|
|
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright (C) 2011 Radim Rehurek <radimrehurek@seznam.cz>
- # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
-
- """Math helper functions."""
-
- from __future__ import with_statement
-
-
- from itertools import chain
- import logging
- import math
-
- from gensim import utils
-
- import numpy as np
- import scipy.sparse
- from scipy.stats import entropy
- import scipy.linalg
- from scipy.linalg.lapack import get_lapack_funcs
- from scipy.linalg.special_matrices import triu
- from scipy.special import psi # gamma function utils
-
- from six import iteritems, itervalues, string_types
- from six.moves import xrange, zip as izip
-
-
- logger = logging.getLogger(__name__)
-
-
- def blas(name, ndarray):
- """Helper for getting the appropriate BLAS function, using :func:`scipy.linalg.get_blas_funcs`.
-
- Parameters
- ----------
- name : str
- Name(s) of BLAS functions, without the type prefix.
- ndarray : numpy.ndarray
- Arrays can be given to determine optimal prefix of BLAS routines.
-
- Returns
- -------
- object
- BLAS function for the needed operation on the given data type.
-
- """
- return scipy.linalg.get_blas_funcs((name,), (ndarray,))[0]
-
-
- def argsort(x, topn=None, reverse=False):
- """Efficiently calculate indices of the `topn` smallest elements in array `x`.
-
- Parameters
- ----------
- x : array_like
- Array to get the smallest element indices from.
- topn : int, optional
- Number of indices of the smallest (greatest) elements to be returned.
- If not given, indices of all elements will be returned in ascending (descending) order.
- reverse : bool, optional
- Return the `topn` greatest elements in descending order,
- instead of smallest elements in ascending order?
-
- Returns
- -------
- numpy.ndarray
- Array of `topn` indices that sort the array in the requested order.
-
- """
- x = np.asarray(x) # unify code path for when `x` is not a np array (list, tuple...)
- if topn is None:
- topn = x.size
- if topn <= 0:
- return []
- if reverse:
- x = -x
- if topn >= x.size or not hasattr(np, 'argpartition'):
- return np.argsort(x)[:topn]
- # np >= 1.8 has a fast partial argsort, use that!
- most_extreme = np.argpartition(x, topn)[:topn]
- return most_extreme.take(np.argsort(x.take(most_extreme))) # resort topn into order
-
-
- def corpus2csc(corpus, num_terms=None, dtype=np.float64, num_docs=None, num_nnz=None, printprogress=0):
- """Convert a streamed corpus in bag-of-words format into a sparse matrix `scipy.sparse.csc_matrix`,
- with documents as columns.
-
- Notes
- -----
- If the number of terms, documents and non-zero elements is known, you can pass
- them here as parameters and a (much) more memory efficient code path will be taken.
-
- Parameters
- ----------
- corpus : iterable of iterable of (int, number)
- Input corpus in BoW format
- num_terms : int, optional
- Number of terms in `corpus`. If provided, the `corpus.num_terms` attribute (if any) will be ignored.
- dtype : data-type, optional
- Data type of output CSC matrix.
- num_docs : int, optional
- Number of documents in `corpus`. If provided, the `corpus.num_docs` attribute (in any) will be ignored.
- num_nnz : int, optional
- Number of non-zero elements in `corpus`. If provided, the `corpus.num_nnz` attribute (if any) will be ignored.
- printprogress : int, optional
- Log a progress message at INFO level once every `printprogress` documents. 0 to turn off progress logging.
-
- Returns
- -------
- scipy.sparse.csc_matrix
- `corpus` converted into a sparse CSC matrix.
-
- See Also
- --------
- :class:`~gensim.matutils.Sparse2Corpus`
- Convert sparse format to Gensim corpus format.
-
- """
- try:
- # if the input corpus has the `num_nnz`, `num_docs` and `num_terms` attributes
- # (as is the case with MmCorpus for example), we can use a more efficient code path
- if num_terms is None:
- num_terms = corpus.num_terms
- if num_docs is None:
- num_docs = corpus.num_docs
- if num_nnz is None:
- num_nnz = corpus.num_nnz
- except AttributeError:
- pass # not a MmCorpus...
- if printprogress:
- logger.info("creating sparse matrix from corpus")
- if num_terms is not None and num_docs is not None and num_nnz is not None:
- # faster and much more memory-friendly version of creating the sparse csc
- posnow, indptr = 0, [0]
- indices = np.empty((num_nnz,), dtype=np.int32) # HACK assume feature ids fit in 32bit integer
- data = np.empty((num_nnz,), dtype=dtype)
- for docno, doc in enumerate(corpus):
- if printprogress and docno % printprogress == 0:
- logger.info("PROGRESS: at document #%i/%i", docno, num_docs)
- posnext = posnow + len(doc)
- indices[posnow: posnext] = [feature_id for feature_id, _ in doc]
- data[posnow: posnext] = [feature_weight for _, feature_weight in doc]
- indptr.append(posnext)
- posnow = posnext
- assert posnow == num_nnz, "mismatch between supplied and computed number of non-zeros"
- result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype)
- else:
- # slower version; determine the sparse matrix parameters during iteration
- num_nnz, data, indices, indptr = 0, [], [], [0]
- for docno, doc in enumerate(corpus):
- if printprogress and docno % printprogress == 0:
- logger.info("PROGRESS: at document #%i", docno)
- indices.extend([feature_id for feature_id, _ in doc])
- data.extend([feature_weight for _, feature_weight in doc])
- num_nnz += len(doc)
- indptr.append(num_nnz)
- if num_terms is None:
- num_terms = max(indices) + 1 if indices else 0
- num_docs = len(indptr) - 1
- # now num_docs, num_terms and num_nnz contain the correct values
- data = np.asarray(data, dtype=dtype)
- indices = np.asarray(indices)
- result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype)
- return result
-
-
- def pad(mat, padrow, padcol):
- """Add additional rows/columns to `mat`. The new rows/columns will be initialized with zeros.
-
- Parameters
- ----------
- mat : numpy.ndarray
- Input 2D matrix
- padrow : int
- Number of additional rows
- padcol : int
- Number of additional columns
-
- Returns
- -------
- numpy.matrixlib.defmatrix.matrix
- Matrix with needed padding.
