|
|
- #
- # The Python Imaging Library.
- # $Id$
- #
- # JPEG (JFIF) file handling
- #
- # See "Digital Compression and Coding of Continuous-Tone Still Images,
- # Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1)
- #
- # History:
- # 1995-09-09 fl Created
- # 1995-09-13 fl Added full parser
- # 1996-03-25 fl Added hack to use the IJG command line utilities
- # 1996-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug
- # 1996-05-28 fl Added draft support, JFIF version (0.1)
- # 1996-12-30 fl Added encoder options, added progression property (0.2)
- # 1997-08-27 fl Save mode 1 images as BW (0.3)
- # 1998-07-12 fl Added YCbCr to draft and save methods (0.4)
- # 1998-10-19 fl Don't hang on files using 16-bit DQT's (0.4.1)
- # 2001-04-16 fl Extract DPI settings from JFIF files (0.4.2)
- # 2002-07-01 fl Skip pad bytes before markers; identify Exif files (0.4.3)
- # 2003-04-25 fl Added experimental EXIF decoder (0.5)
- # 2003-06-06 fl Added experimental EXIF GPSinfo decoder
- # 2003-09-13 fl Extract COM markers
- # 2009-09-06 fl Added icc_profile support (from Florian Hoech)
- # 2009-03-06 fl Changed CMYK handling; always use Adobe polarity (0.6)
- # 2009-03-08 fl Added subsampling support (from Justin Huff).
- #
- # Copyright (c) 1997-2003 by Secret Labs AB.
- # Copyright (c) 1995-1996 by Fredrik Lundh.
- #
- # See the README file for information on usage and redistribution.
- #
-
- from __future__ import print_function
-
- import array
- import struct
- import io
- import warnings
- from . import Image, ImageFile, TiffImagePlugin
- from ._binary import i8, o8, i16be as i16
- from .JpegPresets import presets
- from ._util import isStringType
-
- __version__ = "0.6"
-
-
- #
- # Parser
-
- def Skip(self, marker):
- n = i16(self.fp.read(2))-2
- ImageFile._safe_read(self.fp, n)
-
-
- def APP(self, marker):
- #
- # Application marker. Store these in the APP dictionary.
- # Also look for well-known application markers.
-
- n = i16(self.fp.read(2))-2
- s = ImageFile._safe_read(self.fp, n)
-
- app = "APP%d" % (marker & 15)
-
- self.app[app] = s # compatibility
- self.applist.append((app, s))
-
- if marker == 0xFFE0 and s[:4] == b"JFIF":
- # extract JFIF information
- self.info["jfif"] = version = i16(s, 5) # version
- self.info["jfif_version"] = divmod(version, 256)
- # extract JFIF properties
- try:
- jfif_unit = i8(s[7])
- jfif_density = i16(s, 8), i16(s, 10)
- except:
- pass
- else:
- if jfif_unit == 1:
- self.info["dpi"] = jfif_density
- self.info["jfif_unit"] = jfif_unit
- self.info["jfif_density"] = jfif_density
- elif marker == 0xFFE1 and s[:5] == b"Exif\0":
- if "exif" not in self.info:
- # extract Exif information (incomplete)
- self.info["exif"] = s # FIXME: value will change
- elif marker == 0xFFE2 and s[:5] == b"FPXR\0":
- # extract FlashPix information (incomplete)
- self.info["flashpix"] = s # FIXME: value will change
- elif marker == 0xFFE2 and s[:12] == b"ICC_PROFILE\0":
- # Since an ICC profile can be larger than the maximum size of
- # a JPEG marker (64K), we need provisions to split it into
- # multiple markers. The format defined by the ICC specifies
- # one or more APP2 markers containing the following data:
- # Identifying string ASCII "ICC_PROFILE\0" (12 bytes)
- # Marker sequence number 1, 2, etc (1 byte)
- # Number of markers Total of APP2's used (1 byte)
- # Profile data (remainder of APP2 data)
- # Decoders should use the marker sequence numbers to
- # reassemble the profile, rather than assuming that the APP2
- # markers appear in the correct sequence.
