|
|
- #! /usr/bin/env python
-
- """
- Implementation of Elliptic-Curve Digital Signatures.
-
- Classes and methods for elliptic-curve signatures:
- private keys, public keys, signatures,
- NIST prime-modulus curves with modulus lengths of
- 192, 224, 256, 384, and 521 bits.
-
- Example:
-
- # (In real-life applications, you would probably want to
- # protect against defects in SystemRandom.)
- from random import SystemRandom
- randrange = SystemRandom().randrange
-
- # Generate a public/private key pair using the NIST Curve P-192:
-
- g = generator_192
- n = g.order()
- secret = randrange( 1, n )
- pubkey = Public_key( g, g * secret )
- privkey = Private_key( pubkey, secret )
-
- # Signing a hash value:
-
- hash = randrange( 1, n )
- signature = privkey.sign( hash, randrange( 1, n ) )
-
- # Verifying a signature for a hash value:
-
- if pubkey.verifies( hash, signature ):
- print_("Demo verification succeeded.")
- else:
- print_("*** Demo verification failed.")
-
- # Verification fails if the hash value is modified:
-
- if pubkey.verifies( hash-1, signature ):
- print_("**** Demo verification failed to reject tampered hash.")
- else:
- print_("Demo verification correctly rejected tampered hash.")
-
- Version of 2009.05.16.
-
- Revision history:
- 2005.12.31 - Initial version.
- 2008.11.25 - Substantial revisions introducing new classes.
- 2009.05.16 - Warn against using random.randrange in real applications.
- 2009.05.17 - Use random.SystemRandom by default.
-
- Written in 2005 by Peter Pearson and placed in the public domain.
- """
-
- from .six import int2byte, b, print_
- from . import ellipticcurve
- from . import numbertheory
- import random
-
-
-
- class Signature( object ):
- """ECDSA signature.
- """
- def __init__( self, r, s ):
- self.r = r
- self.s = s
-
-
-
- class Public_key( object ):
- """Public key for ECDSA.
- """
-
- def __init__( self, generator, point ):
- """generator is the Point that generates the group,
- point is the Point that defines the public key.
- """
-
- self.curve = generator.curve()
- self.generator = generator
- self.point = point
- n = generator.order()
- if not n:
- raise RuntimeError("Generator point must have order.")
- if not n * point == ellipticcurve.INFINITY:
- raise RuntimeError("Generator point order is bad.")
- if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
- raise RuntimeError("Generator point has x or y out of range.")
-
-
- def verifies( self, hash, signature ):
- """Verify that signature is a valid signature of hash.
- Return True if the signature is valid.
- """
-
- # From X9.62 J.3.1.
-
- G = self.generator
- n = G.order()
- r = signature.r
- s = signature.s
- if r < 1 or r > n-1: return False
- if s < 1 or s > n-1: return False
- c = numbertheory.inverse_mod( s, n )
- u1 = ( hash * c ) % n
- u2 = ( r * c ) % n
- xy = u1 * G + u2 * self.point
- v = xy.x() % n
- return v == r
-
-
-
- class Private_key( object ):
- """Private key for ECDSA.
- """
-
- def __init__( self, public_key, secret_multiplier ):
- """public_key is of class Public_key;
- secret_multiplier is a large integer.
- """
-
- self.public_key = public_key
- self.secret_multiplier = secret_multiplier
-
- def sign( self, hash, random_k ):
- """Return a signature for the provided hash, using the provided
- random nonce. It is absolutely vital that random_k be an unpredictable
- number in the range [1, self.public_key.point.order()-1]. If
- an attacker can guess random_k, he can compute our private key from a
- single signature. Also, if an attacker knows a few high-order
- bits (or a few low-order bits) of random_k, he can compute our private
- key from many signatures. The generation of nonces with adequate
- cryptographic strength is very difficult and far beyond the scope
- of this comment.