-
- """
- if padrow < 0:
- padrow = 0
- if padcol < 0:
- padcol = 0
- rows, cols = mat.shape
- return np.bmat([
- [mat, np.matrix(np.zeros((rows, padcol)))],
- [np.matrix(np.zeros((padrow, cols + padcol)))],
- ])
-
-
- def zeros_aligned(shape, dtype, order='C', align=128):
- """Get array aligned at `align` byte boundary in memory.
-
- Parameters
- ----------
- shape : int or (int, int)
- Shape of array.
- dtype : data-type
- Data type of array.
- order : {'C', 'F'}, optional
- Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory.
- align : int, optional
- Boundary for alignment in bytes.
-
- Returns
- -------
- numpy.ndarray
- Aligned array.
-
- """
- nbytes = np.prod(shape, dtype=np.int64) * np.dtype(dtype).itemsize
- buffer = np.zeros(nbytes + align, dtype=np.uint8) # problematic on win64 ("maximum allowed dimension exceeded")
- start_index = -buffer.ctypes.data % align
- return buffer[start_index: start_index + nbytes].view(dtype).reshape(shape, order=order)
-
-
- def ismatrix(m):
- """Check whether `m` is a 2D `numpy.ndarray` or `scipy.sparse` matrix.
-
- Parameters
- ----------
- m : object
- Object to check.
-
- Returns
- -------
- bool
- Is `m` a 2D `numpy.ndarray` or `scipy.sparse` matrix.
-
- """
- return isinstance(m, np.ndarray) and m.ndim == 2 or scipy.sparse.issparse(m)
-
-
- def any2sparse(vec, eps=1e-9):
- """Convert a numpy.ndarray or `scipy.sparse` vector into the Gensim bag-of-words format.
-
- Parameters
- ----------
- vec : {`numpy.ndarray`, `scipy.sparse`}
- Input vector
- eps : float, optional
- Value used for threshold, all coordinates less than `eps` will not be presented in result.
-
- Returns
- -------
- list of (int, float)
- Vector in BoW format.
-
- """
- if isinstance(vec, np.ndarray):
- return dense2vec(vec, eps)
- if scipy.sparse.issparse(vec):
- return scipy2sparse(vec, eps)
- return [(int(fid), float(fw)) for fid, fw in vec if np.abs(fw) > eps]
-
-
- def scipy2scipy_clipped(matrix, topn, eps=1e-9):
- """Get the 'topn' elements of the greatest magnitude (absolute value) from a `scipy.sparse` vector or matrix.
-
- Parameters
- ----------
- matrix : `scipy.sparse`
- Input vector or matrix (1D or 2D sparse array).
- topn : int
- Number of greatest elements, in absolute value, to return.
- eps : float
- Ignored.
-
- Returns
- -------
- `scipy.sparse.csr.csr_matrix`
- Clipped matrix.
-
- """
- if not scipy.sparse.issparse(matrix):
- raise ValueError("'%s' is not a scipy sparse vector." % matrix)
- if topn <= 0:
- return scipy.sparse.csr_matrix([])
- # Return clipped sparse vector if input is a sparse vector.
- if matrix.shape[0] == 1:
- # use np.argpartition/argsort and only form tuples that are actually returned.
- biggest = argsort(abs(matrix.data), topn, reverse=True)
- indices, data = matrix.indices.take(biggest), matrix.data.take(biggest)
- return scipy.sparse.csr_matrix((data, indices, [0, len(indices)]))
- # Return clipped sparse matrix if input is a matrix, processing row by row.
- else:
- matrix_indices = []
- matrix_data = []
- matrix_indptr = [0]
- # calling abs() on entire matrix once is faster than calling abs() iteratively for each row
- matrix_abs = abs(matrix)
- for i in range(matrix.shape[0]):
- v = matrix.getrow(i)
- v_abs = matrix_abs.getrow(i)
- # Sort and clip each row vector first.
- biggest = argsort(v_abs.data, topn, reverse=True)
- indices, data = v.indices.take(biggest), v.data.take(biggest)
- # Store the topn indices and values of each row vector.
- matrix_data.append(data)
- matrix_indices.append(indices)
- matrix_indptr.append(matrix_indptr[-1] + min(len(indices), topn))
- matrix_indices = np.concatenate(matrix_indices).ravel()
- matrix_data = np.concatenate(matrix_data).ravel()
- # Instantiate and return a sparse csr_matrix which preserves the order of indices/data.
- return scipy.sparse.csr.csr_matrix(
- (matrix_data, matrix_indices, matrix_indptr),
- shape=(matrix.shape[0], np.max(matrix_indices) + 1)
- )
-
-
- def scipy2sparse(vec, eps=1e-9):
- """Convert a scipy.sparse vector into the Gensim bag-of-words format.
-
- Parameters
- ----------
- vec : `scipy.sparse`
- Sparse vector.
-
- eps : float, optional
- Value used for threshold, all coordinates less than `eps` will not be presented in result.
-
- Returns
- -------
- list of (int, float)
- Vector in Gensim bag-of-words format.
-
- """
- vec = vec.tocsr()
- assert vec.shape[0] == 1
- return [(int(pos), float(val)) for pos, val in zip(vec.indices, vec.data) if np.abs(val) > eps]
-
-
- class Scipy2Corpus(object):
- """Convert a sequence of dense/sparse vectors into a streamed Gensim corpus object.
-
- See Also
- --------
- :func:`~gensim.matutils.corpus2csc`
- Convert corpus in Gensim format to `scipy.sparse.csc` matrix.
-
- """
- def __init__(self, vecs):
- """
-
- Parameters
- ----------
- vecs : iterable of {`numpy.ndarray`, `scipy.sparse`}
- Input vectors.
-
- """
- self.vecs = vecs
-
- def __iter__(self):
- for vec in self.vecs:
- if isinstance(vec, np.ndarray):
- yield full2sparse(vec)
- else:
- yield scipy2sparse(vec)
-
- def __len__(self):
- return len(self.vecs)
-
-
- def sparse2full(doc, length):
- """Convert a document in Gensim bag-of-words format into a dense numpy array.
-
- Parameters
- ----------
- doc : list of (int, number)
- Document in BoW format.
