposition
|
||
|
|
||
|
__all__ = ['Pipeline', 'FeatureUnion', 'make_pipeline', 'make_union']
|
||
|
|
||
|
|
||
|
class Pipeline(_BaseComposition):
|
||
|
"""Pipeline of transforms with a final estimator.
|
||
|
|
||
|
Sequentially apply a list of transforms and a final estimator.
|
||
|
Intermediate steps of the pipeline must be 'transforms', that is, they
|
||
|
must implement fit and transform methods.
|
||
|
The final estimator only needs to implement fit.
|
||
|
The transformers in the pipeline can be cached using ``memory`` argument.
|
||
|
|
||
|
The purpose of the pipeline is to assemble several steps that can be
|
||
|
cross-validated together while setting different parameters.
|
||
|
For this, it enables setting parameters of the various steps using their
|
||
|
names and the parameter name separated by a '__', as in the example below.
|
||
|
A step's estimator may be replaced entirely by setting the parameter
|
||
|
with its name to another estimator, or a transformer removed by setting
|
||
|
to None.
|
||
|
|
||
|
Read more in the :ref:`User Guide <pipeline>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
steps : list
|
||
|
List of (name, transform) tuples (implementing fit/transform) that are
|
||
|
chained, in the order in which they are chained, with the last object
|
||
|
an estimator.
|
||
|
|
||
|
memory : None, str or object with the joblib.Memory interface, optional
|
||
|
Used to cache the fitted transformers of the pipeline. By default,
|
||
|
no caching is performed. If a string is given, it is the path to
|
||
|
the caching directory. Enabling caching triggers a clone of
|
||
|
the transformers before fitting. Therefore, the transformer
|
||
|
instance given to the pipeline cannot be inspected
|
||
|
directly. Use the attribute ``named_steps`` or ``steps`` to
|
||
|
inspect estimators within the pipeline. Caching the
|
||
|
transformers is advantageous when fitting is time consuming.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
named_steps : bunch object, a dictionary with attribute access
|
||
|
Read-only attribute to access any step parameter by user given name.
|
||
|
Keys are step names and values are steps parameters.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.pipeline.make_pipeline : convenience function for simplified
|
||
|
pipeline construction.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn import svm
|
||
|
>>> from sklearn.datasets import samples_generator
|
||
|
>>> from sklearn.feature_selection import SelectKBest
|
||
|
>>> from sklearn.feature_selection import f_regression
|
||
|
>>> from sklearn.pipeline import Pipeline
|
||
|
>>> # generate some data to play with
|
||
|
>>> X, y = samples_generator.make_classification(
|
||
|
... n_informative=5, n_redundant=0, random_state=42)
|
||
|
>>> # ANOVA SVM-C
|
||
|
>>> anova_filter = SelectKBest(f_regression, k=5)
|
||
|
>>> clf = svm.SVC(kernel='linear')
|
||
|
>>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])
|
||
|
>>> # You can set the parameters using the names issued
|
||
|
>>> # For instance, fit using a k of 10 in the SelectKBest
|
||
|
>>> # and a parameter 'C' of the svm
|
||
|
>>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y)
|
||
|
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||
|
Pipeline(memory=None,
|
||
|
steps=[('anova', SelectKBest(...)),
|
||
|
('svc', SVC(...))])
|
||
|
>>> prediction = anova_svm.predict(X)
|
||
|
>>> anova_svm.score(X, y) # doctest: +ELLIPSIS
|
||
|
0.83
|
||
|
>>> # getting the selected features chosen by anova_filter
|
||
|
>>> anova_svm.named_steps['anova'].get_support()
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
array([False, False, True, True, False, False, True, True, False,
|
||
|
True, False, True, True, False, True, False, True, True,
|
||
|
False, False])
|
||
|
>>> # Another way to get selected features chosen by anova_filter
|
||
|
>>> anova_svm.named_steps.anova.get_support()
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
array([False, False, True, True, False, False, True, True, False,
|
||
|
True, False, True, True, False, True, False, True, True,
|
||
|
False, False])
|
||
|
"""
|
||
|
|
||
|
# BaseEstimator interface
|
||
|
|
||
|
def __init__(self, steps, memory=None):
|
||
|
self.steps = steps
|
||
|
self._validate_steps()
|
||
|
self.memory = memory
|
||
|
|
||
|
def get_params(self, deep=True):
|
||
|
"""Get parameters for this estimator.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
deep : boolean, optional
|
||
|
If True, will return the parameters for this estimator and
|
||
|
contained subobjects that are estimators.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : mapping of string to any
|
||
|
Parameter names mapped to their values.