- self.icclist.append(s)
- elif marker == 0xFFEE and s[:5] == b"Adobe":
- self.info["adobe"] = i16(s, 5)
- # extract Adobe custom properties
- try:
- adobe_transform = i8(s[1])
- except:
- pass
- else:
- self.info["adobe_transform"] = adobe_transform
- elif marker == 0xFFE2 and s[:4] == b"MPF\0":
- # extract MPO information
- self.info["mp"] = s[4:]
- # offset is current location minus buffer size
- # plus constant header size
- self.info["mpoffset"] = self.fp.tell() - n + 4
-
- # If DPI isn't in JPEG header, fetch from EXIF
- if "dpi" not in self.info and "exif" in self.info:
- try:
- exif = self._getexif()
- resolution_unit = exif[0x0128]
- x_resolution = exif[0x011A]
- try:
- dpi = x_resolution[0] / x_resolution[1]
- except TypeError:
- dpi = x_resolution
- if resolution_unit == 3: # cm
- # 1 dpcm = 2.54 dpi
- dpi *= 2.54
- self.info["dpi"] = dpi, dpi
- except (KeyError, SyntaxError, ZeroDivisionError):
- # SyntaxError for invalid/unreadable exif
- # KeyError for dpi not included
- # ZeroDivisionError for invalid dpi rational value
- self.info["dpi"] = 72, 72
-
-
- def COM(self, marker):
- #
- # Comment marker. Store these in the APP dictionary.
- n = i16(self.fp.read(2))-2
- s = ImageFile._safe_read(self.fp, n)
-
- self.app["COM"] = s # compatibility
- self.applist.append(("COM", s))
-
-
- def SOF(self, marker):
- #
- # Start of frame marker. Defines the size and mode of the
- # image. JPEG is colour blind, so we use some simple
- # heuristics to map the number of layers to an appropriate
- # mode. Note that this could be made a bit brighter, by
- # looking for JFIF and Adobe APP markers.
-
- n = i16(self.fp.read(2))-2
- s = ImageFile._safe_read(self.fp, n)
- self._size = i16(s[3:]), i16(s[1:])
-
- self.bits = i8(s[0])
- if self.bits != 8:
- raise SyntaxError("cannot handle %d-bit layers" % self.bits)
-
- self.layers = i8(s[5])
- if self.layers == 1:
- self.mode = "L"
- elif self.layers == 3:
- self.mode = "RGB"
- elif self.layers == 4:
- self.mode = "CMYK"
- else:
- raise SyntaxError("cannot handle %d-layer images" % self.layers)
-
- if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
- self.info["progressive"] = self.info["progression"] = 1
-
- if self.icclist:
- # fixup icc profile
- self.icclist.sort() # sort by sequence number
- if i8(self.icclist[0][13]) == len(self.icclist):
- profile = []
- for p in self.icclist:
- profile.append(p[14:])
- icc_profile = b"".join(profile)
- else:
- icc_profile = None # wrong number of fragments
- self.info["icc_profile"] = icc_profile
- self.icclist = None
-
- for i in range(6, len(s), 3):
- t = s[i:i+3]
- # 4-tuples: id, vsamp, hsamp, qtable
- self.layer.append((t[0], i8(t[1])//16, i8(t[1]) & 15, i8(t[2])))
-
-
- def DQT(self, marker):
- #
- # Define quantization table. Support baseline 8-bit tables
- # only. Note that there might be more than one table in
- # each marker.
-
- # FIXME: The quantization tables can be used to estimate the
- # compression quality.
-
- n = i16(self.fp.read(2))-2
- s = ImageFile._safe_read(self.fp, n)
- while len(s):
- if len(s) < 65:
- raise SyntaxError("bad quantization table marker")
- v = i8(s[0])
- if v//16 == 0:
- self.quantization[v & 15] = array.array("B", s[1:65])
- s = s[65:]
- else:
- return # FIXME: add code to read 16-bit tables!