-
- May raise RuntimeError, in which case retrying with a new
- random value k is in order.
- """
-
- G = self.public_key.generator
- n = G.order()
- k = random_k % n
- p1 = k * G
- r = p1.x()
- if r == 0: raise RuntimeError("amazingly unlucky random number r")
- s = ( numbertheory.inverse_mod( k, n ) * \
- ( hash + ( self.secret_multiplier * r ) % n ) ) % n
- if s == 0: raise RuntimeError("amazingly unlucky random number s")
- return Signature( r, s )
-
-
-
- def int_to_string( x ):
- """Convert integer x into a string of bytes, as per X9.62."""
- assert x >= 0
- if x == 0: return b('\0')
- result = []
- while x:
- ordinal = x & 0xFF
- result.append(int2byte(ordinal))
- x >>= 8
-
- result.reverse()
- return b('').join(result)
-
-
- def string_to_int( s ):
- """Convert a string of bytes into an integer, as per X9.62."""
- result = 0
- for c in s:
- if not isinstance(c, int): c = ord( c )
- result = 256 * result + c
- return result
-
-
- def digest_integer( m ):
- """Convert an integer into a string of bytes, compute
- its SHA-1 hash, and convert the result to an integer."""
- #
- # I don't expect this function to be used much. I wrote
- # it in order to be able to duplicate the examples
- # in ECDSAVS.
- #
- from hashlib import sha1
- return string_to_int( sha1( int_to_string( m ) ).digest() )
-
-
- def point_is_valid( generator, x, y ):
- """Is (x,y) a valid public key based on the specified generator?"""
-
- # These are the tests specified in X9.62.
-
- n = generator.order()
- curve = generator.curve()
- if x < 0 or n <= x or y < 0 or n <= y:
- return False
- if not curve.contains_point( x, y ):
- return False
- if not n*ellipticcurve.Point( curve, x, y ) == \
- ellipticcurve.INFINITY:
- return False
- return True
-
-
-
- # NIST Curve P-192:
- _p = 6277101735386680763835789423207666416083908700390324961279
- _r = 6277101735386680763835789423176059013767194773182842284081
- # s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
- # c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
- _b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
- _Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
- _Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
-
- curve_192 = ellipticcurve.CurveFp( _p, -3, _b )
- generator_192 = ellipticcurve.Point( curve_192, _Gx, _Gy, _r )
-
-
- # NIST Curve P-224:
- _p = 26959946667150639794667015087019630673557916260026308143510066298881
- _r = 26959946667150639794667015087019625940457807714424391721682722368061
- # s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
- # c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
- _b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
- _Gx =0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
- _Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34
-
- curve_224 = ellipticcurve.CurveFp( _p, -3, _b )
- generator_224 = ellipticcurve.Point( curve_224, _Gx, _Gy, _r )
-
- # NIST Curve P-256:
- _p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
- _r = 115792089210356248762697446949407573529996955224135760342422259061068512044369
- # s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
- # c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
- _b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
- _Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
- _Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
-
- curve_256 = ellipticcurve.CurveFp( _p, -3, _b )
- generator_256 = ellipticcurve.Point( curve_256, _Gx, _Gy, _r )
-
- # NIST Curve P-384:
- _p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
- _r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
- # s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
- # c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
- _b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
- _Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
- _Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f
-
- curve_384 = ellipticcurve.CurveFp( _p, -3, _b )
- generator_384 = ellipticcurve.Point( curve_384, _Gx, _Gy, _r )
-
- # NIST Curve P-521:
- _p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151
- _r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
- # s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
- # c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
- _b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
- _Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
- _Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650
-
- curve_521 = ellipticcurve.CurveFp( _p, -3, _b )
- generator_521 = ellipticcurve.Point( curve_521, _Gx, _Gy, _r )
-
- # Certicom secp256-k1
- _a = 0x0000000000000000000000000000000000000000000000000000000000000000
- _b = 0x0000000000000000000000000000000000000000000000000000000000000007
- _p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
- _Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
- _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
- _r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
-
- curve_secp256k1 = ellipticcurve.CurveFp( _p, _a, _b)
- generator_secp256k1 = ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r)
-
-
-
- def __main__():
- class TestFailure(Exception): pass
-
- def test_point_validity( generator, x, y, expected ):
- """generator defines the curve; is (x,y) a point on
- this curve? "expected" is True if the right answer is Yes."""