|
||
|
"""
|
||
|
return self._get_params('steps', deep=deep)
|
||
|
|
||
|
def set_params(self, **kwargs):
|
||
|
"""Set the parameters of this estimator.
|
||
|
|
||
|
Valid parameter keys can be listed with ``get_params()``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self
|
||
|
"""
|
||
|
self._set_params('steps', **kwargs)
|
||
|
return self
|
||
|
|
||
|
def _validate_steps(self):
|
||
|
names, estimators = zip(*self.steps)
|
||
|
|
||
|
# validate names
|
||
|
self._validate_names(names)
|
||
|
|
||
|
# validate estimators
|
||
|
transformers = estimators[:-1]
|
||
|
estimator = estimators[-1]
|
||
|
|
||
|
for t in transformers:
|
||
|
if t is None:
|
||
|
continue
|
||
|
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
|
||
|
hasattr(t, "transform")):
|
||
|
raise TypeError("All intermediate steps should be "
|
||
|
"transformers and implement fit and transform."
|
||
|
" '%s' (type %s) doesn't" % (t, type(t)))
|
||
|
|
||
|
# We allow last estimator to be None as an identity transformation
|
||
|
if estimator is not None and not hasattr(estimator, "fit"):
|
||
|
raise TypeError("Last step of Pipeline should implement fit. "
|
||
|
"'%s' (type %s) doesn't"
|
||
|
% (estimator, type(estimator)))
|
||
|
|
||
|
@property
|
||
|
def _estimator_type(self):
|
||
|
return self.steps[-1][1]._estimator_type
|
||
|
|
||
|
@property
|
||
|
def named_steps(self):
|
||
|
# Use Bunch object to improve autocomplete
|
||
|
return Bunch(**dict(self.steps))
|
||
|
|
||
|
@property
|
||
|
def _final_estimator(self):
|
||
|
return self.steps[-1][1]
|
||
|
|
||
|
# Estimator interface
|
||
|
|
||
|
def _fit(self, X, y=None, **fit_params):
|
||
|
# shallow copy of steps - this should really be steps_
|
||
|
self.steps = list(self.steps)
|
||
|
self._validate_steps()
|
||
|
# Setup the memory
|
||
|
memory = check_memory(self.memory)
|
||
|
|
||
|
fit_transform_one_cached = memory.cache(_fit_transform_one)
|
||
|
|
||
|
fit_params_steps = dict((name, {}) for name, step in self.steps
|
||
|
if step is not None)
|
||
|
for pname, pval in six.iteritems(fit_params):
|
||
|
step, param = pname.split('__', 1)
|
||
|
fit_params_steps[step][param] = pval
|
||
|
Xt = X
|
||
|
for step_idx, (name, transformer) in enumerate(self.steps[:-1]):
|
||
|
if transformer is None:
|
||
|
pass
|
||
|
else:
|
||
|
if hasattr(memory, 'location'):
|
||
|
# joblib >= 0.12
|
||
|
if memory.location is None:
|
||
|
# we do not clone when caching is disabled to
|
||
|
# preserve backward compatibility
|
||
|
cloned_transformer = transformer
|
||
|
else:
|
||
|
cloned_transformer = clone(transformer)
|
||
|
elif hasattr(memory, 'cachedir'):
|
||
|
# joblib < 0.11
|
||
|
if memory.cachedir is None:
|
||
|
# we do not clone when caching is disabled to
|
||
|
# preserve backward compatibility
|
||
|
cloned_transformer = transformer
|
||
|
else:
|
||
|
cloned_transformer = clone(transformer)
|
||
|
else:
|
||
|
cloned_transformer = clone(transformer)
|
||
|
# Fit or load from cache the current transfomer
|
||
|
Xt, fitted_transformer = fit_transform_one_cached(
|
||
|
cloned_transformer, Xt, y, None,
|
||
|
**fit_params_steps[name])
|
||
|
# Replace the transformer of the step with the fitted
|
||
|
# transformer. This is necessary when loading the transformer
|
||
|
# from the cache.
|
||
|
self.steps[step_idx] = (name, fitted_transformer)
|
||
|
if self._final_estimator is None:
|
||
|
return Xt, {}
|
||
|
return Xt, fit_params_steps[self.steps[-1][0]]
|
||
|
|
||
|
def fit(self, X, y=None, **fit_params):
|
||
|
"""Fit the model
|
||
|
|
||
|
Fit all the transforms one after the other and transform the
|
||
|
data, then fit the transformed data using the final estimator.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Training data. Must fulfill input requirements of first step of the
|
||
|
pipeline.