- # raise SyntaxError, "bad quantization table element size"
-
-
- #
- # JPEG marker table
-
- MARKER = {
- 0xFFC0: ("SOF0", "Baseline DCT", SOF),
- 0xFFC1: ("SOF1", "Extended Sequential DCT", SOF),
- 0xFFC2: ("SOF2", "Progressive DCT", SOF),
- 0xFFC3: ("SOF3", "Spatial lossless", SOF),
- 0xFFC4: ("DHT", "Define Huffman table", Skip),
- 0xFFC5: ("SOF5", "Differential sequential DCT", SOF),
- 0xFFC6: ("SOF6", "Differential progressive DCT", SOF),
- 0xFFC7: ("SOF7", "Differential spatial", SOF),
- 0xFFC8: ("JPG", "Extension", None),
- 0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF),
- 0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF),
- 0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF),
- 0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip),
- 0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF),
- 0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF),
- 0xFFCF: ("SOF15", "Differential spatial (AC)", SOF),
- 0xFFD0: ("RST0", "Restart 0", None),
- 0xFFD1: ("RST1", "Restart 1", None),
- 0xFFD2: ("RST2", "Restart 2", None),
- 0xFFD3: ("RST3", "Restart 3", None),
- 0xFFD4: ("RST4", "Restart 4", None),
- 0xFFD5: ("RST5", "Restart 5", None),
- 0xFFD6: ("RST6", "Restart 6", None),
- 0xFFD7: ("RST7", "Restart 7", None),
- 0xFFD8: ("SOI", "Start of image", None),
- 0xFFD9: ("EOI", "End of image", None),
- 0xFFDA: ("SOS", "Start of scan", Skip),
- 0xFFDB: ("DQT", "Define quantization table", DQT),
- 0xFFDC: ("DNL", "Define number of lines", Skip),
- 0xFFDD: ("DRI", "Define restart interval", Skip),
- 0xFFDE: ("DHP", "Define hierarchical progression", SOF),
- 0xFFDF: ("EXP", "Expand reference component", Skip),
- 0xFFE0: ("APP0", "Application segment 0", APP),
- 0xFFE1: ("APP1", "Application segment 1", APP),
- 0xFFE2: ("APP2", "Application segment 2", APP),
- 0xFFE3: ("APP3", "Application segment 3", APP),
- 0xFFE4: ("APP4", "Application segment 4", APP),
- 0xFFE5: ("APP5", "Application segment 5", APP),
- 0xFFE6: ("APP6", "Application segment 6", APP),
- 0xFFE7: ("APP7", "Application segment 7", APP),
- 0xFFE8: ("APP8", "Application segment 8", APP),
- 0xFFE9: ("APP9", "Application segment 9", APP),
- 0xFFEA: ("APP10", "Application segment 10", APP),
- 0xFFEB: ("APP11", "Application segment 11", APP),
- 0xFFEC: ("APP12", "Application segment 12", APP),
- 0xFFED: ("APP13", "Application segment 13", APP),
- 0xFFEE: ("APP14", "Application segment 14", APP),
- 0xFFEF: ("APP15", "Application segment 15", APP),
- 0xFFF0: ("JPG0", "Extension 0", None),
- 0xFFF1: ("JPG1", "Extension 1", None),
- 0xFFF2: ("JPG2", "Extension 2", None),
- 0xFFF3: ("JPG3", "Extension 3", None),
- 0xFFF4: ("JPG4", "Extension 4", None),
- 0xFFF5: ("JPG5", "Extension 5", None),
- 0xFFF6: ("JPG6", "Extension 6", None),
- 0xFFF7: ("JPG7", "Extension 7", None),
- 0xFFF8: ("JPG8", "Extension 8", None),
- 0xFFF9: ("JPG9", "Extension 9", None),
- 0xFFFA: ("JPG10", "Extension 10", None),
- 0xFFFB: ("JPG11", "Extension 11", None),
- 0xFFFC: ("JPG12", "Extension 12", None),
- 0xFFFD: ("JPG13", "Extension 13", None),
- 0xFFFE: ("COM", "Comment", COM)
- }
-
-
- def _accept(prefix):
- return prefix[0:1] == b"\377"
-
-
- ##
- # Image plugin for JPEG and JFIF images.