- length : int
- Vector dimensionality. This cannot be inferred from the BoW, and you must supply it explicitly.
- This is typically the vocabulary size or number of topics, depending on how you created `doc`.
-
- Returns
- -------
- numpy.ndarray
- Dense numpy vector for `doc`.
-
- See Also
- --------
- :func:`~gensim.matutils.full2sparse`
- Convert dense array to gensim bag-of-words format.
-
- """
- result = np.zeros(length, dtype=np.float32) # fill with zeroes (default value)
- # convert indices to int as numpy 1.12 no longer indexes by floats
- doc = ((int(id_), float(val_)) for (id_, val_) in doc)
-
- doc = dict(doc)
- # overwrite some of the zeroes with explicit values
- result[list(doc)] = list(itervalues(doc))
- return result
-
-
- def full2sparse(vec, eps=1e-9):
- """Convert a dense numpy array into the Gensim bag-of-words format.
-
- Parameters
- ----------
- vec : numpy.ndarray
- Dense input vector.
- eps : float
- Feature weight threshold value. Features with `abs(weight) < eps` are considered sparse and
- won't be included in the BOW result.
-
- Returns
- -------
- list of (int, float)
- BoW format of `vec`, with near-zero values omitted (sparse vector).
-
- See Also
- --------
- :func:`~gensim.matutils.sparse2full`
- Convert a document in Gensim bag-of-words format into a dense numpy array.
-
- """
- vec = np.asarray(vec, dtype=float)
- nnz = np.nonzero(abs(vec) > eps)[0]
- return list(zip(nnz, vec.take(nnz)))
-
-
- dense2vec = full2sparse
-
-
- def full2sparse_clipped(vec, topn, eps=1e-9):
- """Like :func:`~gensim.matutils.full2sparse`, but only return the `topn` elements of the greatest magnitude (abs).
-
- This is more efficient that sorting a vector and then taking the greatest values, especially
- where `len(vec) >> topn`.
-
- Parameters
- ----------
- vec : numpy.ndarray
- Input dense vector
- topn : int
- Number of greatest (abs) elements that will be presented in result.
- eps : float
- Threshold value, if coordinate in `vec` < eps, this will not be presented in result.
-
- Returns
- -------
- list of (int, float)
- Clipped vector in BoW format.
-
- See Also
- --------
- :func:`~gensim.matutils.full2sparse`
- Convert dense array to gensim bag-of-words format.
-
- """
- # use np.argpartition/argsort and only form tuples that are actually returned.
- # this is about 40x faster than explicitly forming all 2-tuples to run sort() or heapq.nlargest() on.
- if topn <= 0:
- return []
- vec = np.asarray(vec, dtype=float)
- nnz = np.nonzero(abs(vec) > eps)[0]
- biggest = nnz.take(argsort(abs(vec).take(nnz), topn, reverse=True))
- return list(zip(biggest, vec.take(biggest)))
-
-
- def corpus2dense(corpus, num_terms, num_docs=None, dtype=np.float32):
- """Convert corpus into a dense numpy 2D array, with documents as columns.
-
- Parameters
- ----------
- corpus : iterable of iterable of (int, number)
- Input corpus in the Gensim bag-of-words format.
- num_terms : int
- Number of terms in the dictionary. X-axis of the resulting matrix.
- num_docs : int, optional
- Number of documents in the corpus. If provided, a slightly more memory-efficient code path is taken.
- Y-axis of the resulting matrix.
- dtype : data-type, optional
- Data type of the output matrix.
-
- Returns
- -------
- numpy.ndarray
- Dense 2D array that presents `corpus`.
-
- See Also
- --------
- :class:`~gensim.matutils.Dense2Corpus`
- Convert dense matrix to Gensim corpus format.
-
- """
- if num_docs is not None:
- # we know the number of documents => don't bother column_stacking
- docno, result = -1, np.empty((num_terms, num_docs), dtype=dtype)
- for docno, doc in enumerate(corpus):
- result[:, docno] = sparse2full(doc, num_terms)
- assert docno + 1 == num_docs
- else:
- result = np.column_stack(sparse2full(doc, num_terms) for doc in corpus)
- return result.astype(dtype)
-
-
- class Dense2Corpus(object):
- """Treat dense numpy array as a streamed Gensim corpus in the bag-of-words format.
-
- Notes
- -----
- No data copy is made (changes to the underlying matrix imply changes in the streamed corpus).
-
- See Also
- --------
- :func:`~gensim.matutils.corpus2dense`
- Convert Gensim corpus to dense matrix.
- :class:`~gensim.matutils.Sparse2Corpus`
- Convert sparse matrix to Gensim corpus format.
-
- """
- def __init__(self, dense, documents_columns=True):
- """
-
- Parameters
- ----------
- dense : numpy.ndarray
- Corpus in dense format.
- documents_columns : bool, optional
- Documents in `dense` represented as columns, as opposed to rows?
-
- """
- if documents_columns:
- self.dense = dense.T
- else:
- self.dense = dense
-
- def __iter__(self):
- """Iterate over the corpus.
-
- Yields
- ------
- list of (int, float)
- Document in BoW format.
-
- """
- for doc in self.dense:
- yield full2sparse(doc.flat)
-
- def __len__(self):
- return len(self.dense)
-
-
- class Sparse2Corpus(object):
- """Convert a matrix in scipy.sparse format into a streaming Gensim corpus.
-
- See Also
- --------
- :func:`~gensim.matutils.corpus2csc`
- Convert gensim corpus format to `scipy.sparse.csc` matrix
- :class:`~gensim.matutils.Dense2Corpus`
- Convert dense matrix to gensim corpus.
-
- """
- def __init__(self, sparse, documents_columns=True):
- """
-
- Parameters
- ----------
- sparse : `scipy.sparse`
- Corpus scipy sparse format
- documents_columns : bool, optional
- Documents will be column?
-
- """
- if documents_columns:
- self.sparse = sparse.tocsc()
- else:
- self.sparse = sparse.tocsr().T # make sure shape[1]=number of docs (needed in len())
-
- def __iter__(self):
- """
-
- Yields
- ------
- list of (int, float)
- Document in BoW format.