|
||
|
|
||
|
y : iterable, default=None
|
||
|
Training targets. Must fulfill label requirements for all steps of
|
||
|
the pipeline.
|
||
|
|
||
|
**fit_params : dict of string -> object
|
||
|
Parameters passed to the ``fit`` method of each step, where
|
||
|
each parameter name is prefixed such that parameter ``p`` for step
|
||
|
``s`` has key ``s__p``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Pipeline
|
||
|
This estimator
|
||
|
"""
|
||
|
Xt, fit_params = self._fit(X, y, **fit_params)
|
||
|
if self._final_estimator is not None:
|
||
|
self._final_estimator.fit(Xt, y, **fit_params)
|
||
|
return self
|
||
|
|
||
|
def fit_transform(self, X, y=None, **fit_params):
|
||
|
"""Fit the model and transform with the final estimator
|
||
|
|
||
|
Fits all the transforms one after the other and transforms the
|
||
|
data, then uses fit_transform on transformed data with the final
|
||
|
estimator.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Training data. Must fulfill input requirements of first step of the
|
||
|
pipeline.
|
||
|
|
||
|
y : iterable, default=None
|
||
|
Training targets. Must fulfill label requirements for all steps of
|
||
|
the pipeline.
|
||
|
|
||
|
**fit_params : dict of string -> object
|
||
|
Parameters passed to the ``fit`` method of each step, where
|
||
|
each parameter name is prefixed such that parameter ``p`` for step
|
||
|
``s`` has key ``s__p``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : array-like, shape = [n_samples, n_transformed_features]
|
||
|
Transformed samples
|
||
|
"""
|
||
|
last_step = self._final_estimator
|
||
|
Xt, fit_params = self._fit(X, y, **fit_params)
|
||
|
if hasattr(last_step, 'fit_transform'):
|
||
|
return last_step.fit_transform(Xt, y, **fit_params)
|
||
|
elif last_step is None:
|
||
|
return Xt
|
||
|
else:
|
||
|
return last_step.fit(Xt, y, **fit_params).transform(Xt)
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def predict(self, X, **predict_params):
|
||
|
"""Apply transforms to the data, and predict with the final estimator
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to predict on. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
**predict_params : dict of string -> object
|
||
|
Parameters to the ``predict`` called at the end of all
|
||
|
transformations in the pipeline. Note that while this may be
|
||
|
used to return uncertainties from some models with return_std
|
||
|
or return_cov, uncertainties that are generated by the
|
||
|
transformations in the pipeline are not propagated to the
|
||
|
final estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_pred : array-like
|
||
|
"""
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[:-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
return self.steps[-1][-1].predict(Xt, **predict_params)
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def fit_predict(self, X, y=None, **fit_params):
|
||
|
"""Applies fit_predict of last step in pipeline after transforms.
|
||
|
|
||
|
Applies fit_transforms of a pipeline to the data, followed by the
|
||
|
fit_predict method of the final estimator in the pipeline. Valid
|
||
|
only if the final estimator implements fit_predict.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Training data. Must fulfill input requirements of first step of
|
||
|
the pipeline.
|
||
|
|
||
|
y : iterable, default=None
|
||
|
Training targets. Must fulfill label requirements for all steps
|
||
|
of the pipeline.
