|
|
- #! /usr/bin/env python
- #
- # Implementation of elliptic curves, for cryptographic applications.
- #
- # This module doesn't provide any way to choose a random elliptic
- # curve, nor to verify that an elliptic curve was chosen randomly,
- # because one can simply use NIST's standard curves.
- #
- # Notes from X9.62-1998 (draft):
- # Nomenclature:
- # - Q is a public key.
- # The "Elliptic Curve Domain Parameters" include:
- # - q is the "field size", which in our case equals p.
- # - p is a big prime.
- # - G is a point of prime order (5.1.1.1).
- # - n is the order of G (5.1.1.1).
- # Public-key validation (5.2.2):
- # - Verify that Q is not the point at infinity.
- # - Verify that X_Q and Y_Q are in [0,p-1].
- # - Verify that Q is on the curve.
- # - Verify that nQ is the point at infinity.
- # Signature generation (5.3):
- # - Pick random k from [1,n-1].
- # Signature checking (5.4.2):
- # - Verify that r and s are in [1,n-1].
- #
- # Version of 2008.11.25.
- #
- # Revision history:
- # 2005.12.31 - Initial version.
- # 2008.11.25 - Change CurveFp.is_on to contains_point.
- #
- # Written in 2005 by Peter Pearson and placed in the public domain.
-
- from __future__ import division
-
- from .six import print_
- from . import numbertheory
-
- class CurveFp( object ):
- """Elliptic Curve over the field of integers modulo a prime."""
- def __init__( self, p, a, b ):
- """The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
- self.__p = p
- self.__a = a
- self.__b = b
-
- def p( self ):
- return self.__p
-
- def a( self ):
- return self.__a
-
- def b( self ):
- return self.__b
-
- def contains_point( self, x, y ):
- """Is the point (x,y) on this curve?"""
- return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
-
-
-
- class Point( object ):
- """A point on an elliptic curve. Altering x and y is forbidding,
- but they can be read by the x() and y() methods."""
- def __init__( self, curve, x, y, order = None ):
- """curve, x, y, order; order (optional) is the order of this point."""
- self.__curve = curve
- self.__x = x
- self.__y = y
- self.__order = order
- # self.curve is allowed to be None only for INFINITY:
- if self.__curve: assert self.__curve.contains_point( x, y )
- if order: assert self * order == INFINITY
-
- def __eq__( self, other ):
- """Return True if the points are identical, False otherwise."""
- if self.__curve == other.__curve \
- and self.__x == other.__x \
- and self.__y == other.__y:
- return True
- else:
- return False
-
- def __add__( self, other ):
- """Add one point to another point."""
-
- # X9.62 B.3:
-
- if other == INFINITY: return self
- if self == INFINITY: return other
- assert self.__curve == other.__curve
- if self.__x == other.__x:
- if ( self.__y + other.__y ) % self.__curve.p() == 0:
- return INFINITY
- else:
- return self.double()
-
- p = self.__curve.p()
-
- l = ( ( other.__y - self.__y ) * \
- numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p
-
- x3 = ( l * l - self.__x - other.__x ) % p
- y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
-
- return Point( self.__curve, x3, y3 )
-
- def __mul__( self, other ):
- """Multiply a point by an integer."""
-
- def leftmost_bit( x ):
- assert x > 0
- result = 1
- while result <= x: result = 2 * result
- return result // 2
-
- e = other
- if self.__order: e = e % self.__order
- if e == 0: return INFINITY
- if self == INFINITY: return INFINITY
- assert e > 0
-
- # From X9.62 D.3.2:
-
- e3 = 3 * e
- negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
- i = leftmost_bit( e3 ) // 2
- result = self
- # print_("Multiplying %s by %d (e3 = %d):" % ( self, other, e3 ))
- while i > 1:
- result = result.double()
- if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
- if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
- # print_(". . . i = %d, result = %s" % ( i, result ))
- i = i // 2
-
- return result
-
- def __rmul__( self, other ):
- """Multiply a point by an integer."""
-
- return self * other
-
- def __str__( self ):
- if self == INFINITY: return "infinity"
- return "(%d,%d)" % ( self.__x, self.__y )
-
- def double( self ):
- """Return a new point that is twice the old."""