-
- """
- for indprev, indnow in izip(self.sparse.indptr, self.sparse.indptr[1:]):
- yield list(zip(self.sparse.indices[indprev:indnow], self.sparse.data[indprev:indnow]))
-
- def __len__(self):
- return self.sparse.shape[1]
-
- def __getitem__(self, document_index):
- """Retrieve a document vector from the corpus by its index.
-
- Parameters
- ----------
- document_index : int
- Index of document
-
- Returns
- -------
- list of (int, number)
- Document in BoW format.
-
- """
- indprev = self.sparse.indptr[document_index]
- indnow = self.sparse.indptr[document_index + 1]
- return list(zip(self.sparse.indices[indprev:indnow], self.sparse.data[indprev:indnow]))
-
-
- def veclen(vec):
- """Calculate L2 (euclidean) length of a vector.
-
- Parameters
- ----------
- vec : list of (int, number)
- Input vector in sparse bag-of-words format.
-
- Returns
- -------
- float
- Length of `vec`.
-
- """
- if len(vec) == 0:
- return 0.0
- length = 1.0 * math.sqrt(sum(val**2 for _, val in vec))
- assert length > 0.0, "sparse documents must not contain any explicit zero entries"
- return length
-
-
- def ret_normalized_vec(vec, length):
- """Normalize a vector in L2 (Euclidean unit norm).
-
- Parameters
- ----------
- vec : list of (int, number)
- Input vector in BoW format.
- length : float
- Length of vector
-
- Returns
- -------
- list of (int, number)
- L2-normalized vector in BoW format.
-
- """
- if length != 1.0:
- return [(termid, val / length) for termid, val in vec]
- else:
- return list(vec)
-
-
- def ret_log_normalize_vec(vec, axis=1):
- log_max = 100.0
- if len(vec.shape) == 1:
- max_val = np.max(vec)
- log_shift = log_max - np.log(len(vec) + 1.0) - max_val
- tot = np.sum(np.exp(vec + log_shift))
- log_norm = np.log(tot) - log_shift
- vec -= log_norm
- else:
- if axis == 1: # independently normalize each sample
- max_val = np.max(vec, 1)
- log_shift = log_max - np.log(vec.shape[1] + 1.0) - max_val
- tot = np.sum(np.exp(vec + log_shift[:, np.newaxis]), 1)
- log_norm = np.log(tot) - log_shift
- vec = vec - log_norm[:, np.newaxis]
- elif axis == 0: # normalize each feature
- k = ret_log_normalize_vec(vec.T)
- return k[0].T, k[1]
- else:
- raise ValueError("'%s' is not a supported axis" % axis)
- return vec, log_norm
-
-
- blas_nrm2 = blas('nrm2', np.array([], dtype=float))
- blas_scal = blas('scal', np.array([], dtype=float))
-
-
- def unitvec(vec, norm='l2', return_norm=False):
- """Scale a vector to unit length.
-
- Parameters
- ----------
- vec : {numpy.ndarray, scipy.sparse, list of (int, float)}
- Input vector in any format
- norm : {'l1', 'l2'}, optional
- Metric to normalize in.
- return_norm : bool, optional
- Return the length of vector `vec`, in addition to the normalized vector itself?
-
- Returns
- -------
- numpy.ndarray, scipy.sparse, list of (int, float)}
- Normalized vector in same format as `vec`.
- float
- Length of `vec` before normalization, if `return_norm` is set.
-
- Notes
- -----
- Zero-vector will be unchanged.
-
- """
- if norm not in ('l1', 'l2'):
- raise ValueError("'%s' is not a supported norm. Currently supported norms are 'l1' and 'l2'." % norm)
-
- if scipy.sparse.issparse(vec):
- vec = vec.tocsr()
- if norm == 'l1':
- veclen = np.sum(np.abs(vec.data))
- if norm == 'l2':
- veclen = np.sqrt(np.sum(vec.data ** 2))
- if veclen > 0.0:
- if np.issubdtype(vec.dtype, np.int):
- vec = vec.astype(np.float)
- vec /= veclen
- if return_norm:
- return vec, veclen
- else:
- return vec
- else:
- if return_norm:
- return vec, 1.
- else:
- return vec
-
- if isinstance(vec, np.ndarray):
- if norm == 'l1':
- veclen = np.sum(np.abs(vec))
- if norm == 'l2':
- veclen = blas_nrm2(vec)
- if veclen > 0.0:
- if np.issubdtype(vec.dtype, np.int):
- vec = vec.astype(np.float)
- if return_norm:
- return blas_scal(1.0 / veclen, vec).astype(vec.dtype), veclen
- else:
- return blas_scal(1.0 / veclen, vec).astype(vec.dtype)
- else:
- if return_norm:
- return vec, 1
- else:
- return vec
-
- try:
- first = next(iter(vec)) # is there at least one element?
- except StopIteration:
- return vec
-
- if isinstance(first, (tuple, list)) and len(first) == 2: # gensim sparse format
- if norm == 'l1':
- length = float(sum(abs(val) for _, val in vec))
- if norm == 'l2':
- length = 1.0 * math.sqrt(sum(val ** 2 for _, val in vec))
- assert length > 0.0, "sparse documents must not contain any explicit zero entries"
- if return_norm:
- return ret_normalized_vec(vec, length), length
- else:
- return ret_normalized_vec(vec, length)
- else:
- raise ValueError("unknown input type")
-
-
- def cossim(vec1, vec2):
- """Get cosine similarity between two sparse vectors.
-
- Cosine similarity is a number between `<-1.0, 1.0>`, higher means more similar.
-
- Parameters
- ----------
- vec1 : list of (int, float)
- Vector in BoW format.
- vec2 : list of (int, float)
- Vector in BoW format.
-
- Returns
- -------
- float
- Cosine similarity between `vec1` and `vec2`.
-
- """
- vec1, vec2 = dict(vec1), dict(vec2)
- if not vec1 or not vec2:
- return 0.0
- vec1len = 1.0 * math.sqrt(sum(val * val for val in itervalues(vec1)))
- vec2len = 1.0 * math.sqrt(sum(val * val for val in itervalues(vec2)))
- assert vec1len > 0.0 and vec2len > 0.0, "sparse documents must not contain any explicit zero entries"
- if len(vec2) < len(vec1):
- vec1, vec2 = vec2, vec1 # swap references so that we iterate over the shorter vector
- result = sum(value * vec2.get(index, 0.0) for index, value in iteritems(vec1))
- result /= vec1len * vec2len # rescale by vector lengths
- return result
-
-
- def softcossim(vec1, vec2, similarity_matrix):
- """Get Soft Cosine Measure between two vectors given a term similarity matrix.