|
||
|
|
||
|
**fit_params : dict of string -> object
|
||
|
Parameters passed to the ``fit`` method of each step, where
|
||
|
each parameter name is prefixed such that parameter ``p`` for step
|
||
|
``s`` has key ``s__p``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_pred : array-like
|
||
|
"""
|
||
|
Xt, fit_params = self._fit(X, y, **fit_params)
|
||
|
return self.steps[-1][-1].fit_predict(Xt, y, **fit_params)
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def predict_proba(self, X):
|
||
|
"""Apply transforms, and predict_proba of the final estimator
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to predict on. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_proba : array-like, shape = [n_samples, n_classes]
|
||
|
"""
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[:-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
return self.steps[-1][-1].predict_proba(Xt)
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def decision_function(self, X):
|
||
|
"""Apply transforms, and decision_function of the final estimator
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to predict on. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_score : array-like, shape = [n_samples, n_classes]
|
||
|
"""
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[:-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
return self.steps[-1][-1].decision_function(Xt)
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def predict_log_proba(self, X):
|
||
|
"""Apply transforms, and predict_log_proba of the final estimator
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to predict on. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y_score : array-like, shape = [n_samples, n_classes]
|
||
|
"""
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[:-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
return self.steps[-1][-1].predict_log_proba(Xt)
|
||
|
|
||
|
@property
|
||
|
def transform(self):
|
||
|
"""Apply transforms, and transform with the final estimator
|
||
|
|
||
|
This also works where final estimator is ``None``: all prior
|
||
|
transformations are applied.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to transform. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : array-like, shape = [n_samples, n_transformed_features]
|
||
|
"""
|
||
|
# _final_estimator is None or has transform, otherwise attribute error
|
||
|
# XXX: Handling the None case means we can't use if_delegate_has_method
|
||
|
if self._final_estimator is not None:
|
||
|
self._final_estimator.transform
|
||
|
return self._transform
|
||
|
|
||
|
def _transform(self, X):
|
||
|
Xt = X
|
||
|
for name, transform in self.steps:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
return Xt
|
||
|
|
||
|
@property
|
||
|
def inverse_transform(self):
|
||
|
"""Apply inverse transformations in reverse order
|
||
|
|
||
|
All estimators in the pipeline must support ``inverse_transform``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Xt : array-like, shape = [n_samples, n_transformed_features]
|
||
|
Data samples, where ``n_samples`` is the number of samples and
|
||
|
``n_features`` is the number of features. Must fulfill
|
||
|
input requirements of last step of pipeline's
|
||
|
``inverse_transform`` method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : array-like, shape = [n_samples, n_features]
|
||
|
"""
|
||
|
# raise AttributeError if necessary for hasattr behaviour
|
||
|
# XXX: Handling the None case means we can't use if_delegate_has_method
|
||
|
for name, transform in self.steps:
|
||
|
if transform is not None:
|
||
|
transform.inverse_transform
|
||
|
return self._inverse_transform
|
||
|
|
||
|
def _inverse_transform(self, X):
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[::-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.inverse_transform(Xt)
|
||
|
return Xt
|
||
|
|
||
|
@if_delegate_has_method(delegate='_final_estimator')
|
||
|
def score(self, X, y=None, sample_weight=None):
|
||
|
"""Apply transforms, and score with the final estimator
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable
|
||
|
Data to predict on. Must fulfill input requirements of first step
|
||
|
of the pipeline.
|
||
|
|
||
|
y : iterable, default=None
|
||
|
Targets used for scoring. Must fulfill label requirements for all
|
||
|
steps of the pipeline.
|
||
|
|
||
|
sample_weight : array-like, default=None
|
||
|
If not None, this argument is passed as ``sample_weight`` keyword
|
||
|
argument to the ``score`` method of the final estimator.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : float
|
||
|
"""
|
||
|
Xt = X
|
||
|
for name, transform in self.steps[:-1]:
|
||
|
if transform is not None:
|
||
|
Xt = transform.transform(Xt)
|
||
|
score_params = {}
|
||
|
if sample_weight is not None:
|
||
|
score_params['sample_weight'] = sample_weight
|
||
|
return self.steps[-1][-1].score(Xt, y, **score_params)
|
||
|
|
||
|
@property
|
||
|
def classes_(self):
|
||
|
return self.steps[-1][-1].classes_
|
||
|
|
||
|
@property
|
||
|
def _pairwise(self):
|
||
|
# check if first estimator expects pairwise input
|
||
|
return getattr(self.steps[0][1], '_pairwise', False)
|
||
|
|
||
|
|
||
|
def _name_estimators(estimators):
|
||
|
"""Generate names for estimators."""