- if point_is_valid( generator, x, y ) == expected:
- print_("Point validity tested as expected.")
- else:
- raise TestFailure("*** Point validity test gave wrong result.")
-
- def test_signature_validity( Msg, Qx, Qy, R, S, expected ):
- """Msg = message, Qx and Qy represent the base point on
- elliptic curve c192, R and S are the signature, and
- "expected" is True iff the signature is expected to be valid."""
- pubk = Public_key( generator_192,
- ellipticcurve.Point( curve_192, Qx, Qy ) )
- got = pubk.verifies( digest_integer( Msg ), Signature( R, S ) )
- if got == expected:
- print_("Signature tested as expected: got %s, expected %s." % \
- ( got, expected ))
- else:
- raise TestFailure("*** Signature test failed: got %s, expected %s." % \
- ( got, expected ))
-
- print_("NIST Curve P-192:")
-
- p192 = generator_192
-
- # From X9.62:
-
- d = 651056770906015076056810763456358567190100156695615665659
- Q = d * p192
- if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
- raise TestFailure("*** p192 * d came out wrong.")
- else:
- print_("p192 * d came out right.")
-
- k = 6140507067065001063065065565667405560006161556565665656654
- R = k * p192
- if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
- or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
- raise TestFailure("*** k * p192 came out wrong.")
- else:
- print_("k * p192 came out right.")
-
- u1 = 2563697409189434185194736134579731015366492496392189760599
- u2 = 6266643813348617967186477710235785849136406323338782220568
- temp = u1 * p192 + u2 * Q
- if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
- or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
- raise TestFailure("*** u1 * p192 + u2 * Q came out wrong.")
- else:
- print_("u1 * p192 + u2 * Q came out right.")
-
- e = 968236873715988614170569073515315707566766479517
- pubk = Public_key( generator_192, generator_192 * d )
- privk = Private_key( pubk, d )
- sig = privk.sign( e, k )
- r, s = sig.r, sig.s
- if r != 3342403536405981729393488334694600415596881826869351677613 \
- or s != 5735822328888155254683894997897571951568553642892029982342:
- raise TestFailure("*** r or s came out wrong.")
- else:
- print_("r and s came out right.")
-
- valid = pubk.verifies( e, sig )
- if valid: print_("Signature verified OK.")
- else: raise TestFailure("*** Signature failed verification.")
-
- valid = pubk.verifies( e-1, sig )
- if not valid: print_("Forgery was correctly rejected.")
- else: raise TestFailure("*** Forgery was erroneously accepted.")
