|
|
- """
- The classes here provide support for using custom classes with
- Matplotlib, e.g., those that do not expose the array interface but know
- how to convert themselves to arrays. It also supports classes with
- units and units conversion. Use cases include converters for custom
- objects, e.g., a list of datetime objects, as well as for objects that
- are unit aware. We don't assume any particular units implementation;
- rather a units implementation must provide the register with the Registry
- converter dictionary and a `ConversionInterface`. For example,
- here is a complete implementation which supports plotting with native
- datetime objects::
-
- import matplotlib.units as units
- import matplotlib.dates as dates
- import matplotlib.ticker as ticker
- import datetime
-
- class DateConverter(units.ConversionInterface):
-
- @staticmethod
- def convert(value, unit, axis):
- 'Convert a datetime value to a scalar or array'
- return dates.date2num(value)
-
- @staticmethod
- def axisinfo(unit, axis):
- 'Return major and minor tick locators and formatters'
- if unit!='date': return None
- majloc = dates.AutoDateLocator()
- majfmt = dates.AutoDateFormatter(majloc)
- return AxisInfo(majloc=majloc,
- majfmt=majfmt,
- label='date')
-
- @staticmethod
- def default_units(x, axis):
- 'Return the default unit for x or None'
- return 'date'
-
- # Finally we register our object type with the Matplotlib units registry.
- units.registry[datetime.date] = DateConverter()
-
- """
-
- from numbers import Number
-
- import numpy as np
-
- from matplotlib.cbook import iterable, safe_first_element
-
-
- class AxisInfo(object):
- """
- Information to support default axis labeling, tick labeling, and
- default limits. An instance of this class must be returned by
- :meth:`ConversionInterface.axisinfo`.
- """
- def __init__(self, majloc=None, minloc=None,
- majfmt=None, minfmt=None, label=None,
- default_limits=None):
- """
- Parameters
- ----------
- majloc, minloc : Locator, optional
- Tick locators for the major and minor ticks.
- majfmt, minfmt : Formatter, optional
- Tick formatters for the major and minor ticks.
- label : str, optional
- The default axis label.
- default_limits : optional
- The default min and max limits of the axis if no data has
- been plotted.
-
- Notes
- -----
- If any of the above are ``None``, the axis will simply use the
- default value.
- """
- self.majloc = majloc
- self.minloc = minloc
- self.majfmt = majfmt
- self.minfmt = minfmt
- self.label = label
- self.default_limits = default_limits
-
-
- class ConversionInterface(object):
- """
- The minimal interface for a converter to take custom data types (or
- sequences) and convert them to values Matplotlib can use.
- """
- @staticmethod
- def axisinfo(unit, axis):
- """
- Return an `~units.AxisInfo` instance for the axis with the
- specified units.
- """
- return None
-
- @staticmethod
- def default_units(x, axis):
- """
- Return the default unit for *x* or ``None`` for the given axis.
- """
- return None
-
- @staticmethod
- def convert(obj, unit, axis):
- """
- Convert *obj* using *unit* for the specified *axis*.
- If *obj* is a sequence, return the converted sequence.
- The output must be a sequence of scalars that can be used by the numpy
- array layer.
- """
- return obj
-
- @staticmethod
- def is_numlike(x):
- """
- The Matplotlib datalim, autoscaling, locators etc work with
- scalars which are the units converted to floats given the
- current unit. The converter may be passed these floats, or
- arrays of them, even when units are set.
- """
- if iterable(x):
- for thisx in x:
- return isinstance(thisx, Number)
- else:
- return isinstance(x, Number)
-
-
- class Registry(dict):
- """
- A register that maps types to conversion interfaces.
- """
- def __init__(self):
- dict.__init__(self)
- self._cached = {}
-
- def get_converter(self, x):
- """
- Get the converter for data that has the same type as *x*. If no
- converters are registered for *x*, returns ``None``.
- """
-
- if not len(self):
- return None # nothing registered
- # DISABLED idx = id(x)
- # DISABLED cached = self._cached.get(idx)
- # DISABLED if cached is not None: return cached
-
- converter = None
- classx = getattr(x, '__class__', None)
-
- if classx is not None:
- converter = self.get(classx)
-
- if converter is None and hasattr(x, "values"):
- # this unpacks pandas series or dataframes...
- x = x.values
-
- # If x is an array, look inside the array for data with units
- if isinstance(x, np.ndarray) and x.size:
- xravel = x.ravel()
- try:
- # pass the first value of x that is not masked back to
- # get_converter
- if not np.all(xravel.mask):
- # some elements are not masked
- converter = self.get_converter(
- xravel[np.argmin(xravel.mask)])
- return converter
- except AttributeError:
- # not a masked_array
- # Make sure we don't recurse forever -- it's possible for
- # ndarray subclasses to continue to return subclasses and
- # not ever return a non-subclass for a single element.
- next_item = xravel[0]
- if (not isinstance(next_item, np.ndarray) or
- next_item.shape != x.shape):
- converter = self.get_converter(next_item)
- return converter
-
- # If we haven't found a converter yet, try to get the first element
- if converter is None:
- try:
- thisx = safe_first_element(x)
- except (TypeError, StopIteration):
- pass
- else:
- if classx and classx != getattr(thisx, '__class__', None):
- converter = self.get_converter(thisx)
- return converter
-
- # DISABLED self._cached[idx] = converter
- return converter
-
-
- registry = Registry()
|