|
||
|
|
||
|
names = [type(estimator).__name__.lower() for estimator in estimators]
|
||
|
namecount = defaultdict(int)
|
||
|
for est, name in zip(estimators, names):
|
||
|
namecount[name] += 1
|
||
|
|
||
|
for k, v in list(six.iteritems(namecount)):
|
||
|
if v == 1:
|
||
|
del namecount[k]
|
||
|
|
||
|
for i in reversed(range(len(estimators))):
|
||
|
name = names[i]
|
||
|
if name in namecount:
|
||
|
names[i] += "-%d" % namecount[name]
|
||
|
namecount[name] -= 1
|
||
|
|
||
|
return list(zip(names, estimators))
|
||
|
|
||
|
|
||
|
def make_pipeline(*steps, **kwargs):
|
||
|
"""Construct a Pipeline from the given estimators.
|
||
|
|
||
|
This is a shorthand for the Pipeline constructor; it does not require, and
|
||
|
does not permit, naming the estimators. Instead, their names will be set
|
||
|
to the lowercase of their types automatically.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*steps : list of estimators.
|
||
|
|
||
|
memory : None, str or object with the joblib.Memory interface, optional
|
||
|
Used to cache the fitted transformers of the pipeline. By default,
|
||
|
no caching is performed. If a string is given, it is the path to
|
||
|
the caching directory. Enabling caching triggers a clone of
|
||
|
the transformers before fitting. Therefore, the transformer
|
||
|
instance given to the pipeline cannot be inspected
|
||
|
directly. Use the attribute ``named_steps`` or ``steps`` to
|
||
|
inspect estimators within the pipeline. Caching the
|
||
|
transformers is advantageous when fitting is time consuming.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.pipeline.Pipeline : Class for creating a pipeline of
|
||
|
transforms with a final estimator.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.naive_bayes import GaussianNB
|
||
|
>>> from sklearn.preprocessing import StandardScaler
|
||
|
>>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
Pipeline(memory=None,
|
||
|
steps=[('standardscaler',
|
||
|
StandardScaler(copy=True, with_mean=True, with_std=True)),
|
||
|
('gaussiannb',
|
||
|
GaussianNB(priors=None, var_smoothing=1e-09))])
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : Pipeline
|
||
|
"""
|
||
|
memory = kwargs.pop('memory', None)
|
||
|
if kwargs:
|
||
|
raise TypeError('Unknown keyword arguments: "{}"'
|
||
|
.format(list(kwargs.keys())[0]))
|
||
|
return Pipeline(_name_estimators(steps), memory=memory)
|
||
|
|
||
|
|
||
|
# weight and fit_params are not used but it allows _fit_one_transformer,
|
||
|
# _transform_one and _fit_transform_one to have the same signature to
|
||
|
# factorize the code in ColumnTransformer
|
||
|
def _fit_one_transformer(transformer, X, y, weight=None, **fit_params):
|
||
|
return transformer.fit(X, y)
|
||
|
|
||
|
|
||
|
def _transform_one(transformer, X, y, weight, **fit_params):
|
||
|
res = transformer.transform(X)
|
||
|
# if we have a weight for this transformer, multiply output
|
||
|
if weight is None:
|
||
|
return res
|
||
|
return res * weight
|
||
|
|
||
|
|
||
|
def _fit_transform_one(transformer, X, y, weight, **fit_params):
|
||
|
if hasattr(transformer, 'fit_transform'):
|
||
|
res = transformer.fit_transform(X, y, **fit_params)
|
||
|
else:
|
||
|
res = transformer.fit(X, y, **fit_params).transform(X)
|
||
|
# if we have a weight for this transformer, multiply output
|
||
|
if weight is None:
|
||
|
return res, transformer
|
||
|
return res * weight, transformer
|
||
|
|
||
|
|
||
|
class FeatureUnion(_BaseComposition, TransformerMixin):
|
||
|
"""Concatenates results of multiple transformer objects.
|
||
|
|
||
|
This estimator applies a list of transformer objects in parallel to the
|
||
|
input data, then concatenates the results. This is useful to combine
|
||
|
several feature extraction mechanisms into a single transformer.
|
||
|
|
||
|
Parameters of the transformers may be set using its name and the parameter
|
||
|
name separated by a '__'. A transformer may be replaced entirely by
|
||
|
setting the parameter with its name to another transformer,
|
||
|
or removed by setting to 'drop' or ``None``.