-
- print_("Testing point validity, as per ECDSAVS.pdf B.2.2:")
-
- test_point_validity( \
- p192, \
- 0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83a, \
- 0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfc, \
- False )
-
- test_point_validity(
- p192, \
- 0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73b, \
- 0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adb, \
- False )
-
- test_point_validity(
- p192, \
- 0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792, \
- 0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6, \
- False )
-
- test_point_validity(
- p192, \
- 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6, \
- 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f, \
- True )
-
- test_point_validity(
- p192, \
- 0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70, \
- 0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4e, \
- True )
-
- test_point_validity(
- p192, \
- 0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedced, \
- 0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9, \
- True )
-
- test_point_validity(
- p192, \
- 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15, \
- 0x7b482604199367f1f303f9ef627f922f97023e90eae08abf, \
- True )
-
- test_point_validity(
- p192, \
- 0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798eda, \
- 0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835, \
- False )
-
- test_point_validity(
- p192, \
- 0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12, \
- 0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2, \
- False )
-
- test_point_validity(
- p192, \
- 0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43, \
- 0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caa, \
- False )
-
- test_point_validity(
- p192, \
- 0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbc, \
- 0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6, \
- False )
-
- test_point_validity(
- p192, \
- 0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253, \
- 0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923, \
- False )
-
- print_("Trying signature-verification tests from ECDSAVS.pdf B.2.4:")
- print_("P-192:")
- Msg = 0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff798cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d158
- Qx = 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7ac
- Qy = 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4
- R = 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916
- S = 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479
- test_signature_validity( Msg, Qx, Qy, R, S, True )
-
- Msg = 0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db12e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db326ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63f4
- Qx = 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7
- Qy = 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7
- R = 0x8285261607283ba18f335026130bab31840dcfd9c3e555af
- S = 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06c
- test_signature_validity( Msg, Qx, Qy, R, S, True )
-
- Msg = 0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cdd41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d303f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42dd
- Qx = 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7
- Qy = 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336
- R = 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91
- S = 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b563097ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd8a
- Qx = 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0b
- Qy = 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4
- R = 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1
- S = 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d39192e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bceae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072fb
- Qx = 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828
- Qy = 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ff
- R = 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796
- S = 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397ce15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aae98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca6d
- Qx = 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19f
- Qy = 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686
- R = 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325
- S = 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a278461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76e1
- Qx = 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04
- Qy = 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1
- R = 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1c
- S = 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6ba2
- Qx = 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaa
- Qy = 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3e
- R = 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955
- S = 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc910250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb658
- Qx = 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2f
- Qy = 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ec
- R = 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62
- S = 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e10288acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c90a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9ea387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c97a
- Qx = 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4a
- Qy = 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905
- R = 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73b
- S = 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5
- test_signature_validity( Msg, Qx, Qy, R, S, True )
-
- Msg = 0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f6450d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d9064e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8ce1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd0456d
- Qx = 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecef
- Qy = 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1
- R = 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06
- S = 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dc
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214eed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c440341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839d7
- Qx = 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753
- Qy = 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520
- R = 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668
- S = 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf9986670a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b41269bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160cef3
- Qx = 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835
- Qy = 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76b
- R = 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ff
- S = 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add5023572720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1
- Qx = 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0
- Qy = 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8da
- R = 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23
- S = 0x738421cf5e049159d69c57a915143e226cac8355e149afe9
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
- Msg = 0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5afa261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6db377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb
- Qx = 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77
- Qy = 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22
- R = 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1
- S = 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9
- test_signature_validity( Msg, Qx, Qy, R, S, False )
-
-
-
- print_("Testing the example code:")
-
- # Building a public/private key pair from the NIST Curve P-192:
-
- g = generator_192
- n = g.order()
-
- # (random.SystemRandom is supposed to provide
- # crypto-quality random numbers, but as Debian recently
- # illustrated, a systems programmer can accidentally
- # demolish this security, so in serious applications
- # further precautions are appropriate.)
-
- randrange = random.SystemRandom().randrange
-
- secret = randrange( 1, n )
- pubkey = Public_key( g, g * secret )
- privkey = Private_key( pubkey, secret )
-
- # Signing a hash value:
-
- hash = randrange( 1, n )
- signature = privkey.sign( hash, randrange( 1, n ) )
-
- # Verifying a signature for a hash value:
-
- if pubkey.verifies( hash, signature ):
- print_("Demo verification succeeded.")
- else:
- raise TestFailure("*** Demo verification failed.")
-
- if pubkey.verifies( hash-1, signature ):
- raise TestFailure( "**** Demo verification failed to reject tampered hash.")
- else:
- print_("Demo verification correctly rejected tampered hash.")
-
- if __name__ == "__main__":
- __main__()
|