-
- Return Soft Cosine Measure between two sparse vectors given a sparse term similarity matrix
- in the :class:`scipy.sparse.csc_matrix` format. The similarity is a number between `<-1.0, 1.0>`,
- higher is more similar.
-
- Notes
- -----
- Soft Cosine Measure was perhaps first defined by `Grigori Sidorov et al.,
- "Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model"
- <http://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2043/1921>`_.
-
- Parameters
- ----------
- vec1 : list of (int, float)
- A query vector in the BoW format.
- vec2 : list of (int, float)
- A document vector in the BoW format.
- similarity_matrix : {:class:`scipy.sparse.csc_matrix`, :class:`scipy.sparse.csr_matrix`}
- A term similarity matrix, typically produced by
- :meth:`~gensim.models.keyedvectors.WordEmbeddingsKeyedVectors.similarity_matrix`.
-
- Returns
- -------
- `similarity_matrix.dtype`
- The Soft Cosine Measure between `vec1` and `vec2`.
-
- Raises
- ------
- ValueError
- When the term similarity matrix is in an unknown format.
-
- See Also
- --------
- :meth:`gensim.models.keyedvectors.WordEmbeddingsKeyedVectors.similarity_matrix`
- A term similarity matrix produced from term embeddings.
- :class:`gensim.similarities.docsim.SoftCosineSimilarity`
- A class for performing corpus-based similarity queries with Soft Cosine Measure.
-
- """
- if not isinstance(similarity_matrix, scipy.sparse.csc_matrix):
- if isinstance(similarity_matrix, scipy.sparse.csr_matrix):
- similarity_matrix = similarity_matrix.T
- else:
- raise ValueError('unknown similarity matrix format')
-
- if not vec1 or not vec2:
- return 0.0
-
- vec1 = dict(vec1)
- vec2 = dict(vec2)
- word_indices = sorted(set(chain(vec1, vec2)))
- dtype = similarity_matrix.dtype
- vec1 = np.array([vec1[i] if i in vec1 else 0 for i in word_indices], dtype=dtype)
- vec2 = np.array([vec2[i] if i in vec2 else 0 for i in word_indices], dtype=dtype)
- dense_matrix = similarity_matrix[[[i] for i in word_indices], word_indices].todense()
- vec1len = vec1.T.dot(dense_matrix).dot(vec1)[0, 0]
- vec2len = vec2.T.dot(dense_matrix).dot(vec2)[0, 0]
-
- assert \
- vec1len > 0.0 and vec2len > 0.0, \
- u"sparse documents must not contain any explicit zero entries and the similarity matrix S " \
- u"must satisfy x^T * S * x > 0 for any nonzero bag-of-words vector x."
-
- result = vec1.T.dot(dense_matrix).dot(vec2)[0, 0]
- result /= math.sqrt(vec1len) * math.sqrt(vec2len) # rescale by vector lengths
- return np.clip(result, -1.0, 1.0)
-
-
- def isbow(vec):
- """Checks if a vector is in the sparse Gensim bag-of-words format.
-
- Parameters
- ----------
- vec : object
- Object to check.
-
- Returns
- -------
- bool
- Is `vec` in BoW format.
-
- """
- if scipy.sparse.issparse(vec):
- vec = vec.todense().tolist()
- try:
- id_, val_ = vec[0] # checking first value to see if it is in bag of words format by unpacking
- int(id_), float(val_)
- except IndexError:
- return True # this is to handle the empty input case
- except (ValueError, TypeError):
- return False
- return True
-
-
- def _convert_vec(vec1, vec2, num_features=None):
- if scipy.sparse.issparse(vec1):
- vec1 = vec1.toarray()
- if scipy.sparse.issparse(vec2):
- vec2 = vec2.toarray() # converted both the vectors to dense in case they were in sparse matrix
- if isbow(vec1) and isbow(vec2): # if they are in bag of words format we make it dense
- if num_features is not None: # if not None, make as large as the documents drawing from
- dense1 = sparse2full(vec1, num_features)
- dense2 = sparse2full(vec2, num_features)
- return dense1, dense2
- else:
- max_len = max(len(vec1), len(vec2))
- dense1 = sparse2full(vec1, max_len)
- dense2 = sparse2full(vec2, max_len)
- return dense1, dense2
- else:
- # this conversion is made because if it is not in bow format, it might be a list within a list after conversion
- # the scipy implementation of Kullback fails in such a case so we pick up only the nested list.
- if len(vec1) == 1:
- vec1 = vec1[0]
- if len(vec2) == 1:
- vec2 = vec2[0]
- return vec1, vec2
-
-
- def kullback_leibler(vec1, vec2, num_features=None):
- """Calculate Kullback-Leibler distance between two probability distributions using `scipy.stats.entropy`.
-
- Parameters
- ----------
- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- num_features : int, optional
- Number of features in the vectors.
-
- Returns
- -------
- float
- Kullback-Leibler distance between `vec1` and `vec2`.
- Value in range [0, +∞) where values closer to 0 mean less distance (higher similarity).
-
- """
- vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features)
- return entropy(vec1, vec2)
-
-
- def jensen_shannon(vec1, vec2, num_features=None):
- """Calculate Jensen-Shannon distance between two probability distributions using `scipy.stats.entropy`.
-
- Parameters
- ----------
- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- num_features : int, optional
- Number of features in the vectors.
-
- Returns
- -------
- float
- Jensen-Shannon distance between `vec1` and `vec2`.
-
- Notes
- -----
- This is a symmetric and finite "version" of :func:`gensim.matutils.kullback_leibler`.
-
- """
- vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features)
- avg_vec = 0.5 * (vec1 + vec2)
- return 0.5 * (entropy(vec1, avg_vec) + entropy(vec2, avg_vec))
-
-
- def hellinger(vec1, vec2):
- """Calculate Hellinger distance between two probability distributions.