|
||
|
|
||
|
Read more in the :ref:`User Guide <feature_union>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
transformer_list : list of (string, transformer) tuples
|
||
|
List of transformer objects to be applied to the data. The first
|
||
|
half of each tuple is the name of the transformer.
|
||
|
|
||
|
n_jobs : int or None, optional (default=None)
|
||
|
Number of jobs to run in parallel.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
transformer_weights : dict, optional
|
||
|
Multiplicative weights for features per transformer.
|
||
|
Keys are transformer names, values the weights.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.pipeline.make_union : convenience function for simplified
|
||
|
feature union construction.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.pipeline import FeatureUnion
|
||
|
>>> from sklearn.decomposition import PCA, TruncatedSVD
|
||
|
>>> union = FeatureUnion([("pca", PCA(n_components=1)),
|
||
|
... ("svd", TruncatedSVD(n_components=2))])
|
||
|
>>> X = [[0., 1., 3], [2., 2., 5]]
|
||
|
>>> union.fit_transform(X) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
|
||
|
array([[ 1.5 , 3.0..., 0.8...],
|
||
|
[-1.5 , 5.7..., -0.4...]])
|
||
|
"""
|
||
|
def __init__(self, transformer_list, n_jobs=None,
|
||
|
transformer_weights=None):
|
||
|
self.transformer_list = transformer_list
|
||
|
self.n_jobs = n_jobs
|
||
|
self.transformer_weights = transformer_weights
|
||
|
self._validate_transformers()
|
||
|
|
||
|
def get_params(self, deep=True):
|
||
|
"""Get parameters for this estimator.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
deep : boolean, optional
|
||
|
If True, will return the parameters for this estimator and
|
||
|
contained subobjects that are estimators.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
params : mapping of string to any
|
||
|
Parameter names mapped to their values.
|
||
|
"""
|
||
|
return self._get_params('transformer_list', deep=deep)
|
||
|
|
||
|
def set_params(self, **kwargs):
|
||
|
"""Set the parameters of this estimator.
|
||
|
|
||
|
Valid parameter keys can be listed with ``get_params()``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self
|
||
|
"""
|
||
|
self._set_params('transformer_list', **kwargs)
|
||
|
return self
|
||
|
|
||
|
def _validate_transformers(self):
|
||
|
names, transformers = zip(*self.transformer_list)
|
||
|
|
||
|
# validate names
|
||
|
self._validate_names(names)
|
||
|
|
||
|
# validate estimators
|
||
|
for t in transformers:
|
||
|
if t is None or t == 'drop':
|
||
|
continue
|
||
|
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
|
||
|
hasattr(t, "transform")):
|
||
|
raise TypeError("All estimators should implement fit and "
|
||
|
"transform. '%s' (type %s) doesn't" %
|
||
|
(t, type(t)))
|
||
|
|
||
|
def _iter(self):
|
||
|
"""
|
||
|
Generate (name, trans, weight) tuples excluding None and
|
||
|
'drop' transformers.
|
||
|
"""
|
||
|
get_weight = (self.transformer_weights or {}).get
|
||
|
return ((name, trans, get_weight(name))
|
||
|
for name, trans in self.transformer_list
|
||
|
if trans is not None and trans != 'drop')
|
||
|
|
||
|
def get_feature_names(self):
|
||
|
"""Get feature names from all transformers.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
feature_names : list of strings
|
||
|
Names of the features produced by transform.
|
||
|
"""
|
||
|
feature_names = []
|
||
|
for name, trans, weight in self._iter():
|
||
|
if not hasattr(trans, 'get_feature_names'):
|
||
|
raise AttributeError("Transformer %s (type %s) does not "
|
||
|
"provide get_feature_names."
|
||
|
% (str(name), type(trans).__name__))
|
||
|
feature_names.extend([name + "__" + f for f in
|
||
|
trans.get_feature_names()])
|
||
|
return feature_names
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit all transformers using X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable or array-like, depending on transformers
|
||
|
Input data, used to fit transformers.
|
||
|
|
||
|
y : array-like, shape (n_samples, ...), optional
|
||
|
Targets for supervised learning.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : FeatureUnion
|
||
|
This estimator
|
||
|
"""
|
||
|
self.transformer_list = list(self.transformer_list)
|
||
|
self._validate_transformers()
|
||
|
transformers = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(_fit_one_transformer)(trans, X, y)
|
||
|
for _, trans, _ in self._iter())
|
||
|
self._update_transformer_list(transformers)
|
||
|
return self
|
||
|
|
||
|
def fit_transform(self, X, y=None, **fit_params):
|
||
|
"""Fit all transformers, transform the data and concatenate results.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable or array-like, depending on transformers
|
||
|
Input data to be transformed.