-
- class JpegImageFile(ImageFile.ImageFile):
-
- format = "JPEG"
- format_description = "JPEG (ISO 10918)"
-
- def _open(self):
-
- s = self.fp.read(1)
-
- if i8(s) != 255:
- raise SyntaxError("not a JPEG file")
-
- # Create attributes
- self.bits = self.layers = 0
-
- # JPEG specifics (internal)
- self.layer = []
- self.huffman_dc = {}
- self.huffman_ac = {}
- self.quantization = {}
- self.app = {} # compatibility
- self.applist = []
- self.icclist = []
-
- while True:
-
- i = i8(s)
- if i == 0xFF:
- s = s + self.fp.read(1)
- i = i16(s)
- else:
- # Skip non-0xFF junk
- s = self.fp.read(1)
- continue
-
- if i in MARKER:
- name, description, handler = MARKER[i]
- if handler is not None:
- handler(self, i)
- if i == 0xFFDA: # start of scan
- rawmode = self.mode
- if self.mode == "CMYK":
- rawmode = "CMYK;I" # assume adobe conventions
- self.tile = [("jpeg", (0, 0) + self.size, 0,
- (rawmode, ""))]
- # self.__offset = self.fp.tell()
- break
- s = self.fp.read(1)
- elif i == 0 or i == 0xFFFF:
- # padded marker or junk; move on
- s = b"\xff"
- elif i == 0xFF00: # Skip extraneous data (escaped 0xFF)
- s = self.fp.read(1)
- else:
- raise SyntaxError("no marker found")
-
- def load_read(self, read_bytes):
- """
- internal: read more image data
- For premature EOF and LOAD_TRUNCATED_IMAGES adds EOI marker
- so libjpeg can finish decoding
- """
- s = self.fp.read(read_bytes)
-
- if not s and ImageFile.LOAD_TRUNCATED_IMAGES:
- # Premature EOF.
- # Pretend file is finished adding EOI marker
- return b"\xFF\xD9"
-
- return s
-
- def draft(self, mode, size):
-
- if len(self.tile) != 1:
- return
-
- # Protect from second call
- if self.decoderconfig:
- return
-
- d, e, o, a = self.tile[0]
- scale = 0
-
- if a[0] == "RGB" and mode in ["L", "YCbCr"]:
- self.mode = mode
- a = mode, ""
-
- if size:
- scale = min(self.size[0] // size[0], self.size[1] // size[1])
- for s in [8, 4, 2, 1]:
- if scale >= s:
- break
- e = e[0], e[1], (e[2]-e[0]+s-1)//s+e[0], (e[3]-e[1]+s-1)//s+e[1]
- self._size = ((self.size[0]+s-1)//s, (self.size[1]+s-1)//s)
- scale = s
-
- self.tile = [(d, e, o, a)]
- self.decoderconfig = (scale, 0)
-
- return self
-
- def load_djpeg(self):
-
- # ALTERNATIVE: handle JPEGs via the IJG command line utilities
-
- import subprocess
- import tempfile
- import os
- f, path = tempfile.mkstemp()
- os.close(f)
- if os.path.exists(self.filename):
- subprocess.check_call(["djpeg", "-outfile", path, self.filename])
- else:
- raise ValueError("Invalid Filename")
-
- try:
- _im = Image.open(path)
- _im.load()
- self.im = _im.im
- finally:
- try:
- os.unlink(path)
- except OSError:
- pass
-
- self.mode = self.im.mode
- self._size = self.im.size
-
- self.tile = []
-
- def _getexif(self):
- return _getexif(self)
-
- def _getmp(self):
- return _getmp(self)
-
-
- def _fixup_dict(src_dict):
- # Helper function for _getexif()
- # returns a dict with any single item tuples/lists as individual values
- def _fixup(value):
- try:
- if len(value) == 1 and not isinstance(value, dict):
- return value[0]
- except:
- pass
- return value
-
- return {k: _fixup(v) for k, v in src_dict.items()}
-
-
- def _getexif(self):
- # Extract EXIF information. This method is highly experimental,
- # and is likely to be replaced with something better in a future
- # version.
-
- # The EXIF record consists of a TIFF file embedded in a JPEG
- # application marker (!).