-
- Parameters
- ----------
- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
-
- Returns
- -------
- float
- Hellinger distance between `vec1` and `vec2`.
- Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
-
- """
- if scipy.sparse.issparse(vec1):
- vec1 = vec1.toarray()
- if scipy.sparse.issparse(vec2):
- vec2 = vec2.toarray()
- if isbow(vec1) and isbow(vec2):
- # if it is a BoW format, instead of converting to dense we use dictionaries to calculate appropriate distance
- vec1, vec2 = dict(vec1), dict(vec2)
- indices = set(list(vec1.keys()) + list(vec2.keys()))
- sim = np.sqrt(
- 0.5 * sum((np.sqrt(vec1.get(index, 0.0)) - np.sqrt(vec2.get(index, 0.0)))**2 for index in indices)
- )
- return sim
- else:
- sim = np.sqrt(0.5 * ((np.sqrt(vec1) - np.sqrt(vec2))**2).sum())
- return sim
-
-
- def jaccard(vec1, vec2):
- """Calculate Jaccard distance between two vectors.
-
- Parameters
- ----------
- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
- vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
- Distribution vector.
-
- Returns
- -------
- float
- Jaccard distance between `vec1` and `vec2`.
- Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
-
- """
-
- # converting from sparse for easier manipulation
- if scipy.sparse.issparse(vec1):
- vec1 = vec1.toarray()
- if scipy.sparse.issparse(vec2):
- vec2 = vec2.toarray()
- if isbow(vec1) and isbow(vec2):
- # if it's in bow format, we use the following definitions:
- # union = sum of the 'weights' of both the bags
- # intersection = lowest weight for a particular id; basically the number of common words or items
- union = sum(weight for id_, weight in vec1) + sum(weight for id_, weight in vec2)
- vec1, vec2 = dict(vec1), dict(vec2)
- intersection = 0.0
- for feature_id, feature_weight in iteritems(vec1):
- intersection += min(feature_weight, vec2.get(feature_id, 0.0))
- return 1 - float(intersection) / float(union)
- else:
- # if it isn't in bag of words format, we can use sets to calculate intersection and union
- if isinstance(vec1, np.ndarray):
- vec1 = vec1.tolist()
- if isinstance(vec2, np.ndarray):
- vec2 = vec2.tolist()
- vec1 = set(vec1)
- vec2 = set(vec2)
- intersection = vec1 & vec2
- union = vec1 | vec2
- return 1 - float(len(intersection)) / float(len(union))
-
-
- def jaccard_distance(set1, set2):
- """Calculate Jaccard distance between two sets.
-
- Parameters
- ----------
- set1 : set
- Input set.
- set2 : set
- Input set.
-
- Returns
- -------
- float
- Jaccard distance between `set1` and `set2`.
- Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
- """
-
- union_cardinality = len(set1 | set2)
- if union_cardinality == 0: # Both sets are empty
- return 1.
-
- return 1. - float(len(set1 & set2)) / float(union_cardinality)
-
-
- try:
- # try to load fast, cythonized code if possible
- from gensim._matutils import logsumexp, mean_absolute_difference, dirichlet_expectation
-
- except ImportError:
- def logsumexp(x):
- """Log of sum of exponentials.
-
- Parameters
- ----------
- x : numpy.ndarray
- Input 2d matrix.
-
- Returns
- -------
- float
- log of sum of exponentials of elements in `x`.
-
- Warnings
- --------
- For performance reasons, doesn't support NaNs or 1d, 3d, etc arrays like :func:`scipy.special.logsumexp`.
-
- """
- x_max = np.max(x)
- x = np.log(np.sum(np.exp(x - x_max)))
- x += x_max
-
- return x
-
- def mean_absolute_difference(a, b):
- """Mean absolute difference between two arrays.
-
- Parameters
- ----------
- a : numpy.ndarray
- Input 1d array.
- b : numpy.ndarray
- Input 1d array.
-
- Returns
- -------
- float
- mean(abs(a - b)).
-
- """
- return np.mean(np.abs(a - b))
-
- def dirichlet_expectation(alpha):
- """Expected value of log(theta) where theta is drawn from a Dirichlet distribution.
-
- Parameters
- ----------
- alpha : numpy.ndarray
- Dirichlet parameter 2d matrix or 1d vector, if 2d - each row is treated as a separate parameter vector.
-
- Returns
- -------
- numpy.ndarray
- Log of expected values, dimension same as `alpha.ndim`.
-
- """
- if len(alpha.shape) == 1:
- result = psi(alpha) - psi(np.sum(alpha))
- else:
- result = psi(alpha) - psi(np.sum(alpha, 1))[:, np.newaxis]
- return result.astype(alpha.dtype, copy=False) # keep the same precision as input
-
-
- def qr_destroy(la):
- """Get QR decomposition of `la[0]`.
-
- Parameters
- ----------
- la : list of numpy.ndarray
- Run QR decomposition on the first elements of `la`. Must not be empty.
-
- Returns
- -------
- (numpy.ndarray, numpy.ndarray)
- Matrices :math:`Q` and :math:`R`.
-
- Notes
- -----
- Using this function is less memory intense than calling `scipy.linalg.qr(la[0])`,
- because the memory used in `la[0]` is reclaimed earlier. This makes a difference when
- decomposing very large arrays, where every memory copy counts.
-
- Warnings
- --------
- Content of `la` as well as `la[0]` gets destroyed in the process. Again, for memory-effiency reasons.
-
- """
- a = np.asfortranarray(la[0])
- del la[0], la # now `a` is the only reference to the input matrix
- m, n = a.shape
- # perform q, r = QR(a); code hacked out of scipy.linalg.qr
- logger.debug("computing QR of %s dense matrix", str(a.shape))
- geqrf, = get_lapack_funcs(('geqrf',), (a,))
- qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True)
- qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True)
- del a # free up mem
- assert info >= 0
- r = triu(qr[:n, :n])
- if m < n: # rare case, #features < #topics
- qr = qr[:, :m] # retains fortran order
- gorgqr, = get_lapack_funcs(('orgqr',), (qr,))
- q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True)
- q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True)
- assert info >= 0, "qr failed"
- assert q.flags.f_contiguous
- return q, r
-
-
- class MmWriter(object):
- """Store a corpus in `Matrix Market format <https://math.nist.gov/MatrixMarket/formats.html>`_,
- using :class:`~gensim.corpora.mmcorpus.MmCorpus`.