-
- if self == INFINITY:
- return INFINITY
-
- # X9.62 B.3:
-
- p = self.__curve.p()
- a = self.__curve.a()
-
- l = ( ( 3 * self.__x * self.__x + a ) * \
- numbertheory.inverse_mod( 2 * self.__y, p ) ) % p
-
- x3 = ( l * l - 2 * self.__x ) % p
- y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
-
- return Point( self.__curve, x3, y3 )
-
- def x( self ):
- return self.__x
-
- def y( self ):
- return self.__y
-
- def curve( self ):
- return self.__curve
-
- def order( self ):
- return self.__order
-
-
- # This one point is the Point At Infinity for all purposes:
- INFINITY = Point( None, None, None )
-
- def __main__():
-
- class FailedTest(Exception): pass
- def test_add( c, x1, y1, x2, y2, x3, y3 ):
- """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
- p1 = Point( c, x1, y1 )
- p2 = Point( c, x2, y2 )
- p3 = p1 + p2
- print_("%s + %s = %s" % ( p1, p2, p3 ), end=' ')
- if p3.x() != x3 or p3.y() != y3:
- raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
- else:
- print_(" Good.")
-
- def test_double( c, x1, y1, x3, y3 ):
- """We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
- p1 = Point( c, x1, y1 )
- p3 = p1.double()
- print_("%s doubled = %s" % ( p1, p3 ), end=' ')
- if p3.x() != x3 or p3.y() != y3:
- raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
- else:
- print_(" Good.")
-
- def test_double_infinity( c ):
- """We expect that on curve c, 2*INFINITY = INFINITY."""
- p1 = INFINITY
- p3 = p1.double()
- print_("%s doubled = %s" % ( p1, p3 ), end=' ')
- if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
- raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
- else:
- print_(" Good.")
-
- def test_multiply( c, x1, y1, m, x3, y3 ):
- """We expect that on curve c, m*(x1,y1) = (x3,y3)."""
- p1 = Point( c, x1, y1 )
- p3 = p1 * m
- print_("%s * %d = %s" % ( p1, m, p3 ), end=' ')
- if p3.x() != x3 or p3.y() != y3:
- raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
- else:
- print_(" Good.")
-
-
- # A few tests from X9.62 B.3:
-
- c = CurveFp( 23, 1, 1 )
- test_add( c, 3, 10, 9, 7, 17, 20 )
- test_double( c, 3, 10, 7, 12 )
- test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.)
- test_multiply( c, 3, 10, 2, 7, 12 )
-
- test_double_infinity(c)
-
- # From X9.62 I.1 (p. 96):
-
- g = Point( c, 13, 7, 7 )
-
- check = INFINITY
- for i in range( 7 + 1 ):
- p = ( i % 7 ) * g
- print_("%s * %d = %s, expected %s . . ." % ( g, i, p, check ), end=' ')
- if p == check:
- print_(" Good.")
- else:
- raise FailedTest("Bad.")
- check = check + g
-
- # NIST Curve P-192:
- p = 6277101735386680763835789423207666416083908700390324961279
- r = 6277101735386680763835789423176059013767194773182842284081
- #s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
- c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
- b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
- Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
- Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
-
- c192 = CurveFp( p, -3, b )
- p192 = Point( c192, Gx, Gy, r )
-
- # Checking against some sample computations presented
- # in X9.62:
-
- d = 651056770906015076056810763456358567190100156695615665659
- Q = d * p192
- if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
- raise FailedTest("p192 * d came out wrong.")
- else:
- print_("p192 * d came out right.")
-
- k = 6140507067065001063065065565667405560006161556565665656654
- R = k * p192
- if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
- or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
- raise FailedTest("k * p192 came out wrong.")
- else:
- print_("k * p192 came out right.")
-
- u1 = 2563697409189434185194736134579731015366492496392189760599
- u2 = 6266643813348617967186477710235785849136406323338782220568
- temp = u1 * p192 + u2 * Q
- if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
- or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
- raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
- else:
- print_("u1 * p192 + u2 * Q came out right.")
-
- if __name__ == "__main__":
- __main__()
|