- try:
- data = self.info["exif"]
- except KeyError:
- return None
- file = io.BytesIO(data[6:])
- head = file.read(8)
- # process dictionary
- info = TiffImagePlugin.ImageFileDirectory_v1(head)
- info.load(file)
- exif = dict(_fixup_dict(info))
- # get exif extension
- try:
- # exif field 0x8769 is an offset pointer to the location
- # of the nested embedded exif ifd.
- # It should be a long, but may be corrupted.
- file.seek(exif[0x8769])
- except (KeyError, TypeError):
- pass
- else:
- info = TiffImagePlugin.ImageFileDirectory_v1(head)
- info.load(file)
- exif.update(_fixup_dict(info))
- # get gpsinfo extension
- try:
- # exif field 0x8825 is an offset pointer to the location
- # of the nested embedded gps exif ifd.
- # It should be a long, but may be corrupted.
- file.seek(exif[0x8825])
- except (KeyError, TypeError):
- pass
- else:
- info = TiffImagePlugin.ImageFileDirectory_v1(head)
- info.load(file)
- exif[0x8825] = _fixup_dict(info)
-
- return exif
-
-
- def _getmp(self):
- # Extract MP information. This method was inspired by the "highly
- # experimental" _getexif version that's been in use for years now,
- # itself based on the ImageFileDirectory class in the TIFF plug-in.
-
- # The MP record essentially consists of a TIFF file embedded in a JPEG
- # application marker.
- try:
- data = self.info["mp"]
- except KeyError:
- return None
- file_contents = io.BytesIO(data)
- head = file_contents.read(8)
- endianness = '>' if head[:4] == b'\x4d\x4d\x00\x2a' else '<'
- # process dictionary
- try:
- info = TiffImagePlugin.ImageFileDirectory_v2(head)
- info.load(file_contents)
- mp = dict(info)
- except:
- raise SyntaxError("malformed MP Index (unreadable directory)")
- # it's an error not to have a number of images
- try:
- quant = mp[0xB001]
- except KeyError:
- raise SyntaxError("malformed MP Index (no number of images)")
- # get MP entries
- mpentries = []
- try:
- rawmpentries = mp[0xB002]
- for entrynum in range(0, quant):
- unpackedentry = struct.unpack_from(
- '{}LLLHH'.format(endianness), rawmpentries, entrynum * 16)
- labels = ('Attribute', 'Size', 'DataOffset', 'EntryNo1',
- 'EntryNo2')
- mpentry = dict(zip(labels, unpackedentry))
- mpentryattr = {
- 'DependentParentImageFlag': bool(mpentry['Attribute'] &
- (1 << 31)),
- 'DependentChildImageFlag': bool(mpentry['Attribute'] &
- (1 << 30)),
- 'RepresentativeImageFlag': bool(mpentry['Attribute'] &
- (1 << 29)),
- 'Reserved': (mpentry['Attribute'] & (3 << 27)) >> 27,
- 'ImageDataFormat': (mpentry['Attribute'] & (7 << 24)) >> 24,
- 'MPType': mpentry['Attribute'] & 0x00FFFFFF
- }
- if mpentryattr['ImageDataFormat'] == 0:
- mpentryattr['ImageDataFormat'] = 'JPEG'
- else:
- raise SyntaxError("unsupported picture format in MPO")
- mptypemap = {
- 0x000000: 'Undefined',
- 0x010001: 'Large Thumbnail (VGA Equivalent)',
- 0x010002: 'Large Thumbnail (Full HD Equivalent)',
- 0x020001: 'Multi-Frame Image (Panorama)',
- 0x020002: 'Multi-Frame Image: (Disparity)',
- 0x020003: 'Multi-Frame Image: (Multi-Angle)',
- 0x030000: 'Baseline MP Primary Image'
- }
- mpentryattr['MPType'] = mptypemap.get(mpentryattr['MPType'],
- 'Unknown')
- mpentry['Attribute'] = mpentryattr
- mpentries.append(mpentry)
- mp[0xB002] = mpentries
- except KeyError:
- raise SyntaxError("malformed MP Index (bad MP Entry)")
- # Next we should try and parse the individual image unique ID list;
- # we don't because I've never seen this actually used in a real MPO
- # file and so can't test it.