-
- Notes
- -----
- The output is written one document at a time, not the whole matrix at once (unlike e.g. `scipy.io.mmread`).
- This allows you to write corpora which are larger than the available RAM.
-
- The output file is created in a single pass through the input corpus, so that the input can be
- a once-only stream (generator).
-
- To achieve this, a fake MM header is written first, corpus statistics are collected
- during the pass (shape of the matrix, number of non-zeroes), followed by a seek back to the beginning of the file,
- rewriting the fake header with the final values.
-
- """
- HEADER_LINE = b'%%MatrixMarket matrix coordinate real general\n' # the only supported MM format
-
- def __init__(self, fname):
- """
-
- Parameters
- ----------
- fname : str
- Path to output file.
-
- """
- self.fname = fname
- if fname.endswith(".gz") or fname.endswith('.bz2'):
- raise NotImplementedError("compressed output not supported with MmWriter")
- self.fout = utils.smart_open(self.fname, 'wb+') # open for both reading and writing
- self.headers_written = False
-
- def write_headers(self, num_docs, num_terms, num_nnz):
- """Write headers to file.
-
- Parameters
- ----------
- num_docs : int
- Number of documents in corpus.
- num_terms : int
- Number of term in corpus.
- num_nnz : int
- Number of non-zero elements in corpus.
-
- """
- self.fout.write(MmWriter.HEADER_LINE)
-
- if num_nnz < 0:
- # we don't know the matrix shape/density yet, so only log a general line
- logger.info("saving sparse matrix to %s", self.fname)
- self.fout.write(utils.to_utf8(' ' * 50 + '\n')) # 48 digits must be enough for everybody
- else:
- logger.info(
- "saving sparse %sx%s matrix with %i non-zero entries to %s",
- num_docs, num_terms, num_nnz, self.fname
- )
- self.fout.write(utils.to_utf8('%s %s %s\n' % (num_docs, num_terms, num_nnz)))
- self.last_docno = -1
- self.headers_written = True
-
- def fake_headers(self, num_docs, num_terms, num_nnz):
- """Write "fake" headers to file, to be rewritten once we've scanned the entire corpus.
-
- Parameters
- ----------
- num_docs : int
- Number of documents in corpus.
- num_terms : int
- Number of term in corpus.
- num_nnz : int
- Number of non-zero elements in corpus.
-
- """
- stats = '%i %i %i' % (num_docs, num_terms, num_nnz)
- if len(stats) > 50:
- raise ValueError('Invalid stats: matrix too large!')
- self.fout.seek(len(MmWriter.HEADER_LINE))
- self.fout.write(utils.to_utf8(stats))
-
- def write_vector(self, docno, vector):
- """Write a single sparse vector to the file.
-
- Parameters
- ----------
- docno : int
- Number of document.
- vector : list of (int, number)
- Document in BoW format.
-
- Returns
- -------
- (int, int)
- Max word index in vector and len of vector. If vector is empty, return (-1, 0).
-
- """
- assert self.headers_written, "must write Matrix Market file headers before writing data!"
- assert self.last_docno < docno, "documents %i and %i not in sequential order!" % (self.last_docno, docno)
- vector = sorted((i, w) for i, w in vector if abs(w) > 1e-12) # ignore near-zero entries
- for termid, weight in vector: # write term ids in sorted order
- # +1 because MM format starts counting from 1
- self.fout.write(utils.to_utf8("%i %i %s\n" % (docno + 1, termid + 1, weight)))
- self.last_docno = docno
- return (vector[-1][0], len(vector)) if vector else (-1, 0)
-
- @staticmethod
- def write_corpus(fname, corpus, progress_cnt=1000, index=False, num_terms=None, metadata=False):
- """Save the corpus to disk in `Matrix Market format <https://math.nist.gov/MatrixMarket/formats.html>`_.
-
- Parameters
- ----------
- fname : str
- Filename of the resulting file.
- corpus : iterable of list of (int, number)
- Corpus in streamed bag-of-words format.
- progress_cnt : int, optional
- Print progress for every `progress_cnt` number of documents.
- index : bool, optional
- Return offsets?
- num_terms : int, optional
- Number of terms in the corpus. If provided, the `corpus.num_terms` attribute (if any) will be ignored.
- metadata : bool, optional
- Generate a metadata file?
-
- Returns
- -------
- offsets : {list of int, None}
- List of offsets (if index=True) or nothing.
-
- Notes
- -----
- Documents are processed one at a time, so the whole corpus is allowed to be larger than the available RAM.
-
- See Also
- --------
- :func:`gensim.corpora.mmcorpus.MmCorpus.save_corpus`
- Save corpus to disk.
-
- """
- mw = MmWriter(fname)
-
- # write empty headers to the file (with enough space to be overwritten later)
- mw.write_headers(-1, -1, -1) # will print 50 spaces followed by newline on the stats line
-
- # calculate necessary header info (nnz elements, num terms, num docs) while writing out vectors
- _num_terms, num_nnz = 0, 0
- docno, poslast = -1, -1
- offsets = []
- if hasattr(corpus, 'metadata'):
- orig_metadata = corpus.metadata
- corpus.metadata = metadata
- if metadata:
- docno2metadata = {}
- else:
- metadata = False
- for docno, doc in enumerate(corpus):
- if metadata:
- bow, data = doc
- docno2metadata[docno] = data
- else:
- bow = doc
- if docno % progress_cnt == 0:
- logger.info("PROGRESS: saving document #%i", docno)
- if index:
- posnow = mw.fout.tell()
- if posnow == poslast:
- offsets[-1] = -1
- offsets.append(posnow)
- poslast = posnow
- max_id, veclen = mw.write_vector(docno, bow)
- _num_terms = max(_num_terms, 1 + max_id)
- num_nnz += veclen
- if metadata:
- utils.pickle(docno2metadata, fname + '.metadata.cpickle')
- corpus.metadata = orig_metadata
-
- num_docs = docno + 1
- num_terms = num_terms or _num_terms
-
- if num_docs * num_terms != 0:
- logger.info(
- "saved %ix%i matrix, density=%.3f%% (%i/%i)",
- num_docs, num_terms, 100.0 * num_nnz / (num_docs * num_terms), num_nnz, num_docs * num_terms
- )
-
- # now write proper headers, by seeking and overwriting the spaces written earlier
- mw.fake_headers(num_docs, num_terms, num_nnz)
-
- mw.close()
- if index:
- return offsets
-
- def __del__(self):
- """Close `self.fout` file. Alias for :meth:`~gensim.matutils.MmWriter.close`.