|
||
|
|
||
|
y : array-like, shape (n_samples, ...), optional
|
||
|
Targets for supervised learning.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
|
||
|
hstack of results of transformers. sum_n_components is the
|
||
|
sum of n_components (output dimension) over transformers.
|
||
|
"""
|
||
|
self._validate_transformers()
|
||
|
result = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(_fit_transform_one)(trans, X, y, weight,
|
||
|
**fit_params)
|
||
|
for name, trans, weight in self._iter())
|
||
|
|
||
|
if not result:
|
||
|
# All transformers are None
|
||
|
return np.zeros((X.shape[0], 0))
|
||
|
Xs, transformers = zip(*result)
|
||
|
self._update_transformer_list(transformers)
|
||
|
if any(sparse.issparse(f) for f in Xs):
|
||
|
Xs = sparse.hstack(Xs).tocsr()
|
||
|
else:
|
||
|
Xs = np.hstack(Xs)
|
||
|
return Xs
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Transform X separately by each transformer, concatenate results.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : iterable or array-like, depending on transformers
|
||
|
Input data to be transformed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
|
||
|
hstack of results of transformers. sum_n_components is the
|
||
|
sum of n_components (output dimension) over transformers.
|
||
|
"""
|
||
|
Xs = Parallel(n_jobs=self.n_jobs)(
|
||
|
delayed(_transform_one)(trans, X, None, weight)
|
||
|
for name, trans, weight in self._iter())
|
||
|
if not Xs:
|
||
|
# All transformers are None
|
||
|
return np.zeros((X.shape[0], 0))
|
||
|
if any(sparse.issparse(f) for f in Xs):
|
||
|
Xs = sparse.hstack(Xs).tocsr()
|
||
|
else:
|
||
|
Xs = np.hstack(Xs)
|
||
|
return Xs
|
||
|
|
||
|
def _update_transformer_list(self, transformers):
|
||
|
transformers = iter(transformers)
|
||
|
self.transformer_list[:] = [(name, old if old is None or old == 'drop'
|
||
|
else next(transformers))
|
||
|
for name, old in self.transformer_list]
|
||
|
|
||
|
|
||
|
def make_union(*transformers, **kwargs):
|
||
|
"""Construct a FeatureUnion from the given transformers.
|
||
|
|
||
|
This is a shorthand for the FeatureUnion constructor; it does not require,
|
||
|
and does not permit, naming the transformers. Instead, they will be given
|
||
|
names automatically based on their types. It also does not allow weighting.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*transformers : list of estimators
|
||
|
|
||
|
n_jobs : int or None, optional (default=None)
|
||
|
Number of jobs to run in parallel.
|
||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||
|
for more details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
f : FeatureUnion
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
sklearn.pipeline.FeatureUnion : Class for concatenating the results
|
||
|
of multiple transformer objects.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.decomposition import PCA, TruncatedSVD
|
||
|
>>> from sklearn.pipeline import make_union
|
||
|
>>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE
|
||
|
FeatureUnion(n_jobs=None,
|
||
|
transformer_list=[('pca',
|
||
|
PCA(copy=True, iterated_power='auto',
|
||
|
n_components=None, random_state=None,
|
||
|
svd_solver='auto', tol=0.0, whiten=False)),
|
||
|
('truncatedsvd',
|
||
|
TruncatedSVD(algorithm='randomized',
|
||
|
n_components=2, n_iter=5,
|
||
|
random_state=None, tol=0.0))],
|
||
|
transformer_weights=None)
|
||
|
"""
|
||
|
n_jobs = kwargs.pop('n_jobs', None)
|
||
|
if kwargs:
|
||
|
# We do not currently support `transformer_weights` as we may want to
|
||
|
# change its type spec in make_union
|
||
|
raise TypeError('Unknown keyword arguments: "{}"'
|
||
|
.format(list(kwargs.keys())[0]))
|
||
|
return FeatureUnion(_name_estimators(transformers), n_jobs=n_jobs)
|