- return mp
-
-
- # --------------------------------------------------------------------
- # stuff to save JPEG files
-
- RAWMODE = {
- "1": "L",
- "L": "L",
- "RGB": "RGB",
- "RGBX": "RGB",
- "CMYK": "CMYK;I", # assume adobe conventions
- "YCbCr": "YCbCr",
- }
-
- zigzag_index = (0, 1, 5, 6, 14, 15, 27, 28,
- 2, 4, 7, 13, 16, 26, 29, 42,
- 3, 8, 12, 17, 25, 30, 41, 43,
- 9, 11, 18, 24, 31, 40, 44, 53,
- 10, 19, 23, 32, 39, 45, 52, 54,
- 20, 22, 33, 38, 46, 51, 55, 60,
- 21, 34, 37, 47, 50, 56, 59, 61,
- 35, 36, 48, 49, 57, 58, 62, 63)
-
- samplings = {(1, 1, 1, 1, 1, 1): 0,
- (2, 1, 1, 1, 1, 1): 1,
- (2, 2, 1, 1, 1, 1): 2,
- }
-
-
- def convert_dict_qtables(qtables):
- qtables = [qtables[key] for key in range(len(qtables)) if key in qtables]
- for idx, table in enumerate(qtables):
- qtables[idx] = [table[i] for i in zigzag_index]
- return qtables
-
-
- def get_sampling(im):
- # There's no subsampling when image have only 1 layer
- # (grayscale images) or when they are CMYK (4 layers),
- # so set subsampling to default value.
- #
- # NOTE: currently Pillow can't encode JPEG to YCCK format.
- # If YCCK support is added in the future, subsampling code will have
- # to be updated (here and in JpegEncode.c) to deal with 4 layers.
- if not hasattr(im, 'layers') or im.layers in (1, 4):
- return -1
- sampling = im.layer[0][1:3] + im.layer[1][1:3] + im.layer[2][1:3]
- return samplings.get(sampling, -1)
-
-
- def _save(im, fp, filename):
-
- try:
- rawmode = RAWMODE[im.mode]
- except KeyError:
- raise IOError("cannot write mode %s as JPEG" % im.mode)
-
- info = im.encoderinfo
-
- dpi = [int(round(x)) for x in info.get("dpi", (0, 0))]
-
- quality = info.get("quality", 0)
- subsampling = info.get("subsampling", -1)
- qtables = info.get("qtables")
-
- if quality == "keep":
- quality = 0
- subsampling = "keep"
- qtables = "keep"
- elif quality in presets:
- preset = presets[quality]
- quality = 0
- subsampling = preset.get('subsampling', -1)
- qtables = preset.get('quantization')
- elif not isinstance(quality, int):
- raise ValueError("Invalid quality setting")
- else:
- if subsampling in presets:
- subsampling = presets[subsampling].get('subsampling', -1)
- if isStringType(qtables) and qtables in presets:
- qtables = presets[qtables].get('quantization')
-
- if subsampling == "4:4:4":
- subsampling = 0
- elif subsampling == "4:2:2":
- subsampling = 1
- elif subsampling == "4:2:0":
- subsampling = 2
- elif subsampling == "4:1:1":
- # For compatibility. Before Pillow 4.3, 4:1:1 actually meant 4:2:0.
- # Set 4:2:0 if someone is still using that value.