-
- Warnings
- --------
- Closing the file explicitly via the close() method is preferred and safer.
-
- """
- self.close() # does nothing if called twice (on an already closed file), so no worries
-
- def close(self):
- """Close `self.fout` file."""
- logger.debug("closing %s", self.fname)
- if hasattr(self, 'fout'):
- self.fout.close()
-
-
- try:
- # try to load fast, cythonized code if possible
- from gensim.corpora._mmreader import MmReader
- except ImportError:
- FAST_VERSION = -1
-
- class MmReader(object):
- """Matrix market file reader, used internally in :class:`~gensim.corpora.mmcorpus.MmCorpus`.
-
- Wrap a term-document matrix on disk (in matrix-market format), and present it
- as an object which supports iteration over the rows (~documents).
-
- Attributes
- ----------
- num_docs : int
- Number of documents in market matrix file.
- num_terms : int
- Number of terms.
- num_nnz : int
- Number of non-zero terms.
-
- Notes
- -----
- Note that the file is read into memory one document at a time, not the whole matrix at once
- (unlike e.g. `scipy.io.mmread` and other implementations).
- This allows us to process corpora which are larger than the available RAM.
-
- """
- def __init__(self, input, transposed=True):
- """
-
- Parameters
- ----------
- input : {str, file-like object}
- Path to the input file in MM format or a file-like object that supports `seek()`
- (e.g. smart_open objects).
- transposed : bool, optional
- Do lines represent `doc_id, term_id, value`, instead of `term_id, doc_id, value`?
-
- """
- logger.info("initializing corpus reader from %s", input)
- self.input, self.transposed = input, transposed
- with utils.open_file(self.input) as lines:
- try:
- header = utils.to_unicode(next(lines)).strip()
- if not header.lower().startswith('%%matrixmarket matrix coordinate real general'):
- raise ValueError(
- "File %s not in Matrix Market format with coordinate real general; instead found: \n%s" %
- (self.input, header)
- )
- except StopIteration:
- pass
-
- self.num_docs = self.num_terms = self.num_nnz = 0
- for lineno, line in enumerate(lines):
- line = utils.to_unicode(line)
- if not line.startswith('%'):
- self.num_docs, self.num_terms, self.num_nnz = (int(x) for x in line.split())
- if not self.transposed:
- self.num_docs, self.num_terms = self.num_terms, self.num_docs
- break
-
- logger.info(
- "accepted corpus with %i documents, %i features, %i non-zero entries",
- self.num_docs, self.num_terms, self.num_nnz
- )
-
- def __len__(self):
- """Get the corpus size: total number of documents."""
- return self.num_docs
-
- def __str__(self):
- return ("MmCorpus(%i documents, %i features, %i non-zero entries)" %
- (self.num_docs, self.num_terms, self.num_nnz))
-
- def skip_headers(self, input_file):
- """Skip file headers that appear before the first document.
-
- Parameters
- ----------
- input_file : iterable of str
- Iterable taken from file in MM format.
-
- """
- for line in input_file:
- if line.startswith(b'%'):
- continue
- break
-
- def __iter__(self):
- """Iterate through all documents in the corpus.
-
- Notes
- ------
- Note that the total number of vectors returned is always equal to the number of rows specified
- in the header: empty documents are inserted and yielded where appropriate, even if they are not explicitly
- stored in the Matrix Market file.
-
- Yields
- ------
- (int, list of (int, number))
- Document id and document in sparse bag-of-words format.
-
- """
- with utils.file_or_filename(self.input) as lines:
- self.skip_headers(lines)
-
- previd = -1
- for line in lines:
- docid, termid, val = utils.to_unicode(line).split() # needed for python3
- if not self.transposed:
- termid, docid = docid, termid
- # -1 because matrix market indexes are 1-based => convert to 0-based
- docid, termid, val = int(docid) - 1, int(termid) - 1, float(val)
- assert previd <= docid, "matrix columns must come in ascending order"
- if docid != previd:
- # change of document: return the document read so far (its id is prevId)
- if previd >= 0:
- yield previd, document # noqa:F821
-
- # return implicit (empty) documents between previous id and new id
- # too, to keep consistent document numbering and corpus length
- for previd in xrange(previd + 1, docid):
- yield previd, []
-
- # from now on start adding fields to a new document, with a new id
- previd = docid
- document = []
-
- document.append((termid, val,)) # add another field to the current document
-
- # handle the last document, as a special case
- if previd >= 0:
- yield previd, document
-
- # return empty documents between the last explicit document and the number
- # of documents as specified in the header
- for previd in xrange(previd + 1, self.num_docs):
- yield previd, []
-
- def docbyoffset(self, offset):
- """Get the document at file offset `offset` (in bytes).
-
- Parameters
- ----------
- offset : int
- File offset, in bytes, of the desired document.
-
- Returns
- ------
- list of (int, str)
- Document in sparse bag-of-words format.
-
- """
- # empty documents are not stored explicitly in MM format, so the index marks
- # them with a special offset, -1.
- if offset == -1:
- return []
- if isinstance(self.input, string_types):
- fin, close_fin = utils.smart_open(self.input), True
- else:
- fin, close_fin = self.input, False
-
- fin.seek(offset) # works for gzip/bz2 input, too
- previd, document = -1, []
- for line in fin:
- docid, termid, val = line.split()
- if not self.transposed:
- termid, docid = docid, termid
- # -1 because matrix market indexes are 1-based => convert to 0-based
- docid, termid, val = int(docid) - 1, int(termid) - 1, float(val)
- assert previd <= docid, "matrix columns must come in ascending order"
- if docid != previd:
- if previd >= 0:
- break
- previd = docid
-
- document.append((termid, val,)) # add another field to the current document
-
- if close_fin:
- fin.close()
- return document
|