|
|
- """
- The :mod:`sklearn.exceptions` module includes all custom warnings and error
- classes used across scikit-learn.
- """
-
- __all__ = ['NotFittedError',
- 'ChangedBehaviorWarning',
- 'ConvergenceWarning',
- 'DataConversionWarning',
- 'DataDimensionalityWarning',
- 'EfficiencyWarning',
- 'FitFailedWarning',
- 'NonBLASDotWarning',
- 'SkipTestWarning',
- 'UndefinedMetricWarning']
-
-
- class NotFittedError(ValueError, AttributeError):
- """Exception class to raise if estimator is used before fitting.
-
- This class inherits from both ValueError and AttributeError to help with
- exception handling and backward compatibility.
-
- Examples
- --------
- >>> from sklearn.svm import LinearSVC
- >>> from sklearn.exceptions import NotFittedError
- >>> try:
- ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]])
- ... except NotFittedError as e:
- ... print(repr(e))
- ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
- NotFittedError('This LinearSVC instance is not fitted yet'...)
-
- .. versionchanged:: 0.18
- Moved from sklearn.utils.validation.
- """
-
-
- class ChangedBehaviorWarning(UserWarning):
- """Warning class used to notify the user of any change in the behavior.
-
- .. versionchanged:: 0.18
- Moved from sklearn.base.
- """
-
-
- class ConvergenceWarning(UserWarning):
- """Custom warning to capture convergence problems
-
- .. versionchanged:: 0.18
- Moved from sklearn.utils.
- """
-
-
- class DataConversionWarning(UserWarning):
- """Warning used to notify implicit data conversions happening in the code.
-
- This warning occurs when some input data needs to be converted or
- interpreted in a way that may not match the user's expectations.
-
- For example, this warning may occur when the user
- - passes an integer array to a function which expects float input and
- will convert the input
- - requests a non-copying operation, but a copy is required to meet the
- implementation's data-type expectations;
- - passes an input whose shape can be interpreted ambiguously.
-
- .. versionchanged:: 0.18
- Moved from sklearn.utils.validation.
- """
-
-
- class DataDimensionalityWarning(UserWarning):
- """Custom warning to notify potential issues with data dimensionality.
-
- For example, in random projection, this warning is raised when the
- number of components, which quantifies the dimensionality of the target
- projection space, is higher than the number of features, which quantifies
- the dimensionality of the original source space, to imply that the
- dimensionality of the problem will not be reduced.
-
- .. versionchanged:: 0.18
- Moved from sklearn.utils.
- """
-
-
- class EfficiencyWarning(UserWarning):
- """Warning used to notify the user of inefficient computation.
-
- This warning notifies the user that the efficiency may not be optimal due
- to some reason which may be included as a part of the warning message.
- This may be subclassed into a more specific Warning class.
-
- .. versionadded:: 0.18
- """
-
-
- class FitFailedWarning(RuntimeWarning):
- """Warning class used if there is an error while fitting the estimator.
-
- This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV
- and the cross-validation helper function cross_val_score to warn when there
- is an error while fitting the estimator.
-
- Examples
- --------
- >>> from sklearn.model_selection import GridSearchCV
- >>> from sklearn.svm import LinearSVC
- >>> from sklearn.exceptions import FitFailedWarning
- >>> import warnings
- >>> warnings.simplefilter('always', FitFailedWarning)
- >>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0, cv=2)
- >>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8]], [0, 0, 1, 1]
- >>> with warnings.catch_warnings(record=True) as w:
- ... try:
- ... gs.fit(X, y) # This will raise a ValueError since C is < 0
- ... except ValueError:
- ... pass
- ... print(repr(w[-1].message))
- ... # doctest: +NORMALIZE_WHITESPACE
- FitFailedWarning('Estimator fit failed. The score on this train-test
- partition for these parameters will be set to 0.000000.
- Details: \\nValueError: Penalty term must be positive; got (C=-2)\\n'...)
-
- .. versionchanged:: 0.18
- Moved from sklearn.cross_validation.
- """
-
-
- class NonBLASDotWarning(EfficiencyWarning):
- """Warning used when the dot operation does not use BLAS.
-
- This warning is used to notify the user that BLAS was not used for dot
- operation and hence the efficiency may be affected.
-
- .. versionchanged:: 0.18
- Moved from sklearn.utils.validation, extends EfficiencyWarning.
- """
-
-
- class SkipTestWarning(UserWarning):
- """Warning class used to notify the user of a test that was skipped.
-
- For example, one of the estimator checks requires a pandas import.
- If the pandas package cannot be imported, the test will be skipped rather
- than register as a failure.
- """
-
-
- class UndefinedMetricWarning(UserWarning):
- """Warning used when the metric is invalid
-
- .. versionchanged:: 0.18
- Moved from sklearn.base.
- """
|