- subsampling = 2
- elif subsampling == "keep":
- if im.format != "JPEG":
- raise ValueError(
- "Cannot use 'keep' when original image is not a JPEG")
- subsampling = get_sampling(im)
-
- def validate_qtables(qtables):
- if qtables is None:
- return qtables
- if isStringType(qtables):
- try:
- lines = [int(num) for line in qtables.splitlines()
- for num in line.split('#', 1)[0].split()]
- except ValueError:
- raise ValueError("Invalid quantization table")
- else:
- qtables = [lines[s:s+64] for s in range(0, len(lines), 64)]
- if isinstance(qtables, (tuple, list, dict)):
- if isinstance(qtables, dict):
- qtables = convert_dict_qtables(qtables)
- elif isinstance(qtables, tuple):
- qtables = list(qtables)
- if not (0 < len(qtables) < 5):
- raise ValueError("None or too many quantization tables")
- for idx, table in enumerate(qtables):
- try:
- if len(table) != 64:
- raise TypeError
- table = array.array('B', table)
- except TypeError:
- raise ValueError("Invalid quantization table")
- else:
- qtables[idx] = list(table)
- return qtables
-
- if qtables == "keep":
- if im.format != "JPEG":
- raise ValueError(
- "Cannot use 'keep' when original image is not a JPEG")
- qtables = getattr(im, "quantization", None)
- qtables = validate_qtables(qtables)
-
- extra = b""
-
- icc_profile = info.get("icc_profile")
- if icc_profile:
- ICC_OVERHEAD_LEN = 14
- MAX_BYTES_IN_MARKER = 65533
- MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN
- markers = []
- while icc_profile:
- markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER])
- icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:]
- i = 1
- for marker in markers:
- size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker))
- extra += (b"\xFF\xE2" + size + b"ICC_PROFILE\0" + o8(i) +
- o8(len(markers)) + marker)
- i += 1
-
- # "progressive" is the official name, but older documentation
- # says "progression"
- # FIXME: issue a warning if the wrong form is used (post-1.1.7)
- progressive = (info.get("progressive", False) or
- info.get("progression", False))
-
- optimize = info.get("optimize", False)
-
- # get keyword arguments
- im.encoderconfig = (
- quality,
- progressive,
- info.get("smooth", 0),
- optimize,
- info.get("streamtype", 0),
- dpi[0], dpi[1],
- subsampling,
- qtables,
- extra,
- info.get("exif", b"")
- )
-
- # if we optimize, libjpeg needs a buffer big enough to hold the whole image
- # in a shot. Guessing on the size, at im.size bytes. (raw pixel size is
- # channels*size, this is a value that's been used in a django patch.
- # https://github.com/matthewwithanm/django-imagekit/issues/50
- bufsize = 0
- if optimize or progressive:
- # CMYK can be bigger
- if im.mode == 'CMYK':
- bufsize = 4 * im.size[0] * im.size[1]
- # keep sets quality to 0, but the actual value may be high.
- elif quality >= 95 or quality == 0:
- bufsize = 2 * im.size[0] * im.size[1]
- else:
- bufsize = im.size[0] * im.size[1]
-
- # The exif info needs to be written as one block, + APP1, + one spare byte.
- # Ensure that our buffer is big enough. Same with the icc_profile block.
- bufsize = max(ImageFile.MAXBLOCK, bufsize, len(info.get("exif", b"")) + 5,
- len(extra) + 1)
-
- ImageFile._save(im, fp, [("jpeg", (0, 0)+im.size, 0, rawmode)], bufsize)
-
-
- def _save_cjpeg(im, fp, filename):
- # ALTERNATIVE: handle JPEGs via the IJG command line utilities.
- import os
- import subprocess
- tempfile = im._dump()
- subprocess.check_call(["cjpeg", "-outfile", filename, tempfile])
- try:
- os.unlink(tempfile)
- except OSError:
- pass
-
-
- ##
- # Factory for making JPEG and MPO instances
- def jpeg_factory(fp=None, filename=None):
- im = JpegImageFile(fp, filename)
- try:
- mpheader = im._getmp()
- if mpheader[45057] > 1:
- # It's actually an MPO
- from .MpoImagePlugin import MpoImageFile
- im = MpoImageFile(fp, filename)
- except (TypeError, IndexError):
- # It is really a JPEG
- pass
- except SyntaxError:
- warnings.warn("Image appears to be a malformed MPO file, it will be "
- "interpreted as a base JPEG file")
- return im
-
-
- # ---------------------------------------------------------------------
- # Registry stuff
-
- Image.register_open(JpegImageFile.format, jpeg_factory, _accept)
- Image.register_save(JpegImageFile.format, _save)
-
- Image.register_extensions(JpegImageFile.format,
- [".jfif", ".jpe", ".jpg", ".jpeg"])
-
- Image.register_mime(JpegImageFile.format, "image/jpeg")
|